1
|
Kumar V, Agrawal D, Bommareddy RR, Islam MA, Jacob S, Balan V, Singh V, Thakur VK, Navani NK, Scrutton NS. Arabinose as an overlooked sugar for microbial bioproduction of chemical building blocks. Crit Rev Biotechnol 2024; 44:1103-1120. [PMID: 37932016 DOI: 10.1080/07388551.2023.2270702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
The circular economy is anticipated to bring a disruptive transformation in manufacturing technologies. Robust and industrial scalable microbial strains that can simultaneously assimilate and valorize multiple carbon substrates are highly desirable, as waste bioresources contain substantial amounts of renewable and fermentable carbon, which is diverse. Lignocellulosic biomass (LCB) is identified as an inexhaustible and alternative resource to reduce global dependence on oil. Glucose, xylose, and arabinose are the major monomeric sugars in LCB. However, primary research has focused on the use of glucose. On the other hand, the valorization of pentose sugars, xylose, and arabinose, has been mainly overlooked, despite possible assimilation by vast microbial communities. The present review highlights the research efforts that have explicitly proven the suitability of arabinose as the starting feedstock for producing various chemical building blocks via biological routes. It begins by analyzing the availability of various arabinose-rich biorenewable sources that can serve as potential feedstocks for biorefineries. The subsequent section outlines the current understanding of arabinose metabolism, biochemical routes prevalent in prokaryotic and eukaryotic systems, and possible products that can be derived from this sugar. Further, currently, exemplar products from arabinose, including arabitol, 2,3-butanediol, 1,2,3-butanetriol, ethanol, lactic acid, and xylitol are discussed, which have been produced by native and non-native microbial strains using metabolic engineering and genome editing tools. The final section deals with the challenges and obstacles associated with arabinose-based production, followed by concluding remarks and prospects.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India
| | - Rajesh Reddy Bommareddy
- Department of Applied Sciences, Health and Life Sciences, Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, USA
| | - Vijai Singh
- Department of Biosciences, School of Sciences, Indrashil University, Rajpur, Mehsana, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Monteiro de Oliveira P, Aborneva D, Bonturi N, Lahtvee PJ. Screening and Growth Characterization of Non-conventional Yeasts in a Hemicellulosic Hydrolysate. Front Bioeng Biotechnol 2021; 9:659472. [PMID: 33996782 PMCID: PMC8116571 DOI: 10.3389/fbioe.2021.659472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomass is an attractive raw material for the sustainable production of chemicals and materials using microbial cell factories. Most of the existing bioprocesses focus on second-generation ethanol production using genetically modified Saccharomyces cerevisiae, however, this microorganism is naturally unable to consume xylose. Moreover, extensive metabolic engineering has to be carried out to achieve high production levels of industrially relevant building blocks. Hence, the use of non-Saccharomyces species, or non-conventional yeasts, bearing native metabolic routes, allows conversion of a wide range of substrates into different products, and higher tolerance to inhibitors improves the efficiency of biorefineries. In this study, nine non-conventional yeast strains were selected and screened on a diluted hemicellulosic hydrolysate from Birch. Kluyveromyces marxianus CBS 6556, Scheffersomyces stipitis CBS 5773, Lipomyces starkeyi DSM 70295, and Rhodotorula toruloides CCT 7815 were selected for further characterization, where their growth and substrate consumption patterns were analyzed under industrially relevant substrate concentrations and controlled environmental conditions in bioreactors. K. marxianus CBS 6556 performed poorly under higher hydrolysate concentrations, although this yeast was determined among the fastest-growing yeasts on diluted hydrolysate. S. stipitis CBS 5773 demonstrated a low growth and biomass production while consuming glucose, while during the xylose-phase, the specific growth and sugar co-consumption rates were among the highest of this study (0.17 h–1 and 0.37 g/gdw*h, respectively). L. starkeyi DSM 70295 and R. toruloides CCT 7815 were the fastest to consume the provided sugars at high hydrolysate conditions, finishing them within 54 and 30 h, respectively. R. toruloides CCT 7815 performed the best of all four studied strains and tested conditions, showing the highest specific growth (0.23 h–1), substrate co-consumption (0.73 ± 0.02 g/gdw*h), and xylose consumption (0.22 g/gdw*h) rates. Furthermore, R. toruloides CCT 7815 was able to produce 10.95 ± 1.37 gL–1 and 1.72 ± 0.04 mgL–1 of lipids and carotenoids, respectively, under non-optimized cultivation conditions. The study provides novel information on selecting suitable host strains for biorefinery processes, provides detailed information on substrate consumption patterns, and pinpoints to bottlenecks possible to address using metabolic engineering or adaptive evolution experiments.
