1
|
Singh AK, Bilal M, Iqbal HMN, Raj A. Lignin peroxidase in focus for catalytic elimination of contaminants - A critical review on recent progress and perspectives. Int J Biol Macromol 2021; 177:58-82. [PMID: 33577817 DOI: 10.1016/j.ijbiomac.2021.02.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
Lignin peroxidase (LiP) seems to be a catalyst for cleaving high-redox potential non-phenolic compounds with an oxidative cleavage of CC and COC bonds. LiP has been picked to seek a practical and cost-effective alternative to the sustainable mitigation of diverse environmental contaminants. LiP has been an outstanding tool for catalytic cleaning and efficient mitigation of environmental pollutants, including lignin, lignin derivatives, dyes, endocrine-disrupting compounds (EDCs), and persistent organic pollutants (POPs) for the past couple of decades. The extended deployment of LiP has proved to be a promising method for catalyzing these environmentally related hazardous pollutants of supreme interest. The advantageous potential and capabilities to act at different pH and thermostability offer its working tendencies in extended environmental engineering applications. Such advantages led to the emerging demand for LiP and increasing requirements in industrial and biotechnological sectors. The multitude of the ability attributed to LiP is triggered by its stability in xenobiotic and non-phenolic compound degradation. However, over the decades, the catalytic activity of LiP has been continuing in focus enormously towards catalytic functionalities over the available physiochemical, conventional, catalyst mediated technology for catalyzing such molecules. To cover this literature gap, this became much more evident to consider the catalytic attributes of LiP. In this review, the existing capabilities of LiP and other competencies have been described with recent updates. Furthermore, numerous recently emerged applications, such as textile effluent treatment, dye decolorization, catalytic elimination of pharmaceutical and EDCs compounds, have been discussed with suitable examples.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Pozdnyakova N, Dubrovskaya E, Chernyshova M, Makarov O, Golubev S, Balandina S, Turkovskaya O. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biol 2018; 122:363-372. [PMID: 29665962 DOI: 10.1016/j.funbio.2018.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/17/2017] [Accepted: 02/26/2018] [Indexed: 11/26/2022]
Abstract
The degradation of two isomeric three-ringed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus D1 and the litter-decomposing fungus Agaricus bisporus F-8 was studied. Despite some differences, the degradation of phenanthrene and anthracene followed the same scheme, forming quinone metabolites at the first stage. The further fate of these metabolites was determined by the composition of the ligninolytic enzyme complexes of the fungi. The quinone metabolites of phenanthrene and anthracene produced in the presence of only laccase were observed to accumulate, whereas those formed in presence of laccase and versatile peroxidase were metabolized further to form products that were further included in basal metabolism (e.g. phthalic acid). Laccase can catalyze the initial attack on the PAH molecule, which leads to the formation of quinones, and that peroxidase ensures their further oxidation, which eventually leads to PAH mineralization. A. bisporus, which produced only laccase, metabolized phenanthrene and anthracene to give the corresponding quinones as the dominant metabolites. No products of further utilization of these compounds were detected. Thus, the fungi's affiliation with different ecophysiological groups and their cultivation conditions affect the composition and dynamics of production of the ligninolytic enzyme complex and the completeness of PAH utilization.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| | - Ekaterina Dubrovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| | - Marina Chernyshova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| | - Oleg Makarov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| | - Sergey Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| | - Svetlana Balandina
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| | - Olga Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| |
Collapse
|
3
|
Xu H, Guo MY, Gao YH, Bai XH, Zhou XW. Expression and characteristics of manganese peroxidase from Ganoderma lucidum in Pichia pastoris and its application in the degradation of four dyes and phenol. BMC Biotechnol 2017; 17:19. [PMID: 28231778 PMCID: PMC5324234 DOI: 10.1186/s12896-017-0338-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/10/2017] [Indexed: 11/16/2022] Open
Abstract
