1
|
Li Z, Xu C, Pan J, Zhou Y, Li H, Li W, Zou Y. Augmentation of exopolysaccharide synthesis and its influence on biofunctional properties of polysaccharide in Sanghuangporus vaninii via targeted overexpression of phosphoglucomutase. Int J Biol Macromol 2025; 306:141182. [PMID: 39965685 DOI: 10.1016/j.ijbiomac.2025.141182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/16/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Phosphoglucomutase (PGM) is considered an essential catalyst in polysaccharide biosynthesis, plays a pivotal role in the early stage of carbon metabolism and the synthesis of nucleotide sugars. Polysaccharides are important active components of Sanghuangporus vaninii. Based on the transcriptomic data, the successful cloning and re-annotation of the putative 1353 - bp PGM took place, which encodes a protein of 49.45 kDa. In order to elucidate the function of this gene, overexpression and interference transformation systems were constructed in S. vaninii. The results revealed that the PGM is primarily responsible for regulating the interconversion between glucose-1-phosphate and glucose-6-phosphate. An up - regulation of PGM expression resulted in a significant increase in extracellular polysaccharide content, quantified at 7.72 % and 15.15 %, whereas a down - regulation of PGM expression resulted in a significant increase in intracellular polysaccharide content (33.68 % and 38.24 %). The antioxidant capacity of intracellular polysaccharide in strain, including hydroxyl radical scavenging, superoxide anion radical scavenging, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, ABTS+ radical scavenging and FRAP scavenging was significantly increased by RNA interference with the expression of PGM, while the overexpression of PGM was found to enhance the antioxidant capacity of extracellular polysaccharide to a certain degrees. Furthermore, the modulation of PGM expression had a significant impact on polysaccharide metabolic pathways, resulting in alterations in monosaccharide composition and impacting the content of cell wall components, and the microstructure of polysaccharides. These findings elucidate the polysaccharide biosynthetic pathway in S. vaninii, highlighting the PGM as a prime target for the propagation of high-yield polysaccharide-producing strains. This study stands as a basic reference for amplifying polysaccharide production via strategic metabolic regulation.
Collapse
Affiliation(s)
- Zihao Li
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Congtao Xu
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinlong Pan
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yi Zhou
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haikang Li
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weihang Li
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yajie Zou
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Wei X, Chen Z, Liu A, Yang L, Xu Y, Cao M, He N. Advanced strategies for metabolic engineering of Bacillus to produce extracellular polymeric substances. Biotechnol Adv 2023; 67:108199. [PMID: 37330153 DOI: 10.1016/j.biotechadv.2023.108199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Extracellular polymeric substances are mainly synthesized via a variety of biosynthetic pathways in bacteria. Bacilli-sourced extracellular polymeric substances, such as exopolysaccharides (EPS) and poly-γ-glutamic acid (γ-PGA), can serve as active ingredients and hydrogels, and have other important industrial applications. However, the functional diversity and widespread applications of these extracellular polymeric substances, are hampered by their low yields and high costs. Biosynthesis of extracellular polymeric substances is very complex in Bacillus, and there is no detailed elucidation of the reactions and regulations among various metabolic pathways. Therefore, a better understanding of the metabolic mechanisms is required to broaden the functions and increase the yield of extracellular polymeric substances. This review systematically summarizes the biosynthesis and metabolic mechanisms of extracellular polymeric substances in Bacillus, providing an in-depth understanding of the relationships between EPS and γ-PGA synthesis. This review provides a better clarification of Bacillus metabolic mechanisms during extracellular polymeric substance secretion and thus benefits their application and commercialization.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Ailing Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Ahmad E, Sharma SK, Kashyap AS, Manzar N, Sahu PK, Singh UB, Singh HV, Sharma PK. Evaluation of Osmotolerant Potential of Halomonas sulfidaeris MV-19 Isolated from a Mud Volcano. Curr Microbiol 2023; 80:102. [PMID: 36773109 DOI: 10.1007/s00284-023-03202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
Salinity is one of the major challenges for cultivation of crops in a sustainable way because it severely affects plant growth and yield. Keeping this challenge in view, in the current study, a salt-tolerant Halomonas MV-19 was isolated from an extreme niche of mud volcano of Andaman Nicobar Island, India and identified on the basis of standard morphological, biochemical, and physiological tests and identified as Halomonas sulfidaeris strain MV-19 by 16S rRNA gene sequencing. The bacterium can grow on nutrient agar and nutrient broth supplemented with 3.5 M (≥ 20%) sodium chloride (NaCl). Sugar utilization assay revealed that H. sulfidaeris MV-19 utilizes only three sugars (dextrose, fructose, and mannose) from among twenty four tested sugars. The best growth of H. sulfidaeris MV-19 was observed in nutrient broth supplemented with 8% NaCl. When the broth was supplemented with dextrose, fructose, and mannose, the H. sulfidaeris MV-19 grew maximally in nutrient broth supplemented with 8% NaCl and 5% fructose. This strain produced exopolysaccharides (EPS) in nutrient broth supplemented with 8% NaCl and sugars (dextrose, fructose, and mannose). The EPS production was increased by 350% (three and half time) after addition of 5% fructose in nutrient broth compare with the EPS production in nutrient broth without supplemented with sugars. H. sulfidaeris MV-19 strain can produce EPS, which can help aggregate soil particle and reduced osmotic potential in soil, thus, be useful in alleviation of salinity stress in different crops cultivated in saline soils. The findings of the current investigation are expected to contribute towards effective abiotic stress management.