Collapse
Affiliation(s)
| | - Daria Aborneva
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | |
Collapse
|
3
|
Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 2021; 47:107695. [PMID: 33465474 DOI: 10.1016/j.biotechadv.2021.107695] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Microbial bioproduction of chemicals, proteins, and primary metabolites from cheap carbon sources is currently an advancing area in industrial research. The model yeast, Saccharomyces cerevisiae, is a well-established biorefinery host that has been used extensively for commercial manufacturing of bioethanol from myriad carbon sources. However, its Crabtree-positive nature often limits the use of this organism for the biosynthesis of commercial molecules that do not belong in the fermentative pathway. To avoid extensive strain engineering of S. cerevisiae for the production of metabolites other than ethanol, non-conventional yeasts can be selected as hosts based on their natural capacity to produce desired commodity chemicals. Non-conventional yeasts like Kluyveromyces marxianus, K. lactis, Yarrowia lipolytica, Pichia pastoris, Scheffersomyces stipitis, Hansenula polymorpha, and Rhodotorula toruloides have been considered as potential industrial eukaryotic hosts owing to their desirable phenotypes such as thermotolerance, assimilation of a wide range of carbon sources, as well as ability to secrete high titers of protein and lipid. However, the advanced metabolic engineering efforts in these organisms are still lacking due to the limited availability of systems and synthetic biology methods like in silico models, well-characterised genetic parts, and optimized genome engineering tools. This review provides an insight into the recent advances and challenges of systems and synthetic biology as well as metabolic engineering endeavours towards the commercial usage of non-conventional yeasts. Particularly, the approaches in emerging non-conventional yeasts for the production of enzymes, therapeutic proteins, lipids, and metabolites for commercial applications are extensively discussed here. Various attempts to address current limitations in designing novel cell factories have been highlighted that include the advances in the fields of genome-scale metabolic model reconstruction, flux balance analysis, 'omics'-data integration into models, genome-editing toolkit development, and rewiring of cellular metabolisms for desired chemical production. Additionally, the understanding of metabolic networks using 13C-labelling experiments as well as the utilization of metabolomics in deciphering intracellular fluxes and reactions have also been discussed here. Application of cutting-edge nuclease-based genome editing platforms like CRISPR/Cas9, and its optimization towards efficient strain engineering in non-conventional yeasts have also been described. Additionally, the impact of the advances in promising non-conventional yeasts for efficient commercial molecule synthesis has been meticulously reviewed. In the future, a cohesive approach involving systems and synthetic biology will help in widening the horizon of the use of unexplored non-conventional yeast species towards industrial biotechnology.