Background Manganese peroxidase (MnP) of white rot basidiomycetes, an extracellular heme enzyme, is part of a peroxidase superfamily that is capable of degrading the different phenolic compounds. Ganoderma, a white rot basidiomycete widely distributed worldwide, could secrete lignin-modifying enzymes (LME), including laccase (Lac), lignin peroxidases (LiP) and MnP. Results After the selection of a G. lucidum strain from five Ganoderma strains, the 1092 bp full-length cDNA of the MnP gene, designated as G. lucidum MnP (GluMnP1), was cloned from the selected strain. We subsequently constructed an eukaryotic expression vector, pAO815:: GlMnP, and transferred it into Pichia pastoris SMD116. Recombinant GluMnP1 (rGluMnP1) was with a yield of 126 mg/L and a molecular weight of approximately 37.72 kDa and a specific enzyme activity of 524.61 U/L. The rGluMnP1 could be capable of the decolorization of four types of dyes and the degradation of phenol. Phenol and its principal degradation products including hydroquinone, pyrocatechol, resorcinol, benzoquinone, were detected successfully in the experiments. Conclusions The rGluMnP1 could be effectively expressed in Pichia pastoris and with a higher oxidation activity. We infer that, in the initial stages of the reaction, the catechol-mediated cycle should be the principal route of enzymatic degradation of phenol and its oxidation products. This study highlights the potential industrial applications associated with the production of MnP by genetic engineering methods, and the application of industrial wastewater treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0338-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Meng-Yuan Guo
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yan-Hua Gao
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiao-Hui Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Xuan-Wei Zhou
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
4
|
Li D, Shi J, Lu M, Ren L, Zhen C, Luo Y. Detection and Identification of the Invasive Sirex noctilio (Hymenoptera: Siricidae) Fungal Symbiont, Amylostereum areolatum (Russulales: Amylostereacea), in China and the Stimulating Effect of Insect Venom on Laccase Production by A. areolatum YQL03. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:1136-1147. [PMID: 26470239 DOI: 10.1093/jee/tov072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/20/2015] [Indexed: 06/05/2023]
Abstract
The Eurasian woodwasp Sirex noctilio F. was first detected in Daqing, Heilongjiang Province, in the northeast region of China in 2013. Here, we investigated the S. noctilio's fungal symbiont, Amylostereum areolatum, and insect venom produced in its acid (venom) gland. Overall, seven out of 10 fungal isolates obtained from the mycangia of 10 adult S. noctilio females in this study were identified as A. areolatum. The remaining three isolates were identified as Trichoderma viride, Verticillium dahlia, and Geosmithia pallida, which were probably contaminants that entered during the mycangia-spore extraction process. The enzyme activity bioassay showed that the level of laccase activity of A. areolatum YQL03 in liquid medium is prominently enhanced by insect venom, but was relatively low when venom was not available as an inducer. This study confirms the presence of A. areolatum in S. noctilio specimens from China. The putative heat-stable factors identified in S. noctilio venom may contribute novel information about the pathogenic mechanism of the S. noctilio-A. areolatum pine-killing pest complex on host trees.
Collapse
Affiliation(s)
- Dapeng Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, P. R. China. Authors contributed equally to this manuscript
| | - Juan Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, P. R. China. Authors contributed equally to this manuscript
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology (IOZ), Chinese Academy of Sciences (CAS), Beijing 100101, P. R. China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, P. R. China
| | - Congai Zhen
- Department of Entomology, China Agricultural University, Beijing 100193, P. R. China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, P. R. China.
| |
Collapse
|
5
|
Hildén K, Mäkelä MR, Steffen KT, Hofrichter M, Hatakka A, Archer DB, Lundell TK. Biochemical and molecular characterization of an atypical manganese peroxidase of the litter-decomposing fungus Agrocybe praecox. Fungal Genet Biol 2014; 72:131-136. [DOI: 10.1016/j.fgb.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 11/16/2022]
|
6
|
Muñoz M, Gomez-Rico MF, Font R. PCDD/F formation from chlorophenols by lignin and manganese peroxidases. CHEMOSPHERE 2014; 110:129-135. [PMID: 24630255 DOI: 10.1016/j.chemosphere.2014.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) formation was studied, in vitro, with two different chlorophenol mixtures (group "di+tri" 2,4-dichlorophenol; 2,3,4-, 2,3,5-, and 3,4,5-trichlorophenols and group "tri+tetra+penta" with 2,4,5-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol) and two different lignolytic enzymes, lignin and manganese peroxidase (LiP and MnP respectively), which can be found during the composting process of sewage sludge. The concentrations of PCDD/F in final samples are compared to the PCDD/F content of the control samples containing the chlorophenols. High increases were observed for experiments with MnP and phosphate buffer. Experiments that contained tri-, tetra- and pentachlorophenol with MnP resulted in more than 8·10(8)ng of OCDD kg(-1) chlorophenol which was much higher than the initial amount (1·10(7)ng OCDD kg(-1) chlorophenol). In relation to LiP experiments, only those at 37°C showed a moderate increase (from 1.3·10(7) to 2.6·10(7)ng of OCDD kg(-1) chlorophenol). The results agree with the literature in which high amounts of HpCDD and OCDD were found after a composting process and could explain the biogenic formation suggested by others, but the incidence on the total toxicity is less than that expected.
