1
|
Vijayakumar KK, Manoharan D, Subbarayan R, Shrestha R, Harshavardhan S. Construction of pVAX-1-based linear covalently closed vector with improved transgene expression. Mol Biol Rep 2024; 51:934. [PMID: 39180671 DOI: 10.1007/s11033-024-09856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
INTRODUCTION This study presents a Mammalian Linear Expression System (MLES), a linear covalently closed (LCC) vector based on pVAX-1. The purpose of this system was to improve gene expression in mammalian cells and to test the efficacy of MLES in transient transfection and transgene expression using in vitro and in vivo models. Additionally, we aimed to evaluate potential inflammatory responses in vivo. MATERIALS AND METHODS MLES was developed by modifying pVAX-1, and the construct was confirmed by gel electrophoresis. Lipofectamine®2000 was used to assess the transfection efficiency and expression of MLES in various cell lines. In vivo studies were conducted in mice injected with MLES/EGFP, and the resulting transfection efficiency, gene expression, and inflammatory responses were analyzed. RESULTS MLES exhibited higher transfection efficiency and expression levels compared to pVAX-1 when tested on HEK-293, CHO-K1, and NIH-3T3 cells. When tested in vivo, MLES/EGFP showed elevated expression in the heart, kidney, liver, and spleen compared with pVAX-1/EGFP. Minimal changes are observed in the lungs. Additionally, MLES induced a reduced inflammatory response in mice compared with pVAX-1/EGFP. CONCLUSIONS MLES offer improved transfection efficiency and reduced inflammation, representing a significant advancement in gene therapy and recombinant protein production. Further research on MLES-mediated gene expression and immune modulation will enhance gene therapy strategies.
Collapse
Affiliation(s)
- Kevin Kumar Vijayakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Devaprakash Manoharan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutic and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rupendra Shrestha
- Research and Collaboration, Anka Analytica, Melbourne, Australia
- External Consultant, Independent Researcher, Pittsfield, MA, USA
| | - Shakila Harshavardhan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
2
|
Marie C, Scherman D. Antibiotic-Free Gene Vectors: A 25-Year Journey to Clinical Trials. Genes (Basel) 2024; 15:261. [PMID: 38540320 PMCID: PMC10970329 DOI: 10.3390/genes15030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 06/15/2024] Open
Abstract
Until very recently, the major use, for gene therapy, specifically of linear or circular DNA, such as plasmids, was as ancillary products for viral vectors' production or as a genetic template for mRNA production. Thanks to targeted and more efficient physical or chemical delivery techniques and to the refinement of their structure, non-viral plasmid DNA are now under intensive consideration as pharmaceutical drugs. Plasmids traditionally carry an antibiotic resistance gene for providing the selection pressure necessary for maintenance in a bacterial host. Nearly a dozen different antibiotic-free gene vectors have now been developed and are currently assessed in preclinical assays and phase I/II clinical trials. Their reduced size leads to increased transfection efficiency and prolonged transgene expression. In addition, associating non-viral gene vectors and DNA transposons, which mediate transgene integration into the host genome, circumvents plasmid dilution in dividing eukaryotic cells which generate a loss of the therapeutic gene. Combining these novel molecular tools allowed a significantly higher yield of genetically engineered T and Natural Killer cells for adoptive immunotherapies due to a reduced cytotoxicity and increased transposition rate. This review describes the main progresses accomplished for safer, more efficient and cost-effective gene and cell therapies using non-viral approaches and antibiotic-free gene vectors.
Collapse
Affiliation(s)
- Corinne Marie
- Université Paris Cité, CNRS, Inserm, UTCBS, 75006 Paris, France;
- Chimie ParisTech, Université PSL, 75005 Paris, France
| | - Daniel Scherman
- Université Paris Cité, CNRS, Inserm, UTCBS, 75006 Paris, France;
- Fondation Maladies Rares, 75014 Paris, France
| |
Collapse
|
3
|
Islas F, Sabido A, Sigala J, Lara AR. Design of microaerobically inducible miniR1 plasmids. MLIFE 2023; 2:101-104. [PMID: 38818336 PMCID: PMC10989972 DOI: 10.1002/mlf2.12058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/01/2024]
Abstract
Plasmid DNA manufacture is an essential step to produce gene therapy agents and next-generation vaccines. However, little attention has been paid toward developing alternative replicons that can be coupled with large-scale production conditions. Our results demonstrate that the miniR1 replicon can be efficiently induced by oxygen limitation when a copy of the regulatory protein RepA under control of a microaerobic promoter is used. The results are potentially attractive for industrial applications.
