1
|
Ma D, Cheng Z, Peplowski L, Han L, Xia Y, Hou X, Guo J, Yin D, Rao Y, Zhou Z. Insight into the broadened substrate scope of nitrile hydratase by static and dynamic structure analysis. Chem Sci 2022; 13:8417-8428. [PMID: 35919716 PMCID: PMC9297474 DOI: 10.1039/d2sc02319a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
The narrow substrate scope limits the wide industrial application of enzymes. Here, we successfully broadened the substrate scope of a nitrile hydratase (NHase) through mutation of two tunnel entrance residues based on rational tunnel calculation. Two variants, with increased specific activity, especially toward bulky substrates, were obtained. Crystal structure analysis revealed that the mutations led to the expansion of the tunnel entrance, which might be conducive to substrate entry. More importantly, molecular dynamics simulations illustrated that the mutations introduced anti-correlated movements to the regions around the substrate tunnel and the active site, which would promote substrate access during the dynamic process of catalysis. Additionally, mutations on the corresponding tunnel entrance residues on other NHases also enhanced their activity toward bulky substrates. These results not only revealed that residues located at the enzyme surface were a key factor in enzyme catalytic performance, but also provided dynamic evidence for insight into enzyme substrate scope broadening.
Collapse
Affiliation(s)
- Dong Ma
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun Grudziadzka 5 87-100 Torun Poland
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Xiaodong Hou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Dejing Yin
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Yijian Rao
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
- Jiangnan University (Rugao) Food Biotechnology Research Institute Rugao Jiangsu China
| |
Collapse
|
2
|
Zhu HQ, Tang XL, Zheng RC, Zheng YG. Recent advancements in enzyme engineering via site-specific incorporation of unnatural amino acids. World J Microbiol Biotechnol 2021; 37:213. [PMID: 34741210 DOI: 10.1007/s11274-021-03177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
With increased attention to excellent biocatalysts, evolving methods based on nature or unnatural amino acid (UAAs) mutagenesis have become an important part of enzyme engineering. The emergence of powerful method through expanding the genetic code allows to incorporate UAAs with unique chemical functionalities into proteins, endowing proteins with more structural and functional features. To date, over 200 diverse UAAs have been incorporated site-specifically into proteins via this methodology and many of them have been widely exploited in the field of enzyme engineering, making this genetic code expansion approach possible to be a promising tool for modulating the properties of enzymes. In this context, we focus on how this robust method to specifically incorporate UAAs into proteins and summarize their applications in enzyme engineering for tuning and expanding the functional properties of enzymes. Meanwhile, we aim to discuss how the benefits can be achieved by using the genetically encoded UAAs. We hope that this method will become an integral part of the field of enzyme engineering in the future.
Collapse
Affiliation(s)
- Hang-Qin Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
3
|
Desaturase specificity is controlled by the physicochemical properties of a single amino acid residue in the substrate binding tunnel. Comput Struct Biotechnol J 2020; 18:1202-1209. [PMID: 32542106 PMCID: PMC7283083 DOI: 10.1016/j.csbj.2020.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/23/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Membrane fatty acyl desaturases (mFAD) are ubiquitous enzymes in eukaryotes. They introduce double bonds into fatty acids (FAs), producing structurally diverse unsaturated FAs which serve as membrane lipid components or precursors of signaling molecules. The mechanisms controlling enzymatic specificity and selectivity of desaturation are, however, poorly understood. We found that the physicochemical properties, particularly side chain volume, of a single amino acid (aa) residue in insect mFADs (Lepidoptera: Bombyx mori and Manduca sexta) control the desaturation products. Molecular dynamics simulations of systems comprising wild-type or mutant mFADs with fatty acyl-CoA substrates revealed that the single aa substitution likely directs the outcome of the desaturation reaction by modulating the distance between substrate fatty acyl carbon atoms and active center metal ions. These findings, as well as our methodology combining mFAD mutational screening with molecular dynamics simulations, will facilitate prediction of desaturation products and facilitate engineering of mFADs for biotechnological applications.