Collapse
Affiliation(s)
- M Muñoz
- Department of Chemical Engineering, University of Alicante, Carretera de San Vicente S/N, 03690 Alicante, Spain.
| | - M F Gomez-Rico
- Department of Chemical Engineering, University of Alicante, Carretera de San Vicente S/N, 03690 Alicante, Spain
| | - R Font
- Department of Chemical Engineering, University of Alicante, Carretera de San Vicente S/N, 03690 Alicante, Spain
| |
Collapse
|
7
|
Purification and characterization of a novel laccase from Fomitopsis pinicola mycelia. Int J Biol Macromol 2014; 70:583-9. [PMID: 25083593 DOI: 10.1016/j.ijbiomac.2014.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/09/2014] [Accepted: 06/07/2014] [Indexed: 11/21/2022]
Abstract
A novel laccase was isolated from the culture filtrate of the brown-rot fungus, Fomitopsis pinicola. Enzyme production reached its highest level after cultivation for 8 days at 25°C. The enzyme was purified by ultrafiltration, ion exchange chromatography, gelfiltration chromatography, and hydrophobic interaction chromatography. Zymography analysis of the purified enzyme showed a laccase band with a molecular mass of 92 kDa. The molecular weight of the enzyme was 92 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography. The enzyme also had an isoelectric point of 3.8. The optimum temperature and pH for enzyme activity were 80°C and 3.0, respectively. Enzyme activity was relatively stable in the pH range from 1.5 to 11.0 and at temperatures below 40°C. The N-terminal amino acid sequence of the enzyme was DTHKAEIACRFKDLG. Enzyme activity was potently inhibited by NaN3 and SDS. The enzyme showed the highest specific activity for 2,2-azino-bis(3-ethylthiazoline-6-sulfonate) (ABTS) as a substrate. The Km value of the enzyme for ABTS substrate was 0.28 mM with a Vmax value of 4.5 U/min. The enzyme degraded several recalcitrant dyes at different time intervals during decolorization. Therefore, the novel laccase from F. pinicola may be potentially useful in industry.
Collapse
|
8
|
Doddapaneni H, Subramanian V, Fu B, Cullen D. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus. Fungal Genet Biol 2013; 55:22-31. [DOI: 10.1016/j.fgb.2013.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 12/24/2022]
|
9
|
Hildén K, Mäkelä MR, Lankinen P, Lundell T. Agaricus bisporus and related Agaricus species on lignocellulose: Production of manganese peroxidase and multicopper oxidases. Fungal Genet Biol 2013; 55:32-41. [DOI: 10.1016/j.fgb.2013.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/30/2013] [Accepted: 02/10/2013] [Indexed: 11/26/2022]
|
10
|
Yakovlev IA, Hietala AM, Courty PE, Lundell T, Solheim H, Fossdal CG. Genes associated with lignin degradation in the polyphagous white-rot pathogen Heterobasidion irregulare show substrate-specific regulation. Fungal Genet Biol 2013; 56:17-24. [PMID: 23665189 DOI: 10.1016/j.fgb.2013.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/15/2022]
Abstract
The pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H. irregulare genome has exclusively the short-manganese peroxidase type encoding genes (6 short-MnPs) and thereby a slight contraction in the pool of class II heme-containing peroxidases, but an expansion of the MCO laccases with 17 gene models. Furthermore, the genome shows a versatile set of other oxidoreductase genes putatively involved in lignin oxidation and conversion, including 5 glyoxal oxidases, 19 quinone-oxidoreductases and 12 aryl-alcohol oxidases. Their genetic multiplicity and gene-specific regulation patterns on cultures based on defined lignin, cellulose or Norway spruce lignocellulose substrates suggest divergent specificities and physiological roles for these enzymes. While the short-MnP encoding genes showed similar transcript levels upon fungal growth on heartwood and reaction zone (RZ), a xylem defense tissue rich in phenolic compounds unique to trees, a subset of laccases showed higher gene expression in the RZ cultures. In contrast, other oxidoreductases depending on initial MnP activity showed generally lower transcript levels on RZ than on heartwood. These data suggest that the rate of fungal oxidative conversion of xylem lignin differs between spruce RZ and heartwood. It is conceivable that in RZ part of the oxidoreductase activities of laccases are related to the detoxification of phenolic compounds involved in host-defense. Expression of the several short-MnP enzymes indicated an important role for these enzymes in effective delignification of wood by H. irregulare.