Collapse
Affiliation(s)
- Fabiola Islas
- Departamento de Procesos y TecnologíaUniversidad Autónoma MetropolitanaCiudad de MexicoMéxico
| | - Andrea Sabido
- Departamento de Procesos y TecnologíaUniversidad Autónoma MetropolitanaCiudad de MexicoMéxico
| | - Juan‐Carlos Sigala
- Departamento de Procesos y TecnologíaUniversidad Autónoma MetropolitanaCiudad de MexicoMéxico
| | - Alvaro R. Lara
- Departamento de Procesos y TecnologíaUniversidad Autónoma MetropolitanaCiudad de MexicoMéxico
| |
Collapse
|
4
|
Pastor M, Quiviger M, Pailloux J, Scherman D, Marie C. Reduced Heterochromatin Formation on the pFAR4 Miniplasmid Allows Sustained Transgene Expression in the Mouse Liver. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:28-36. [PMID: 32505001 PMCID: PMC7270507 DOI: 10.1016/j.omtn.2020.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
Non-viral gene delivery into the liver generally mediates a transient transgene expression. A comparative analysis was performed using two gene vectors, pFAR4 and pKAR4, which differ by the absence or presence of an antibiotic resistance marker, respectively. Both plasmids carried the same eukaryotic expression cassette composed of a sulfamidase (Sgsh) cDNA expressed from the human alpha antitrypsin liver-specific promoter. Hydrodynamic injection of the pFAR4 construct resulted in prolonged sulfamidase secretion from the liver, whereas delivery of the pKAR4 construct led to a sharp decrease in circulating enzyme. After induction of hepatocyte division, a rapid decline of sulfamidase expression occurred, indicating that the pFAR4 derivative was mostly episomal. Quantification analyses revealed that both plasmids were present at similar copy numbers, whereas Sgsh transcript levels remained high only in mice infused with the pFAR4 construct. Using a chromatin immunoprecipitation assay, it was established that the 5' end of the expression cassette carried by pKAR4 exhibited a 7.9-fold higher heterochromatin-to-euchromatin ratio than the pFAR4 construct, whereas a bisulfite treatment did not highlight any obvious differences in the methylation status of the two plasmids. Thus, by preventing transgene expression silencing, the pFAR4 gene vector allows a sustained transgene product secretion from the liver.
Collapse
Affiliation(s)
- Marie Pastor
- Université de Paris, UTCBS, CNRS, INSERM, 4, avenue de l'Observatoire, 75006 Paris, France
| | - Mickäel Quiviger
- Université de Paris, UTCBS, CNRS, INSERM, 4, avenue de l'Observatoire, 75006 Paris, France
| | - Julie Pailloux
- Université de Paris, UTCBS, CNRS, INSERM, 4, avenue de l'Observatoire, 75006 Paris, France
| | - Daniel Scherman
- Université de Paris, UTCBS, CNRS, INSERM, 4, avenue de l'Observatoire, 75006 Paris, France
| | - Corinne Marie
- Université de Paris, UTCBS, CNRS, INSERM, 4, avenue de l'Observatoire, 75006 Paris, France; Chimie ParisTech, PSL Research University, 75005 Paris, France.
| |
Collapse
|
5
|
The Antibiotic-free pFAR4 Vector Paired with the Sleeping Beauty Transposon System Mediates Efficient Transgene Delivery in Human Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 11:57-67. [PMID: 29858090 PMCID: PMC5852330 DOI: 10.1016/j.omtn.2017.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
The anti-angiogenic and neurogenic pigment epithelium-derived factor (PEDF) demonstrated a potency to control choroidal neovascularization in age-related macular degeneration (AMD) patients. The goal of the present study was the development of an efficient and safe technique to integrate, ex vivo, the PEDF gene into retinal pigment epithelial (RPE) cells for later transplantation to the subretinal space of AMD patients to allow continuous PEDF secretion in the vicinity of the affected macula. Because successful gene therapy approaches require efficient gene delivery and stable gene expression, we used the antibiotic-free pFAR4 mini-plasmid vector to deliver the hyperactive Sleeping Beauty transposon system, which mediates transgene integration into the genome of host cells. In an initial study, lipofection-mediated co-transfection of HeLa cells with the SB100X transposase gene and a reporter marker delivered by pFAR4 showed a 2-fold higher level of genetically modified cells than when using the pT2 vectors. Similarly, with the pFAR4 constructs, electroporation-mediated transfection of primary human RPE cells led to 2.4-fold higher secretion of recombinant PEDF protein, which was still maintained 8 months after transfection. Thus, our results show that the pFAR4 plasmid is a superior vector for the delivery and integration of transgenes into eukaryotic cells.