Collapse
|
4
|
Rong C, Chen H, Wang M, Gu Z, Zhao J, Zhang H, Chen W, Chen YQ. Molecular mechanism of substrate preference for ω-3 fatty acid desaturase from Mortierella alpina by mutational analysis and molecular docking. Appl Microbiol Biotechnol 2018; 102:9679-9689. [DOI: 10.1007/s00253-018-9321-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 11/30/2022]
|
5
|
Sastre DE, Saita E, Uttaro AD, de Mendoza D, Altabe SG. Structural determinant of functionality in acyl lipid desaturases. J Lipid Res 2018; 59:1871-1879. [PMID: 30087203 DOI: 10.1194/jlr.m085258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/17/2018] [Indexed: 11/20/2022] Open
Abstract
Little is known about the structure-function relationship of membrane-bound lipid desaturases. Using a domain-swapping strategy, we found that the N terminus (comprising the two first transmembrane segments) region of Bacillus cereus DesA desaturase improves Bacillus subtilis Des activity. In addition, the replacement of the first two transmembrane domains from Bacillus licheniformis inactive open reading frame (ORF) BL02692 with the corresponding domain from DesA was sufficient to resurrect this enzyme. Unexpectedly, we were able to restore the activity of ORF BL02692 with a single substitution (Cys40Tyr) of a cysteine localized in the first transmembrane domain close to the lipid-water interface. Substitution of eight residues (Gly90, Trp104, Lys172, His228, Pro257, Leu275, Tyr282, and Leu284) by site-directed mutagenesis produced inactive variants of DesA. Homology modeling of DesA revealed that His228 is part of the metal binding center, together with the canonical His boxes. Trp104 shapes the hydrophobic tunnel, whereas Gly90 and Lys172 are probably involved in substrate binding/recognition. Pro257, Leu275, Tyr282, and Leu284 might be relevant for the structural arrangement of the active site or interaction with electron donors. This study reveals the role of the N-terminal region of Δ5 phospholipid desaturases and the individual residues necessary for the activity of this class of enzymes.
Collapse
Affiliation(s)
- Diego E Sastre
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Emilio Saita
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Silvia G Altabe
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| |
Collapse
|
6
|
Tupec M, Buček A, Valterová I, Pichová I. Biotechnological potential of insect fatty acid-modifying enzymes. ACTA ACUST UNITED AC 2018; 72:387-403. [PMID: 28742527 DOI: 10.1515/znc-2017-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023]
Abstract
There are more than one million described insect species. This species richness is reflected in the diversity of insect metabolic processes. In particular, biosynthesis of secondary metabolites, such as defensive compounds and chemical signals, encompasses an extraordinarily wide range of chemicals that are generally unparalleled among natural products from other organisms. Insect genomes, transcriptomes and proteomes thus offer a valuable resource for discovery of novel enzymes with potential for biotechnological applications. Here, we focus on fatty acid (FA) metabolism-related enzymes, notably the fatty acyl desaturases and fatty acyl reductases involved in the biosynthesis of FA-derived pheromones. Research on insect pheromone-biosynthetic enzymes, which exhibit diverse enzymatic properties, has the potential to broaden the understanding of enzyme specificity determinants and contribute to engineering of enzymes with desired properties for biotechnological production of FA derivatives. Additionally, the application of such pheromone-biosynthetic enzymes represents an environmentally friendly and economic alternative to the chemical synthesis of pheromones that are used in insect pest management strategies.