Collapse
Affiliation(s)
- Pradipta Patra
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
4
|
Chroumpi T, Mäkelä MR, de Vries RP. Engineering of primary carbon metabolism in filamentous fungi. Biotechnol Adv 2020; 43:107551. [DOI: 10.1016/j.biotechadv.2020.107551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
5
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|
6
|
Exploiting Innate and Imported Fungal Capacity for Xylitol Production. Fungal Biol 2018. [DOI: 10.1007/978-3-319-90379-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Zhang Z, Su B, Wu M, Lin J, Yang L. Strategies for eliminating l-arabinitol in the bioconversion of xylitol. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Nichols NN, Saha BC. Production of xylitol by aConiochaeta ligniariastrain tolerant of inhibitors and defective in growth on xylose. Biotechnol Prog 2016; 32:606-12. [DOI: 10.1002/btpr.2259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/03/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Nancy N. Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS; Peoria IL
| | - Badal C. Saha
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS; Peoria IL
| |
Collapse
|
9
|
Damiani AL, He QP, Jeffries TW, Wang J. Comprehensive evaluation of two genome-scale metabolic network models forScheffersomyces stipitis. Biotechnol Bioeng 2015; 112:1250-62. [DOI: 10.1002/bit.25535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/25/2014] [Accepted: 12/23/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Andrew L. Damiani
- Department of Chemical Engineering; Auburn University; 212 Ross Hall Auburn Alabama 36849
| | - Q. Peter He
- Department of Chemical Engineering; Tuskegee University; Auburn Alabama
| | - Thomas W. Jeffries
- Department of Bacteriology; University of Wisconsin-Madison; Madison Wisconsin
| | - Jin Wang
- Department of Chemical Engineering; Auburn University; 212 Ross Hall Auburn Alabama 36849
| |
Collapse
|
10
|
Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892. J Biotechnol 2015; 194:58-66. [DOI: 10.1016/j.jbiotec.2014.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 11/18/2022]
|
11
|
von Rymon Lipinski GW. Sweeteners. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 143:1-28. [PMID: 23887731 DOI: 10.1007/10_2013_222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyols as sugar substitutes, intense sweeteners and some new carbohydrates are increasingly used in foods and beverages. Some sweeteners are produced by fermentation or using enzymatic conversion. Many studies for others have been published. This chapter reviews the most important sweeteners.
Collapse
|
12
|
Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess Biosyst Eng 2014; 38:39-47. [PMID: 25090978 DOI: 10.1007/s00449-014-1241-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/14/2014] [Indexed: 10/24/2022]
Abstract
Fermentation of xylose-rich and glucose-rich bagasse hydrolysates, obtained from the two-stage acid hydrolysis was studied using the thermotolerant yeast Kluyveromyces sp. IIPE453. The yeast could grow on xylose-rich hydrolysate at 50 °C with the dry cell weight, cell mass yield and maximum specific growth rate of 5.35 g l(-1), 0.58 g g(-1) and 0.13 h(-1), respectively. The yeast was found to be very promising for ethanol as well as xylitol production from the sugars obtained from the lignocellulosic biomass. Batch fermentations of xylose-rich and glucose-rich hydrolysates yielded 0.61 g g(-1) xylitol and 0.43 g g(-1) ethanol in the broth, respectively based on the sugars present in the hydrolysate. Overall ethanol yield of 165 g (210 ml) and 183 g xylitol per kg of bagasse was obtained, when bagasse hydrolysate was used as a substrate. Utilization of both the glucose and xylose sugars makes the process most economical by producing both ethanol and xylitol based on biorefinery concept. On validating the experimental data of ethanol fermentation, the modified Luong kinetic model for product inhibition as well as inhibition due to inhibitory compounds present in hydrolysate, the model was found to be the best fit for ethanol formation from bagasse hydrolysate using Kluyveromyces sp. IIPE453.
Collapse
|
13
|
Cheng H, Lv J, Wang H, Wang B, Li Z, Deng Z. Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process. Appl Microbiol Biotechnol 2014; 98:3539-52. [PMID: 24419799 DOI: 10.1007/s00253-013-5501-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/10/2013] [Accepted: 12/24/2013] [Indexed: 12/22/2022]
Abstract
Xylitol is industrially synthesized by chemical reduction of D-xylose, which is more expensive than glucose. Thus, there is a growing interest in the production of xylitol from a readily available and much cheaper substrate, such as glucose. The commonly used yeast Pichia pastoris strain GS115 was shown to produce D-arabitol from glucose, and the derivative strain GS225 was obtained to produce twice amount of D-arabitol than GS115 by adaptive evolution during repetitive growth in hyperosmotic medium. We cloned the D-xylulose-forming D-arabitol dehydrogenase (DalD) gene from Klebsiella pneumoniae and the xylitol dehydrogenase (XDH) gene from Gluconobacter oxydans. Recombinant P. pastoris GS225 strains with the DalD gene only or with both DalD and XDH genes could produce xylitol from glucose in a single-fermentation process. Three-liter jar fermentation results showed that recombinant P. pastoris cells with both DalD and XDH converted glucose to xylitol with the highest yield of 0.078 g xylitol/g glucose and productivity of 0.29 g xylitol/L h. This was the first report to convert xylitol from glucose by the pathway of glucose-D-arabitol-D-xylulose-xylitol in a single process. The recombinant yeast could be used as a yeast cell factory and has the potential to produce xylitol from glucose.