Collapse
|
6
|
Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes (Basel) 2017; 8:E65. [PMID: 28208635 PMCID: PMC5333054 DOI: 10.3390/genes8020065] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023] Open
Abstract
Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic.
Collapse
Affiliation(s)
- Cinnamon L. Hardee
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lirio Milenka Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin D. Hornstein
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lynn Zechiedrich
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Mignon C, Sodoyer R, Werle B. Antibiotic-free selection in biotherapeutics: now and forever. Pathogens 2015; 4:157-81. [PMID: 25854922 PMCID: PMC4493468 DOI: 10.3390/pathogens4020157] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 11/16/2022] Open
Abstract
The continuously improving sophistication of molecular engineering techniques gives access to novel classes of bio-therapeutics and new challenges for their production in full respect of the strengthening regulations. Among these biologic agents are DNA based vaccines or gene therapy products and to a lesser extent genetically engineered live vaccines or delivery vehicles. The use of antibiotic-based selection, frequently associated with genetic manipulation of microorganism is currently undergoing a profound metamorphosis with the implementation and diversification of alternative selection means. This short review will present examples of alternatives to antibiotic selection and their context of application to highlight their ineluctable invasion of the bio-therapeutic world.
Collapse
Affiliation(s)
- Charlotte Mignon
- Technology Research Institute Bioaster, 317 avenue Jean-Jaurés, 69007 Lyon, France.
| | - Régis Sodoyer
- Technology Research Institute Bioaster, 317 avenue Jean-Jaurés, 69007 Lyon, France.
| | - Bettina Werle
- Technology Research Institute Bioaster, 317 avenue Jean-Jaurés, 69007 Lyon, France.
| |
Collapse
|
8
|
Marker-free plasmids for biotechnological applications – implications and perspectives. Trends Biotechnol 2013; 31:539-47. [DOI: 10.1016/j.tibtech.2013.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 11/22/2022]
|
9
|
Bower DM, Prather KLJ. Development of new plasmid DNA vaccine vectors with R1-based replicons. Microb Cell Fact 2012; 11:107. [PMID: 22889338 PMCID: PMC3495755 DOI: 10.1186/1475-2859-11-107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/03/2012] [Indexed: 11/20/2022] Open
Abstract
Background There has been renewed interest in biopharmaceuticals based on plasmid DNA (pDNA) in recent years due to the approval of several veterinary DNA vaccines, on-going clinical trials of human pDNA-based therapies, and significant advances in adjuvants and delivery vehicles that have helped overcome earlier efficacy deficits. With this interest comes the need for high-yield, cost-effective manufacturing processes. To this end, vector engineering is one promising strategy to improve plasmid production. Results In this work, we have constructed a new DNA vaccine vector, pDMB02-GFP, containing the runaway R1 origin of replication. The runaway replication phenotype should result in plasmid copy number amplification after a temperature shift from 30°C to 42°C. However, using Escherichia coli DH5α as a host, we observed that the highest yields of pDMB02-GFP were achieved during constant-temperature culture at 30°C, with a maximum yield of approximately 19 mg pDNA/g DCW being observed. By measuring mRNA and protein levels of the R1 replication initiator protein, RepA, we determined that RepA may be limiting pDMB02-GFP yield at 42°C. A mutant plasmid, pDMB-ATG, was constructed by changing the repA start codon from the sub-optimal GTG to ATG. In cultures of DH5α[pDMB-ATG], temperature-induced plasmid amplification was more dramatic than that observed with pDMB02-GFP, and RepA protein was detectable for several hours longer than in cultures of pDMB02-GFP at 42°C. Conclusions Overall, we have demonstrated that R1-based plasmids can produce high yields of high-quality pDNA without the need for a temperature shift, and have laid the groundwork for further investigation of this class of vectors in the context of plasmid DNA production.