Collapse
|
7
|
Song LY, Zhang Y, Li SF, Hu J, Yin WB, Chen YH, Hao ST, Wang BL, Wang RRC, Hu ZM. Identification of the substrate recognition region in the Δ⁶-fatty acid and Δ⁸-sphingolipid desaturase by fusion mutagenesis. PLANTA 2014; 239:753-763. [PMID: 24366682 DOI: 10.1007/s00425-013-2006-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
Δ⁸-sphingolipid desaturase and Δ⁶-fatty acid desaturase share high protein sequence identity. Thus, it has been hypothesized that Δ⁶-fatty acid desaturase is derived from Δ⁸-sphingolipid desaturase; however, there is no direct proof. The substrate recognition regions of Δ⁶-fatty acid desaturase and Δ⁸-sphingolipid desaturase, which aid in understanding the evolution of these two enzymes, have not been reported. A blackcurrant Δ⁶-fatty acid desaturase and a Δ⁸-sphingolipid desaturase gene, RnD6C and RnD8A, respectively, share more than 80 % identity in their coding protein sequences. In this study, a set of fusion genes of RnD6C and RnD8A were constructed and expressed in yeast. The Δ⁶- and Δ⁸-desaturase activities of the fusion proteins were characterized. Our results indicated that (1) the exchange of the C-terminal 172 amino acid residues can lead to a significant decrease in both desaturase activities; (2) amino acid residues 114-174, 206-257, and 258-276 played important roles in Δ⁶-substrate recognition, and the last two regions were crucial for Δ⁸-substrate recognition; and (3) amino acid residues 114-276 of Δ⁶-fatty acid desaturase contained the substrate recognition site(s) responsible for discrimination between ceramide (a substrate of Δ⁸-sphingolipid desaturase) and acyl-PC (a substrate of Δ⁶-fatty acid desaturase). Substituting the amino acid residues 114-276 of RnD8A with those of RnD6C resulted in a gain of Δ⁶-desaturase activity in the fusion protein but a loss in Δ⁸-sphingolipid desaturase activity. In conclusion, several regions important for the substrate recognition of Δ⁸-sphingolipid desaturase and Δ⁶-fatty acid desaturase were identified, which provide clues in understanding the relationship between the structure and function in desaturases.
Collapse
Affiliation(s)
- Li-Ying Song
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang M, Chen H, Gu Z, Zhang H, Chen W, Chen YQ. ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use. Appl Microbiol Biotechnol 2013; 97:10255-62. [PMID: 24177732 DOI: 10.1007/s00253-013-5336-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/12/2013] [Accepted: 10/15/2013] [Indexed: 01/09/2023]
Abstract
The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.
Collapse
Affiliation(s)
- Mingxuan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Vanhercke T, Wood CC, Stymne S, Singh SP, Green AG. Metabolic engineering of plant oils and waxes for use as industrial feedstocks. PLANT BIOTECHNOLOGY JOURNAL 2013. [PMID: 23190163 DOI: 10.1111/pbi.12023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks.
Collapse
|
10
|
Song LY, Lu WX, Hu J, Yin WB, Chen YH, Wang BL, Wang RRC, Hu ZM. The role of C-terminal amino acid residues of a Δ⁶-fatty acid desaturase from blackcurrant. Biochem Biophys Res Commun 2013; 431:675-9. [PMID: 23357423 DOI: 10.1016/j.bbrc.2013.01.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/18/2022]
Abstract
Δ⁶-fatty acid desaturase is an important enzyme in the catalytic synthesis of polyunsaturated fatty acids. Using domain swapping and a site-directed mutagenesis strategy, we found that the region of the C-terminal 67 amino acid residues of Δ⁶-fatty acid desaturase RnD6C from blackcurrant was essential for its catalytic activity and that seven different residues between RnD6C and RnD8A in that region were involved in the desaturase activity. Compared with RnD6C, the activity of the following mutations, V394A, K395I, F411L, S436P, VK3945AI and IS4356VP, was significantly decreased, whereas the activity of I417T was significantly increased. The amino acids N, T and Y in the last four residues also play a certain role in the desaturase activity.