Collapse
Affiliation(s)
- Hairong Cheng
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China,
| | | | | | | | | | | |
Collapse
|
14
|
Pal S, Choudhary V, Kumar A, Biswas D, Mondal AK, Sahoo DK. Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. BIORESOURCE TECHNOLOGY 2013; 147:449-455. [PMID: 24012734 DOI: 10.1016/j.biortech.2013.08.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 05/24/2023]
Abstract
Debaryomyces hansenii is one of the most promising natural xylitol producers. As the conversion of xylitol to xylulose mediated by NAD(+) cofactor dependent xylitol dehydrogenase (XDH) reduces its xylitol yield, xylitol dehydrogenase gene (DhXDH)-disrupted mutant of D. hansenii having potential for xylose assimilating pathway stopping at xylitol, was used to study the effects of co-substrates, xylose and oxygen availability on xylitol production. Compared to low cell growth and xylitol production in cultivation medium containing xylose as the only substrate, XDH disrupted mutants grown on glycerol as co-substrate accumulated 2.5-fold increased xylitol concentration over those cells grown on glucose as co-substrate. The oxygen availability, in terms of volumetric oxygen transfer coefficient, kLa (23.86-87.96 h(-1)), affected both xylitol productivity and yield, though the effect is more pronounced on the former. The addition of extra xylose at different phases of xylitol fermentation did not enhance xylitol productivity under experimental conditions.
Collapse
Affiliation(s)
- Suksham Pal
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India
| | - Vikas Choudhary
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India
| | - Anil Kumar
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India
| | - Dipanwita Biswas
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India
| | - Alok K Mondal
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India
| | - Debendra K Sahoo
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India.
| |
Collapse
|
15
|
Jain H, Mulay S. A review on different modes and methods for yielding a pentose sugar: xylitol. Int J Food Sci Nutr 2013; 65:135-43. [DOI: 10.3109/09637486.2013.845651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae. Appl Environ Microbiol 2013; 79:3193-201. [PMID: 23475614 DOI: 10.1128/aem.00490-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulation of xylitol in xylose fermentation with engineered Saccharomyces cerevisiae presents a major problem that hampers economically feasible production of biofuels from cellulosic plant biomass. In particular, substantial production of xylitol due to unbalanced redox cofactor usage by xylose reductase (XR) and xylitol dehydrogenase (XDH) leads to low yields of ethanol. While previous research focused on manipulating intracellular enzymatic reactions to improve xylose metabolism, this study demonstrated a new strategy to reduce xylitol formation and increase carbon flux toward target products by controlling the process of xylitol secretion. Using xylitol-producing S. cerevisiae strains expressing XR only, we determined the role of aquaglyceroporin Fps1p in xylitol export by characterizing extracellular and intracellular xylitol. In addition, when FPS1 was deleted in a poorly xylose-fermenting strain with unbalanced XR and XDH activities, the xylitol yield was decreased by 71% and the ethanol yield was substantially increased by nearly four times. Experiments with our optimized xylose-fermenting strain also showed that FPS1 deletion reduced xylitol production by 21% to 30% and increased ethanol yields by 3% to 10% under various fermentation conditions. Deletion of FPS1 decreased the xylose consumption rate under anaerobic conditions, but the effect was not significant in fermentation at high cell density. Deletion of FPS1 resulted in higher intracellular xylitol concentrations but did not significantly change the intracellular NAD(+)/NADH ratio in xylose-fermenting strains. The results demonstrate that Fps1p is involved in xylitol export in S. cerevisiae and present a new gene deletion target, FPS1, and a mechanism different from those previously reported to engineer yeast for improved xylose fermentation.