Collapse
Affiliation(s)
- Igor A Yakovlev
- Norwegian Forest and Landscape Institute, PO Box 115, N-1431 Ås, Norway
| | | | | | | | | | | |
Collapse
|
11
|
Järvinen J, Taskila S, Isomäki R, Ojamo H. Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express 2012. [PMID: 23190610 PMCID: PMC3549895 DOI: 10.1186/2191-0855-2-62] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study manganese peroxidase (MnP) enzymes from selected white-rot fungi were isolated and compared for potential future recombinant production. White-rot fungi were cultivated in small-scale in liquid media and a simplified process was established for the purification of extracellular enzymes. Five lignin degrading organisms were selected (Bjerkandera sp., Phanerochaete (P.) chrysosporium, Physisporinus (P.) rivulosus, Phlebia (P.) radiata and Phlebia sp. Nf b19) and studied for MnP production in small-scale. Extracellular MnP activity was followed and cultivations were harvested at proximity of the peak activity. The production of MnPs varied in different organisms but was clearly regulated by inducing liquid media components (Mn2+, veratryl alcohol and malonate). In total 8 different MnP isoforms were purified. Results of this study reinforce the conception that MnPs from distinct organisms differ substantially in their properties. Production of the extracellular enzyme in general did not reach a substantial level. This further suggests that these native producers are not suitable for industrial scale production of the enzyme. The highest specific activities were observed with MnPs from P. chrysosporium (200 U mg-1), Phlebia sp. Nf b19 (55 U mg-1) and P. rivulosus (89 U mg-1) and these MnPs are considered as the most potential candidates for further studies. The molecular weight of the purified MnPs was estimated to be between 45–50 kDa.
Collapse
|
12
|
Melanin biosynthesis pathway in Agaricus bisporus mushrooms. Fungal Genet Biol 2012; 55:42-53. [PMID: 23123422 DOI: 10.1016/j.fgb.2012.10.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/25/2012] [Accepted: 10/04/2012] [Indexed: 11/22/2022]
Abstract
With the full genome sequence of Agaricus bisporus available, it was possible to investigate the genes involved in the melanin biosynthesis pathway of button mushrooms. Based on different BLAST and alignments, genes were identified in the genome which are postulated to be involved in this pathway. Seven housekeeping genes were tested of which 18S rRNA was the only housekeeping gene that was stably expressed in various tissues of different developmental stages. Gene expression was determined for most gene homologs (26 genes) involved in the melanin pathway. Of the analysed genes, those encoding polyphenol oxidase (PPO), the PPO co-factor L-chain (unique for A. bisporus), and a putative transcription factor (photoregulator B) were among the highest expressed in skin tissue. An in depth look was taken at the clustering of several PPO genes and the PPO co-factor gene on chromosome 5, which showed that almost 25% of the protein encoding genes in this cluster have a conserved NACHT and WD40 domain or a P-loop nucleoside triphosphate hydrolase. This article will be the start for an in depth study of the melanin pathway and its role in quality losses of this economically important product.
Collapse
|
13
|
Mayolo-Deloisa K, Machín-Ramírez C, Rito-Palomares M, Trejo-Hernández MR. Oxidation of Polycyclic Aromatic Hydrocarbons using Partially Purified Laccase from Residual Compost of Agaricus bisporus. Chem Eng Technol 2011. [DOI: 10.1002/ceat.201000205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T. New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 2010; 87:871-97. [PMID: 20495915 DOI: 10.1007/s00253-010-2633-0] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 01/15/2023]
Abstract
Heme-containing peroxidases secreted by fungi are a fascinating group of biocatalysts with various ecological and biotechnological implications. For example, they are involved in the biodegradation of lignocelluloses and lignins and participate in the bioconversion of other diverse recalcitrant compounds as well as in the natural turnover of humic substances and organohalogens. The current review focuses on the most recently discovered and novel types of heme-dependent peroxidases, aromatic peroxygenases (APOs), and dye-decolorizing peroxidases (DyPs), which catalyze remarkable reactions such as peroxide-driven oxygen transfer and cleavage of anthraquinone derivatives, respectively, and represent own separate peroxidase superfamilies. Furthermore, several aspects of the "classic" fungal heme-containing peroxidases, i.e., lignin, manganese, and versatile peroxidases (LiP, MnP, and VP), phenol-oxidizing peroxidases as well as chloroperoxidase (CPO), are discussed against the background of recent scientific developments.