Collapse
Affiliation(s)
- Li-Ying Song
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Li SF, Song LY, Zhang GJ, Yin WB, Chen YH, Wang RRC, Hu ZM. Newly identified essential amino acid residues affecting Δ8-sphingolipid desaturase activity revealed by site-directed mutagenesis. Biochem Biophys Res Commun 2011; 416:165-71. [DOI: 10.1016/j.bbrc.2011.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/04/2011] [Indexed: 01/24/2023]
|
12
|
Vanhercke T, Shrestha P, Green AG, Singh SP. Mechanistic and structural insights into the regioselectivity of an acyl-CoA fatty acid desaturase via directed molecular evolution. J Biol Chem 2011; 286:12860-9. [PMID: 21300802 PMCID: PMC3075633 DOI: 10.1074/jbc.m110.191098] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 02/03/2011] [Indexed: 11/06/2022] Open
Abstract
Membrane-bound fatty acid desaturases and related enzymes play a pivotal role in the biosynthesis of unsaturated and various unusual fatty acids. Structural insights into the remarkable catalytic diversity and wide range of substrate specificities of this class of enzymes remain limited due to the lack of a crystal structure. To investigate the structural basis of the double bond positioning (regioselectivity) of the desaturation reaction in more detail, we relied on a combination of directed evolution in vitro and a powerful yeast complementation assay to screen for Δx regioselectivity. After two selection rounds, variants of the bifunctional Δ12/Δ9-desaturase from the house cricket (Acheta domesticus) exhibited increased Δ9-desaturation activity on shorter chain fatty acids. This change in specificity was the result of as few as three mutations, some of them near the putative active site. Subsequent analysis of individual substitutions revealed an important role of residue Phe-52 in facilitating Δ9-desaturation of shorter chain acyl substrates and allowed for the redesign of the cricket Δ12/Δ9-desaturase into a 16:0-specific Δ9-desaturase. Our results demonstrate that a minimal number of mutations can have a profound impact on the regioselectivity of acyl-CoA fatty acid desaturases and include the first biochemical data supporting the acyl-CoA acyl carrier specificity of a desaturase able to carry out Δ12-desaturation.
Collapse
Affiliation(s)
- Thomas Vanhercke
- From the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Pushkar Shrestha
- From the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Allan G. Green
- From the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Surinder P. Singh
- From the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
13
|
Machida M, Yamada O, Gomi K. Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res 2008; 15:173-83. [PMID: 18820080 PMCID: PMC2575883 DOI: 10.1093/dnares/dsn020] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Accepted: 08/01/2008] [Indexed: 11/23/2022] Open
Abstract
At a time when the notion of microorganisms did not exist, our ancestors empirically established methods for the production of various fermentation foods: miso (bean curd seasoning) and shoyu (soy sauce), both of which have been widely used and are essential for Japanese cooking, and sake, a magical alcoholic drink consumed at a variety of ritual occasions, are typical examples. A filamentous fungus, Aspergillus oryzae, is the key organism in the production of all these traditional foods, and its solid-state cultivation (SSC) has been confirmed to be the secret for the high productivity of secretory hydrolases vital for the fermentation process. Indeed, our genome comparison and transcriptome analysis uncovered mechanisms for effective degradation of raw materials in SSC: the extracellular hydrolase genes that have been found only in the A. oryzae genome but not in A. fumigatus are highly induced during SSC but not in liquid cultivation. Also, the temperature reduction process empirically adopted in the traditional soy-sauce fermentation processes has been found to be important to keep strong expression of the A. oryzae-specific extracellular hydrolases. One of the prominent potentials of A. oryzae is that it has been successfully applied to effective degradation of biodegradable plastic. Both cutinase, responsible for the degradation of plastic, and hydrophobin, which recruits cutinase on the hydrophobic surface to enhance degradation, have been discovered in A. oryzae. Genomic analysis in concert with traditional knowledge and technology will continue to be powerful tools in the future exploration of A. oryzae.