Collapse
|
17
|
Guo X, Zhang R, Li Z, Dai D, Li C, Zhou X. A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. BIORESOURCE TECHNOLOGY 2013; 128:547-52. [PMID: 23211479 DOI: 10.1016/j.biortech.2012.10.155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 05/14/2023]
Abstract
In this study, an integrated xylitol production pathway, directly using xylan as the substrate, was constructed in Candida tropicalis BIT-Xol-1 which could efficiently convert xylose into xylitol. In order to consolidate this bioprocessing, a β-1,4-xylanase gene (atn) and a β-xylosidase gene (atl) were cloned from Aspergillus terreus, and were constructed onto episomal plasmid pAUR123. Additionally, combination of the individual atn and atl expression cassette was also cloned onto pAUR123. After transforming, the positive C. tropicalis transformants co-expressing xylanase and xylosidase produced larger hydrolysis zones than those expressing xylanase alone, when incubated on xylan-congo red plates. The engineered C. tropicalis/pAUR-atn-atl-3 (C. tropicalis PNL3) secrete heterologous xylanase and xylosidase simultaneously, with the activities of 48.17 and 11.56 U/mL, respectively. The xylitol yields by C. tropicalis PNL3 utilizing xylan and corncob were 77.1% and 66.9%, respectively. The integrated pathway of xylitol production was feasible and efficient in utilization of xylan-rich renewable biomass via combining saccharification and transformation of xylan in engineered C. tropicalis.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Liu T, Zou W, Liu L, Chen J. A constraint-based model of Scheffersomyces stipitis for improved ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:72. [PMID: 22998943 PMCID: PMC3503688 DOI: 10.1186/1754-6834-5-72] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/13/2012] [Indexed: 05/28/2023]
Abstract
UNLABELLED BACKGROUND As one of the best xylose utilization microorganisms, Scheffersomyces stipitis exhibits great potential for the efficient lignocellulosic biomass fermentation. Therefore, a comprehensive understanding of its unique physiological and metabolic characteristics is required to further improve its performance on cellulosic ethanol production. RESULTS A constraint-based genome-scale metabolic model for S. stipitis CBS 6054 was developed on the basis of its genomic, transcriptomic and literature information. The model iTL885 consists of 885 genes, 870 metabolites, and 1240 reactions. During the reconstruction process, 36 putative sugar transporters were reannotated and the metabolisms of 7 sugars were illuminated. Essentiality study was conducted to predict essential genes on different growth media. Key factors affecting cell growth and ethanol formation were investigated by the use of constraint-based analysis. Furthermore, the uptake systems and metabolic routes of xylose were elucidated, and the optimization strategies for the overproduction of ethanol were proposed from both genetic and environmental perspectives. CONCLUSIONS Systems biology modelling has proven to be a powerful tool for targeting metabolic changes. Thus, this systematic investigation of the metabolism of S. stipitis could be used as a starting point for future experiment designs aimed at identifying the metabolic bottlenecks of this important yeast.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Wei Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
19
|
Balagurunathan B, Jonnalagadda S, Tan L, Srinivasan R. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Microb Cell Fact 2012; 11:27. [PMID: 22356827 PMCID: PMC3310799 DOI: 10.1186/1475-2859-11-27] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/23/2012] [Indexed: 11/16/2022] Open
Abstract
Background Fermentation of xylose, the major component in hemicellulose, is essential for economic conversion of lignocellulosic biomass to fuels and chemicals. The yeast Scheffersomyces stipitis (formerly known as Pichia stipitis) has the highest known native capacity for xylose fermentation and possesses several genes for lignocellulose bioconversion in its genome. Understanding the metabolism of this yeast at a global scale, by reconstructing the genome scale metabolic model, is essential for manipulating its metabolic capabilities and for successful transfer of its capabilities to other industrial microbes. Results We present a genome-scale metabolic model for Scheffersomyces stipitis, a native xylose utilizing yeast. The model was reconstructed based on genome sequence annotation, detailed experimental investigation and known yeast physiology. Macromolecular composition of Scheffersomyces stipitis biomass was estimated experimentally and its ability to grow on different carbon, nitrogen, sulphur and phosphorus sources was determined by phenotype microarrays. The compartmentalized model, developed based on an iterative procedure, accounted for 814 genes, 1371 reactions, and 971 metabolites. In silico computed growth rates were compared with high-throughput phenotyping data and the model could predict the qualitative outcomes in 74% of substrates investigated. Model simulations were used to identify the biosynthetic requirements for anaerobic growth of Scheffersomyces stipitis on glucose and the results were validated with published literature. The bottlenecks in Scheffersomyces stipitis metabolic network for xylose uptake and nucleotide cofactor recycling were identified by in silico flux variability analysis. The scope of the model in enhancing the mechanistic understanding of microbial metabolism is demonstrated by identifying a mechanism for mitochondrial respiration and oxidative phosphorylation. Conclusion The genome-scale metabolic model developed for Scheffersomyces stipitis successfully predicted substrate utilization and anaerobic growth requirements. Useful insights were drawn on xylose metabolism, cofactor recycling and mechanism of mitochondrial respiration from model simulations. These insights can be applied for efficient xylose utilization and cofactor recycling in other industrial microorganisms. The developed model forms a basis for rational analysis and design of Scheffersomyces stipitis metabolic network for the production of fuels and chemicals from lignocellulosic biomass.