Collapse
Affiliation(s)
- Martin Hofrichter
- Department of Environmental Biotechnology, International Graduate School of Zittau, Markt 23, 02763, Zittau, Germany.
| | | | | | | | | |
Collapse
|
15
|
Lundell TK, Mäkelä MR, Hildén K. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review. J Basic Microbiol 2010; 50:5-20. [PMID: 20175122 DOI: 10.1002/jobm.200900338] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Filamentous fungi owe powerful abilities for decomposition of the extensive plant material, lignocellulose, and thereby are indispensable for the Earth's carbon cycle, generation of soil humic matter and formation of soil fine structure. The filamentous wood-decaying fungi belong to the phyla Basidiomycota and Ascomycota, and are unique organisms specified to degradation of the xylem cell wall components (cellulose, hemicelluloses, lignins and extractives). The basidiomycetous wood-decaying fungi form brackets, caps or resupinaceous (corticioid) fruiting bodies when growing on wood for dissemination of their sexual basidiospores. In particular, the ability to decompose the aromatic lignin polymers in wood is mostly restricted to the white rot basidiomycetes. The white-rot decay of wood is possible due to secretion of organic acids, secondary metabolites, and oxidoreductive metalloenzymes, heme peroxidases and laccases, encoded by divergent gene families in these fungi. The brown rot basidiomycetes obviously depend more on a non-enzymatic strategy for decomposition of wood cellulose and modification of lignin. This review gives a current ecological, genomic, and protein functional and phylogenetic perspective of the wood and lignocellulose-decaying basidiomycetous fungi.
Collapse
Affiliation(s)
- Taina K Lundell
- Fungal Biotechnology Group, Department of Applied Chemistry and Microbiology, Division of Microbiology, Viikki Biocenter, University of Helsinki, Finland.
| | | | | |
Collapse
|
16
|
Mayolo-Deloisa K, Trejo-Hernández MDR, Rito-Palomares M. Recovery of laccase from the residual compost of Agaricus bisporus in aqueous two-phase systems. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.12.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Mohapatra D, Frias J, Oliveira F, Bira Z, Kerry J. Development and validation of a model to predict enzymatic activity during storage of cultivated mushrooms (Agaricus bisporus spp.). J FOOD ENG 2008. [DOI: 10.1016/j.jfoodeng.2007.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Cherkashin EA, Stepanova EV, Landesman EO, Koroleva OV, Tishkov VI. Comparative analysis of gene sequences of three high-redox-potential laccases from basidiomycetes. DOKL BIOCHEM BIOPHYS 2008; 417:348-51. [PMID: 18274458 DOI: 10.1134/s1607672907060178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- E A Cherkashin
- Faculty of Chemistry Moscow State University Vorob'evy gory, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
19
|
Hildén K, Hakala TK, Maijala P, Lundell TK, Hatakka A. Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 2007; 77:301-9. [PMID: 17805527 DOI: 10.1007/s00253-007-1155-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/03/2007] [Accepted: 08/03/2007] [Indexed: 11/25/2022]
Abstract
The white-rot basidiomycete Physisporinus rivulosus strain T241i is highly selective for degradation of softwood lignin, which makes this fungus suitable for biopulping. In order to promote laccase production, P. rivulosus was cultivated in nutrient-nitrogen sufficient liquid media containing either charcoal or spruce sawdust as supplements. Two laccases with distinct pI values, Lac-3.5 and Lac-4.8, were purified from peptone-spruce sawdust-charcoal cultures of P. rivulosus. Both laccases showed thermal stability at up to 60 degrees C. Lac-4.8 was thermally activated at 50 degrees C. Surprisingly, both laccases displayed atypically low pH optima (pH 3.0-3.5) in oxidation of the commonly used laccase substrates syringaldazine (4-hydroxy-3,5-dimethoxybenzaldehyde azine), 2,6-dimethoxyphenol and guaiacol (2-methoxyphenol). Steady-state kinetic measurements pointed to unusually low affinity to guaiacol at low pH, whereas the kinetic constants for the methoxyphenols and ABTS were within the ranges reported for other fungal laccases. The combination of thermotolerance with low pH optima for methoxylated phenol substrates suggests that the two P. rivulosus T241i laccases possess potential for use in biotechnological applications.