Collapse
Affiliation(s)
- Masayuki Machida
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1, Higashi, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
14
|
Identification and Functional Expression of a Δ9-Fatty Acid Desaturase from Psychrobacter urativorans in Escherichia coli. Lipids 2008; 43:207-13. [DOI: 10.1007/s11745-007-3150-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
|
15
|
Kurdrid P, Sirijuntarut M, Subudhi S, Cheevadhanarak S, Hongsthong A. Truncation mutants highlight a critical role for the N- and C-termini of the Spirulina Delta(6) desaturase in determining regioselectivity. Mol Biotechnol 2007; 38:203-9. [PMID: 18270848 DOI: 10.1007/s12033-007-9009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 09/24/2007] [Indexed: 12/31/2022]
Abstract
The results of our previous study on heterologous expression in Escherichia coli of the gene desD, which encodes Spirulina Delta(6) desaturase, showed that co-expression with an immediate electron donor-either cytochrome b ( 5 ) or ferredoxin-was required for the production of GLA (gamma-linolenic acid), the product of the reaction catalyzed by Delta(6) desaturase. Since a system for stable transformation of Spirulina is not available, studies concerning Spirulina-enzyme characterization have been carried out in heterologous hosts. In this present study, the focus is on the role of the enzyme's N- and C-termini, which are possibly located in the cytoplasmic phase. Truncated enzymes were expressed in E. coli by employing the pTrcHisA expression system. The truncation of the N- and C-terminus by 10 (N10 and C10) and 30 (N30 and C30) amino acids, respectively, altered the enzyme's regioselective mode from one that measures from a preexisting double bond to that measuring from the methyl end of the substrate.
Collapse
Affiliation(s)
- Pavinee Kurdrid
- Biochemical Engineering and Pilot Plant Research and Development Unit, National Center for Genetic Engineering and Biotechnology, King Mongkut's University of Technology-Thonburi (Bangkhuntien), 83 Moo 8, Thakham, Bangkhuntien, Bangkok, 10150, Thailand
| | | | | | | | | |
Collapse
|
16
|
Curtis PD, Geyer R, White DC, Shimkets LJ. Novel lipids in Myxococcus xanthus and their role in chemotaxis. Environ Microbiol 2006; 8:1935-49. [PMID: 17014493 DOI: 10.1111/j.1462-2920.2006.01073.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organisms that colonize solid surfaces, like Myxococcus xanthus, use novel signalling systems to organize multicellular behaviour. Phosphatidylethanolamine (PE) containing the fatty acid 16:1omega5 (Delta11) elicits a chemotactic response. The phenomenon was examined by observing the effects of PE species with varying fatty acid pairings. Wild-type M. xanthus contains 17 different PE species under vegetative conditions and 19 at the midpoint of development; 13 of the 17 have an unsaturated fatty acid at the sn-1 position, a novelty among Proteobacteria. Myxococcus xanthus has two glycerol-3-phosphate acyltransferase (PlsB) homologues which add the sn-1 fatty acid. Each produces PE with 16:1 at the sn-1 position and supports growth and fruiting body development. Deletion of plsB1 (MXAN3288) results in more dramatic changes in PE species distribution than deletion of plsB2 (MXAN1675). PlsB2 has a putative N-terminal eukaryotic fatty acid reductase domain and may support both ether lipid synthesis and PE synthesis. Disruption of a single sn-2 acyltransferase homologue (PlsC, of which M. xanthus contains five) results in minor changes in membrane PE. Derivatization of purified PE extracts with dimethyldisulfide was used to determine the position of the double bonds in unsaturated fatty acids. The results suggest that Delta5 and Delta11 desaturases may create the double bonds after synthesis of the fatty acid. Phosphatidylethanolamine enriched for 16:1 at the sn-1 position stimulates chemotaxis more strongly than PE with 16:1 enriched at the sn-2 position. It appears that the deployment of a rare fatty acid (16:1omega5) at an unusual position (sn-1) has facilitated the evolution of a novel cell signal.