Collapse
Affiliation(s)
- Balaji Balagurunathan
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1, Pesek Road, Jurong Island, Singapore 627833, Singapore
| | | | | | | |
Collapse
|
20
|
Rodrigues RCLB, Kenealy WR, Jeffries TW. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J Ind Microbiol Biotechnol 2011; 38:1649-55. [PMID: 21424687 DOI: 10.1007/s10295-011-0953-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono- and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a D-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3-∆1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic acids used for neutralization and urea or ammonium sulfate used as nitrogen sources. Phosphoric acid improved color and removal of phenolic compounds. D-Gluconic acid enhanced cell growth. Ammonium sulfate increased cell yield and maximum specific cell growth rate independently of the acid used for neutralization. The highest xylitol yield (0.61 g(xylitol)/g(xylose)) and volumetric productivity (0.18 g(xylitol)/g(xylose )l) were obtained in hydrolysate neutralized with phosphoric acid. However, when urea was the nitrogen source the cell yield was less than half of that obtained with ammonium sulfate.
Collapse
Affiliation(s)
- Rita C L B Rodrigues
- Departamento de Biotecnologia, DEBIQ, Escola de Engenharia de Lorena, EEL, USP, Universidade de São Paulo, P.O Box 116, Lorena, SP 12600-970, Brazil.
| | | | | |
Collapse
|
21
|
Tamburini E, Bianchini E, Bruni A, Forlani G. Cosubstrate effect on xylose reductase and xylitol dehydrogenase activity levels, and its consequence on xylitol production by Candida tropicalis. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453. J Ind Microbiol Biotechnol 2009; 36:1483-9. [DOI: 10.1007/s10295-009-0636-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 08/22/2009] [Indexed: 10/20/2022]
|
23
|
Akinterinwa O, Khankal R, Cirino PC. Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 2008; 19:461-7. [DOI: 10.1016/j.copbio.2008.08.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/25/2008] [Accepted: 08/01/2008] [Indexed: 11/28/2022]
|
24
|
Holmgren M, Sellstedt A. Identification of white-rot and soft-rot fungi increasing ethanol production from spent sulfite liquor in co-culture withSaccharomyces cerevisiae. J Appl Microbiol 2008; 105:134-40. [DOI: 10.1111/j.1365-2672.2008.03724.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Metabolic engineering of the initial stages of xylose catabolism in yeast for the purpose of constructing efficient producers of ethanol from lignocellulosics. CYTOL GENET+ 2008. [DOI: 10.1007/s11956-008-2011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Use of in vivo 13C nuclear magnetic resonance spectroscopy to elucidate L-arabinose metabolism in yeasts. Appl Environ Microbiol 2008; 74:1845-55. [PMID: 18245253 DOI: 10.1128/aem.02453-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida arabinofermentans PYCC 5603(T) and Pichia guilliermondii PYCC 3012 were shown to grow well on L-arabinose, albeit exhibiting distinct features that justify an in-depth comparative study of their respective pentose catabolism. Carbon-13 labeling experiments coupled with in vivo nuclear magnetic resonance (NMR) spectroscopy were used to investigate L-arabinose metabolism in these yeasts, thereby complementing recently reported physiological and enzymatic data. The label supplied in L-[2-(13)C]arabinose to nongrowing cells, under aerobic conditions, was found on C-1 and C-2 of arabitol and ribitol, on C-2 of xylitol, and on C-1, C-2, and C-3 of trehalose. The detection of labeled arabitol and xylitol constitutes additional evidence for the operation in yeast of the redox