Collapse
Affiliation(s)
- Diana M Bower
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-454, Cambridge, MA 02139, USA
| | | |
Collapse
|
10
|
Feng J, Chen XJ, Sun X, Wang N, Li YZ. Characterization of the replication origin of the myxobacterial self-replicative plasmid pMF1. Plasmid 2012; 68:105-12. [PMID: 22537554 DOI: 10.1016/j.plasmid.2012.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/01/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
Abstract
Thus far, pMF1 is the only endogenous myxobacterial plasmid whose replication mechanism is unclear. In this study, we determined that the plasmid replicates via the theta-mode. The pMF1.14 gene, located in the pMF1.13-pMF1.15 operon (repABC), encodes an essential replication initiation protein that was predicted to have no typical DNA/protein binding motifs but contains rich disordered regions. The pMF1 replication-related essential cis-acting DNA region, approximate 370bp, was located within pMF1.14, and was found to contain several directly and inverted atypical repeats. The unique characteristics of the pMF1 replicon are suggested to be the reason for its strict narrow host range in Myxococcus cells.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | |
Collapse
|
11
|
Abstract
Plasmid DNA (pDNA) is the base for promising DNA vaccines and gene therapies against many infectious, acquired, and genetic diseases, including HIV-AIDS, Ebola, Malaria, and different types of cancer, enteric pathogens, and influenza. Compared to conventional vaccines, DNA vaccines have many advantages such as high stability, not being infectious, focusing the immune response to only those antigens desired for immunization and long-term persistence of the vaccine protection. Especially in developing countries, where conventional effective vaccines are often unavailable or too expensive, there is a need for both new and improved vaccines. Therefore the demand of pDNA is expected to rise significantly in the near future. Since the injection of pDNA usually only leads to a weak immune response, several milligrams of DNA vaccine are necessary for immunization protection. Hence, there is a special interest to raise the product yield in order to reduce manufacturing costs. In this chapter, the different stages of plasmid DNA production are reviewed, from the vector design to downstream operation options. In particular, recent advances on cell engineering for improving plasmid DNA production are discussed.
Collapse
Affiliation(s)
- Alvaro R Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico.
| | | | | |
Collapse
|
12
|
Vandermeulen G, Marie C, Scherman D, Préat V. New generation of plasmid backbones devoid of antibiotic resistance marker for gene therapy trials. Mol Ther 2011; 19:1942-9. [PMID: 21878901 PMCID: PMC3222533 DOI: 10.1038/mt.2011.182] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/03/2011] [Indexed: 12/29/2022] Open
Abstract
Since it has been established that the injection of plasmid DNA can lead to an efficient expression of a specific protein in vivo, nonviral gene therapy approaches have been considerably improved, allowing clinical trials. However, the use of antibiotic resistance genes as selection markers for plasmid production raises safety concerns which are often pointed out by the regulatory authorities. Indeed, a horizontal gene transfer to patient's bacteria cannot be excluded, and residual antibiotic in the final product could provoke allergic reactions in sensitive individuals. A new generation of plasmid backbones devoid of antibiotic resistance marker has emerged to increase the safety profile of nonviral gene therapy trials. This article reviews the existing strategies for plasmid maintenance and, in particular, those that do not require the use of antibiotic resistance genes. They are based either on the complementation of auxotrophic strain, toxin-antitoxin systems, operator-repressor titration, RNA markers, or on the overexpression of a growth essential gene. Minicircles that allow removing of the antibiotic resistance gene from the initial vector will also be discussed. Furthermore, reported use of antibiotic-free plasmids in preclinical or clinical studies will be listed to provide a comprehensive view of these innovative technologies.
Collapse
Affiliation(s)
- Gaëlle Vandermeulen
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmaceutics and Drug Delivery, Brussels, Belgium
| | | | | | | |
Collapse
|
13
|
Marie C, Vandermeulen G, Quiviger M, Richard M, Préat V, Scherman D. pFARs, plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells. J Gene Med 2010; 12:323-32. [PMID: 20209487 DOI: 10.1002/jgm.1441] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic-free selection system. METHODS The proposed strategy relies on the suppression of a chromosomal amber mutation by a plasmid-borne function. We first introduced a nonsense mutation into the essential Escherichia coli thyA gene, resulting in thymidine auxotrophy. The bacterial strain was optimized for the production of small and novel plasmids free of antibiotic resistance markers (pFARs) and encoding an amber suppressor t-RNA. Finally, the potentiality of pFARs as eukaryotic expression vectors was assessed by monitoring luciferase activities after electrotransfer of LUC-encoding plasmids into various tissues. RESULTS The introduction of pFARs into the optimized bacterial strain restored normal growth to the auxotrophic mutant and allowed an efficient production of monomeric supercoiled plasmids. The electrotransfer of LUC-encoding pFAR into muscle led to high luciferase activities, demonstrating an efficient gene delivery. In transplanted tumours, transgene expression levels were superior after electrotransfer of the pFAR derivative compared to a plasmid carrying a kanamycin resistance gene. Finally, in skin, whereas luciferase activities decreased within 3 weeks after intradermal electrotransfer of a conventional expression vector, sustained luciferase expression was observed with the pFAR plasmid. CONCLUSIONS Thus, we have designed a novel strategy for the efficient production of biosafe plasmids and demonstrated their potentiality for nonviral gene delivery and high-level transgene expression in several tissues.