Collapse
Affiliation(s)
- Patrick D Curtis
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
17
|
Kurdrid P, Subudhi S, Hongsthong A, Ruengjitchatchawalya M, Tanticharoen M. Functional expression of Spirulina-Delta6 desaturase gene in yeast, Saccharomyces cerevisiae. Mol Biol Rep 2006; 32:215-26. [PMID: 16328883 DOI: 10.1007/s11033-005-0416-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2005] [Indexed: 11/28/2022]
Abstract
Spirulina-acyl-lipid desaturases are membrane-bound enzymes found in thylakoid and plasma membranes. These enzymes carry out the fatty acid desaturation process of Spirulina to yield gamma-linolenic acid (GLA) as the final desaturation product. In this study, Spirulina-Delta(6) desaturase encoded by the desD gene was heterologously expressed and characterized in Saccharomyces cerevisiae. We then conducted site-directed mutagenesis of the histidine residues in the three histidine boxes to determine the role of these amino acid residues in the enzyme function. Our results showed that while four mutants showed complete loss of Delta(6)-desaturase activity and two mutants showed only trace of the activity, the enzyme activity could be partially restored by chemical rescue using exogenously provided imidazole. This study reveals that the histidine residues (which have imidazole as their functional group) in the conserved clusters play a critical role in Delta(6)-desaturase activity, possibly by providing a di-iron catalytic center. In our previous study, this enzyme was expressed in Escherichia coli. The results reveal that the enzyme can function only in the presence of an exogenous cofactor, ferredoxin, provided in vitro. This evidence suggests that baker's yeast has a cofactor that can complement ferredoxin, thought to act as an electron donor for the Delta(6) desaturation in cyanobacteria, including Spirulina. The electron donor of the Spirulina-Delta(6) desaturation in yeast is more likely to be cytochrome b(5), which is absent in E. coli. This means that the enzyme expressed in S. cerevisiae can catalyze the biosynthesis of the product, GLA, in vivo.
Collapse
Affiliation(s)
- Pavinee Kurdrid
- Pilot Plant Training and Development Institute, King Mongkut's University of Technology-Thonburi, 83 Moo8, Thakham, Bangkhuntien, Bangkok 10150, Thailand
| | | | | | | | | |
Collapse
|
18
|
Hongsthong A, Subudhi S, Sirijuntarut M, Kurdrid P, Cheevadhanarak S, Tanticharoen M. Revealing the complementation of ferredoxin by cytochrome b (5) in the Spirulina- (6)-desaturation reaction by N-terminal fusion and co-expression of the fungal-cytochrome b (5) domain and Spirulina- (6)-acyl-lipid desaturase. Appl Microbiol Biotechnol 2006; 72:1192-201. [PMID: 16575563 DOI: 10.1007/s00253-006-0407-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 03/01/2006] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Abstract
Spirulina-acyl-lipid desaturases are integral membrane proteins found in thylakoid and plasma membranes. These enzymes catalyze the fatty acid desaturation process of Spirulina to yield gamma-linolenic acid (GLA) as the final desaturation product. It has been reported that the cyanobacterial desaturases use ferredoxin as an electron donor, whereas the acyl-lipid desaturase in plant cytoplasm and the acyl-CoA desaturase of animals and fungi use cytochrome b (5). The low level of ferredoxin present in Escherichia coli cells leads to an inability to synthesize GLA when the cells are transformed with the Spirulina-(6) desaturase, desD, and grown in the presence of the reaction substrate, linoleic acid. In this study, Spirulina-(6) desaturase, encoded by the desD gene, was N-terminally fused and co-expressed with the cytochrome b (5) domain from Mucor rouxii. The product, GLA, made heterologously in E. coli and Saccharomyces cerevisiae, was then detected and analyzed. The results revealed the production of GLA by Spirulina-(6) desaturase fused or co-expressed with cytochrome b (5) in E. coli cells, in which GLA production by this gene cannot occur in the absence of cytochrome b (5). Moreover, the GLA production ability in the E. coli host cells was lost after the single substitution mutation was introduced to H52 in the HPGG motif of the cytochrome b (5) domain. These results revealed the complementation of the ferredoxin requirement by the fusion or co-expression of the fungal-cytochrome b (5) domain in the desaturation process of Spirulina-(6) desaturase. Furthermore, the free form of cytochrome b (5) domain can also enhance GLA production by the Spirulina-desD gene in yeast cells.