catabolic pathway, which is widespread among filamentous fungi. Furthermore, labeling at position C-1 of trehalose and arabitol demonstrates that glucose-6-phosphate is recycled through the oxidative pentose phosphate pathway (PPP). This result was interpreted as a metabolic strategy to regenerate NADPH, the cofactor essential for sustaining l-arabinose catabolism at the level of L-arabinose reductase and L-xylulose reductase. Moreover, the observed synthesis of D-arabitol and ribitol provides a route with which to supply NAD(+) under oxygen-limiting conditions. In P. guilliermondii PYCC 3012, the strong accumulation of L-arabitol (intracellular concentration of up to 0.4 M) during aerobic L-arabinose metabolism indicates the existence of a bottleneck at the level of L-arabitol 4-dehydrogenase. This report provides the first experimental evidence for a link between L-arabinose metabolism in fungi and the oxidative branch of the PPP and suggests rational guidelines for the design of strategies for the production of new and efficient L-arabinose-fermenting yeasts.
Collapse
|
27
|
Rodrigues RCLB, Lu C, Lin B, Jeffries TW. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor. Appl Biochem Biotechnol 2007; 148:199-209. [PMID: 18418752 DOI: 10.1007/s12010-007-8080-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Delta) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h(-1)). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 g(xylose)/g(cel) h) and xylitol production (0.059 g(xylitol)/g(cel) h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.
Collapse
Affiliation(s)
- Rita C L B Rodrigues
- Departamento de Biotecnologia, DEBIQ, Escola de Engenharia de Lorena, EEL, USP, Universidade de São Paulo, P.O Box 116, 12600-970, Lorena, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
28
|
Ilmén M, Koivuranta K, Ruohonen L, Suominen P, Penttilä M. Efficient production of L-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 2006; 73:117-23. [PMID: 17071782 PMCID: PMC1797125 DOI: 10.1128/aem.01311-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial conversion of renewable raw materials to useful products is an important objective in industrial biotechnology. Pichia stipitis, a yeast that naturally ferments xylose, was genetically engineered for l-(+)-lactate production. We constructed a P. stipitis strain that expressed the l-lactate dehydrogenase (LDH) from Lactobacillus helveticus under the control of the P. stipitis fermentative ADH1 promoter. Xylose, glucose, or a mixture of the two sugars was used as the carbon source for lactate production. The constructed P. stipitis strain produced a higher level of lactate and a higher yield on xylose than on glucose. Lactate accumulated as the main product in xylose-containing medium, with 58 g/liter lactate produced from 100 g/liter xylose. Relatively efficient lactate production also occurred on glucose medium, with 41 g/liter lactate produced from 94 g/liter glucose. In the presence of both sugars, xylose and glucose were consumed simultaneously and converted predominantly to lactate. Lactate was produced at the expense of ethanol, whose production decreased to approximately 15 to 30% of the wild-type level on xylose-containing medium and to 70 to 80% of the wild-type level on glucose-containing medium. Thus, LDH competed efficiently with the ethanol pathway for pyruvate, even though the pathway from pyruvate to ethanol was intact. Our results show, for the first time, that lactate production from xylose by a yeast species is feasible and efficient. This is encouraging for further development of yeast-based bioprocesses to produce lactate from lignocellulosic raw material.