Collapse
Affiliation(s)
- Kristiina Hildén
- Department of Applied Chemistry and Microbiology, Viikki Biocenter, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
20
|
Nagai M, Sakamoto Y, Nakade K, Sato T. Isolation and characterization of the gene encoding a manganese peroxidase from Lentinula edodes. MYCOSCIENCE 2007. [DOI: 10.1007/s10267-006-0334-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Tsukihara T, Honda Y, Sakai R, Watanabe T, Watanabe T. Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white rot fungus, Pleurotus ostreatus. J Biotechnol 2006; 126:431-9. [PMID: 16820241 DOI: 10.1016/j.jbiotec.2006.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/06/2006] [Accepted: 05/19/2006] [Indexed: 11/23/2022]
Abstract
By combining a homologous recombinant gene expression system and optimization of the culture conditions, hyper overproduction of Pleurtous ostreatus MnP2 was achieved. Genetically modified P. ostreatus strains with the recombinant mnp2 sequence under the control of sdi1 expression signals, were subjected to agitated culture using media supplemented with wheat bran or its hot-water extract. The best result, whereby 7300 U/l of MnP was produced by a recombinant strain TM2-18, indicated that more than 30-fold overproduction of the recombinant MnP2 compared to the previous result was achieved. On the other hand, no MnP activity was detected for the wild-type strain under the same conditions. Accumulation of the recombinant, but not endogenous, mnp2 transcripts was demonstrated in reverse-transcription PCR experiments. These results indicated that the recombinant MnP2 was exclusively expressed by the recombinant strain. Purified recombinant MnP2 showed almost identical properties to native MnP2 in electrophoresis, spectroscopic and kinetic analyses, including determination of K(m) and V(max) values for Mn(II), H(2)O(2) and veratryl alcohol. Moreover, the recombinant MnP2 directly oxidized a high-molecularweight substrate RNase A in the absence of redox mediators, as does native MnP2. The homologous overproduction system will provide a plat form for exclusive production of mutant or variant peroxidases with a desired property in basidiomycete.
Collapse
Affiliation(s)
- Takahisa Tsukihara
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
22
|
Hildén K, Martinez AT, Hatakka A, Lundell T. The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol 2005; 42:403-19. [PMID: 15809005 DOI: 10.1016/j.fgb.2005.01.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 12/22/2004] [Accepted: 01/13/2005] [Indexed: 11/18/2022]
Abstract
Two new, at primary sequence and protein structure levels different, manganese peroxidase encoding genes from the white rot basidiomycete Phlebia radiata are described. Both genes are expressed in liquid cultures of P. radiata containing milled alder wood or glucose as carbon source, and high Mn(2+) concentration. The gene Pr-mnp2 contains 7 introns and codes for a 390 amino-acid polypeptide, whereas Pr-mnp3 presents 11 introns and codes for a 362 amino-acid protein. The 3-D molecular models confirm this diversity; the predicted Pr-MnP2 with a long C-terminal extension has the highest structural similarity with the crystal structure of Phanerochaete chrysosporium MnP1, whereas the shorter Pr-MnP3 protein is structurally more related to lignin peroxidases (P. chrysosporium LiPH8/H2). In Pr-MnP3, however, an alanine replaces the exposed tryptophan present in LiP and versatile peroxidases, and both Pr-MnPs include the conserved Mn(2+)-binding amino-acid ligands. This is the first occasion when two enzymes of similar function and origin fall into phylogenetically distinct subfamilies within the expanding dendrogram of the class II fungal secretory heme peroxidases.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Conserved Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- DNA, Fungal/chemistry
- DNA, Fungal/isolation & purification
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Introns
- Models, Molecular
- Molecular Sequence Data
- Peroxidases/chemistry
- Peroxidases/genetics
- Phanerochaete/enzymology
- Phylogeny
- Polyporales/enzymology
- RNA, Fungal/analysis
- RNA, Messenger/analysis
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology
Collapse
Affiliation(s)
- Kristiina Hildén
- Department of Applied Chemistry and Microbiology, Division of Microbiology, Viikki Biocenter, Viikinkaari 9, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|