Collapse
Affiliation(s)
- Corinne Marie
- Université Paris Descartes, Faculté de Pharmacie, Unité de Pharmacologie Chimique et Génétique et d'Imagerie, Ecole Nationale Supérieure de Chimie de Paris, INSERM U1022, CNRS UMR8151, Paris, France.
| | | | | | | | | | | |
Collapse
|
14
|
Bower DM, Prather KLJ. Engineering of bacterial strains and vectors for the production of plasmid DNA. Appl Microbiol Biotechnol 2009; 82:805-13. [DOI: 10.1007/s00253-009-1889-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
15
|
Williams JA, Carnes AE, Hodgson CP. Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol Adv 2009; 27:353-70. [PMID: 19233255 DOI: 10.1016/j.biotechadv.2009.02.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/02/2009] [Accepted: 02/07/2009] [Indexed: 10/21/2022]
Abstract
Critical molecular and cellular biological factors impacting design of licensable DNA vaccine vectors that combine high yield and integrity during bacterial production with increased expression in mammalian cells are reviewed. Food and Drug Administration (FDA), World Health Organization (WHO) and European Medical Agencies (EMEA) regulatory guidance's are discussed, as they relate to vector design and plasmid fermentation. While all new vectors will require extensive preclinical testing to validate safety and performance prior to clinical use, regulatory testing burden for follow-on products can be reduced by combining carefully designed synthetic genes with existing validated vector backbones. A flowchart for creation of new synthetic genes, combining rationale design with bioinformatics, is presented. The biology of plasmid replication is reviewed, and process engineering strategies that reduce metabolic burden discussed. Utilizing recently developed low metabolic burden seed stock and fermentation strategies, optimized vectors can now be manufactured in high yields exceeding 2 g/L, with specific plasmid yields of 5% total dry cell weight.
Collapse
|
16
|
Rational vector design for efficient non-viral gene delivery: challenges facing the use of plasmid DNA. Mol Biotechnol 2008; 39:97-104. [PMID: 18327557 DOI: 10.1007/s12033-008-9046-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although non-viral gene delivery is a very straightforward technology, there are currently no FDA-approved gene medicinal products available. Therefore, improving potency, safety, and efficiency of current plasmid DNA vectors will be a major task for the near future. This article will provide an overview on factors influencing production yield and quality as well as safety issues that emerge from the vector design itself. Special focus will be on generating bacterial pDNA vectors by circumventing the use of antibiotic resistance genes, to generate safer gene medicinal products as well as smaller, more efficient DNA vectors.
Collapse
|
17
|
Mandel RJ, Burger C, Snyder RO. Viral vectors for in vivo gene transfer in Parkinson's disease: properties and clinical grade production. Exp Neurol 2008; 209:58-71. [PMID: 17916354 PMCID: PMC2695880 DOI: 10.1016/j.expneurol.2007.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 08/08/2007] [Accepted: 08/16/2007] [Indexed: 12/18/2022]
Abstract
Because Parkinson's disease is a progressive degenerative disorder that is mainly confined to the basal ganglia, gene transfer to deliver therapeutic molecules is an attractive treatment avenue. The present review focuses on direct in vivo gene transfer vectors that have been developed to a degree that they have been successfully used in animal model of Parkinson's disease. Accordingly, the properties of recombinant adenovirus, recombinant adeno-associated virus, herpes simplex virus, and lentivirus are described and contrasted. In order for viral vectors to be developed into clinical grade reagents, they must be manufactured and tested to precise regulatory standards. Indeed, clinical lots of viral vectors can be produced in compliance with current Good Manufacturing Practices (cGMPs) regulations using industry accepted manufacturing methodologies, manufacturing controls, and quality systems. The viral vector properties themselves combined with physiological product formulations facilitate long-term storage and direct in vivo administration.
Collapse
Affiliation(s)
- Ronald J. Mandel
- Department of Neuroscience, PO box 100244, Gainesville, FL 32610, Tel. 352–294–0446, Fax: 352–392–8347,
- McKnight Brain Institute
- Powell Gene Therapy Center
- University of Florida, College of Medicine
| | - Corinna Burger
- Department of Neurology, University of Wisconsin Medical School
| | - Richard O. Snyder
- Powell Gene Therapy Center
- Department of Molecular Genetics and Microbiology, PO Box 100266, 1600 SW Archer Road, Gainesville, FL 32610–0266, Tel: 386–418–1642, Fax: 352–392–4290, e-mail:
- Department of Pediatrics
- University of Florida, College of Medicine
| |
Collapse
|