Collapse
Affiliation(s)
- Apiradee Hongsthong
- National Center for Genetic Engineering and Biotechnology, 83 Moo8, Thakham, Bangkhuntien, Bangkok, 10150, Thailand.
| | | | | | | | | | | |
Collapse
|
19
|
Lehto KM, Lehto HJ, Kanervo EA. Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Res Microbiol 2005; 157:69-76. [PMID: 16439102 DOI: 10.1016/j.resmic.2005.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/13/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
In the present era of intensive space and planetary research, efficient life support systems (LSSs) are needed to maintain suitable living conditions when humans move into space, i.e. away from the Earth's atmosphere. Thus far, such suitable conditions on various space flights and on the space stations (Mir and the International Space Station) have been maintained solely via physical and chemical means (transport of O2, H2O and food from the Earth, cleaning and recycling of air and water). However, for long-duration missions to distant destinations, such as exploratory missions to Mars, biological life support systems (BLSSs) may be needed to convert local CO2 and H2O to O2, and to food. As on earth, this conversion process would need to be based on photosynthesis. Use of higher plants and microalgae as BLSS organisms has been intensively studied. Here we review the growth requirements of these two types of photosynthetic organisms, with particular attention to their suitability for use in harsh Martian conditions, i.e. low temperatures, low atmospheric pressure, high CO2 concentration, high UV radiation and dryness.
Collapse
Affiliation(s)
- Kirsi M Lehto
- Department of Plant Physiology and Molecular Biology, 20014 University of Turku, Finland.
| | | | | |
Collapse
|
20
|
Na-Ranong S, Laoteng K, Kittakoop P, Tanticharoen M, Cheevadhanarak S. Targeted mutagenesis of a fatty acid Delta6-desaturase from Mucor rouxii: role of amino acid residues adjacent to histidine-rich motif II. Biochem Biophys Res Commun 2005; 339:1029-34. [PMID: 16337147 DOI: 10.1016/j.bbrc.2005.11.115] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 11/17/2005] [Indexed: 11/29/2022]
Abstract
The amino acid residues serine at position 213 (S213) and lysine at position 218 (K218), which are present in close proximity to the histidine-rich motif II of Mucor rouxii fatty acid Delta(6)-desaturase isoform II, were targeted for studying structure-function relationships using site-directed mutagenesis. The mutants were functionally characterized in a heterologous host, Saccharomyces cerevisiae. Substrate specificity and preference studies revealed that S213 and K218 are involved in substrate recognition. K218 plays a role in substrate preference by involvement in the binding of substrates, particularly C15-C18 monoene fatty acids. Modification of the M. rouxii Delta(6)-desaturase therefore has potential in specifically altering substrate utilization for production of desired fatty acids.
Collapse
Affiliation(s)
- Sutthicha Na-Ranong
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | | | | | | | | |
Collapse
|
21
|
Abe T, Sakuradani E, Ueda T, Shimizu S. Identification of mutation sites on Δ5 desaturase genes from Mortierella alpina 1S-4 mutants. J Biosci Bioeng 2005; 99:296-9. [PMID: 16233793 DOI: 10.1263/jbb.99.296] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 12/11/2004] [Indexed: 11/17/2022]
Abstract
The mutation sites on delta5 desaturase genes in delta5 desaturase-defective mutants derived from arachidonic acid-producing Mortierella alpina 1S-4 were identified. The mutations resulted in an amino acid replacement (G189E or W301Stop) and uncorrected transcription caused by recognition of an AG-terminal newly created on C207A gene mutation, resulting in low or no delta5 desaturase activity in these mutants.
Collapse
Affiliation(s)
- Takahiro Abe
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|