Collapse
Affiliation(s)
- Marja Ilmén
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | | | | | | | | |
Collapse
|
29
|
Guo C, He P, Lu D, Shen A, Jiang N. Cloning and molecular characterization of a gene coding D-xylulokinase (CmXYL3) from Candida maltosa. J Appl Microbiol 2006; 101:139-50. [PMID: 16834601 DOI: 10.1111/j.1365-2672.2006.02915.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To clone and identify a gene (CmXYL3) coding D-xylulokinase from Candida maltosa Xu316 and understand its physiological function. METHODS AND RESULTS Based on the conserved regions of the known D-xylulokinase-encoding genes, a pair of degenerate primers was designed to clone the CmXYL3 gene from C. maltosa Xu316. The coding region and sequences flanking the CmXYL3 gene were obtained by PCR-based DNA walking method. Southern blotting analysis suggested that there is a single copy of the CmXYL3 gene in the genome. The open reading frame starting from ATG and ending with TAG stop codon encoded 616 amino acids with a calculated molecular mass of 68889.743 Da. The CmXYL3 gene under the control of the GPD1 promoter was heterologously expressed in Saccharomyces cerevisiae deficient in D-xylulokinase (deltaScXKS1::LEU2) activity, and restored growth on D-xylulose. The specific activity of D-xylulokinase varied during xylose fermentation and was correlated with aeration level. After growth on different pentoses and pentitols as sole carbon sources, the highest specific activity of D-xylulokinase was observed on D-xylose. CONCLUSIONS The CmXYL3 gene isolated from C. maltosa Xu316 encodes a novel D-xylulokinase that plays a pivotal role in xylulose metabolism. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report that describes the isolation and cloning of D-xylulokinase gene (CmXYL3) from C. maltosa Xu316. D-xylulokinase is pivotal for growth and product formation during xylose metabolism. Better understanding of the biochemical properties and the physiological function of D-xylulokinase will contribute to optimizing fermentation conditions and determining the strategies for metabolic engineering of C. maltosa Xu316 for further improvement of xylitol yield and productivity.
Collapse
Affiliation(s)
- C Guo
- Centre of Microbial Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | |
Collapse
|
30
|
Ko BS, Kim J, Kim JH. Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol 2006; 72:4207-13. [PMID: 16751533 PMCID: PMC1489653 DOI: 10.1128/aem.02699-05] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 04/07/2006] [Indexed: 11/20/2022] Open
Abstract
Xylitol dehydrogenase (XDH) is one of the key enzymes in d-xylose metabolism, catalyzing the oxidation of xylitol to d-xylulose. Two copies of the XYL2 gene encoding XDH in the diploid yeast Candida tropicalis were sequentially disrupted using the Ura-blasting method. The XYL2-disrupted mutant, BSXDH-3, did not grow on a minimal medium containing d-xylose as a sole carbon source. An enzyme assay experiment indicated that BSXDH-3 lost apparently all XDH activity. Xylitol production by BSXDH-3 was evaluated using a xylitol fermentation medium with glucose as a cosubstrate. As glucose was found to be an insufficient cosubstrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best cosubstrate. BSXDH-3 produced xylitol with a volumetric productivity of 3.23 g liter(-1) h(-1), a specific productivity of 0.76 g g(-1) h(-1), and a xylitol yield of 98%. This is the first report of gene disruption of C. tropicalis for enhancing the efficiency of xylitol production.
Collapse
Affiliation(s)
- Byoung Sam Ko
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
31
|
Jeffries TW. Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 2006; 17:320-6. [PMID: 16713243 DOI: 10.1016/j.copbio.2006.05.008] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/25/2006] [Accepted: 05/05/2006] [Indexed: 01/11/2023]
Abstract
Technologies for the production of alternative fuels are receiving increased attention owing to concerns over the rising cost of petrol and global warming. One such technology under development is the use of yeasts for the commercial fermentation of xylose to ethanol. Several approaches have been employed to engineer xylose metabolism. These involve modeling, flux analysis, and expression analysis followed by the targeted deletion or altered expression of key genes. Expression analysis is increasingly being used to target rate-limiting steps. Quantitative metabolic models have also proved extremely useful: they can be calculated from stoichiometric balances or inferred from the labeling of intermediate metabolites. The recent determination of the genome sequence for P. stipitis is important, as its genome characteristics and regulatory patterns could serve as guides for further development in this natural xylose-fermenting yeast or in engineered Saccharomyces cerevisiae. Lastly, strain selection through mutagenesis, adaptive evolution or from nature can also be employed to further improve activity.
Collapse
Affiliation(s)
- Thomas W Jeffries
- USDA, Forest Service and University of Wisconsin - Madison, Forest Products Laboratory, 53726, USA.
| |
Collapse
|
32
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|