Collapse
Affiliation(s)
- Ees Ahmad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Sushil K Sharma
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur, Chhattisgarh, 493 225, India
| | - Abhijeet S Kashyap
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Nazia Manzar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Pramod K Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Udai B Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Harsh V Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Pawan K Sharma
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India.
| |
Collapse
|
4
|
Wu Q, Zhang C, Wa Y, Qu H, Gu R, Chen D, Song Z, Chen X. Correlation between exopolysaccharide biosynthesis and gastrointestinal tolerance of Lactiplantibacillus plantarum. J Appl Microbiol 2021; 132:584-591. [PMID: 34261198 DOI: 10.1111/jam.15213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
AIM This study aimed to investigate the correlation between the level of exopolysaccharide (EPS) biosynthesis and gastrointestinal tolerance of 12 Lactiplantibacillus plantarum strains. METHODS AND RESULTS In this study, the EPS production and survival rate of 12 strains of L. plantarum under gastrointestinal stress were determined. Results showed that the EPS biosynthesis level of L. plantarum in semi-defined medium ranged from 9.84 to 26.05 mg/L. The survival rates of all strains in simulated gastric juice at pH 3.0 ranged from 43.52% to 112.73%. Among them, eight strains were higher than 90%, while only one strain was lower than 50%. The survival rates of all strains in simulated intestinal juice ranged from 50.36% to 125.39%, among which eight strains were higher than 80%. The survival rates of all strains under 0.1% bile salt stress ranged from 3.39% to 109.34%, among which four strains were higher than 80% and three strains were lower than 60%. Besides, the survival rates of all strains under 0.5% bile salt stress ranged from 0.42% to 95.34%. The results indicated that the 12 L. plantarum strains had good tolerance to simulated gastric juice at pH 3.0, simulated intestinal juice and 0.1% bile salt. Notably, it was observed that the survival rates of L. plantarum strains under simulated gastric juice at pH 3.0 and simulated intestinal juice were significantly positively correlated with EPS biosynthesis (p < 0.01). CONCLUSION The yield of EPS of L. plantarum was related to simulated gastric juice and simulated intestinal juice environment. SIGNIFICANCE AND IMPACT OF STUDY It was speculated that the production of EPS may be one of the strategies for L. plantarum to adapt to the part of gastrointestinal environment. In the future, we could analyse the protection mechanism of EPS from the gene level.
Collapse
Affiliation(s)
- Qingqing Wu
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Chenchen Zhang
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Yunchao Wa
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Hengxian Qu
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Ruixia Gu
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Dawei Chen
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Zhixin Song
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| | - Xia Chen
- College of Food Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, China
| |
Collapse
|
5
|
Do TBT, Tran TAL, Tran TVT, Le TH, Jayasena V, Nguyen THC, Nguyen CC, Kim SY, Le QV. Novel Exopolysaccharide Produced from Fermented Bamboo Shoot-Isolated Lactobacillus Fermentum. Polymers (Basel) 2020; 12:polym12071531. [PMID: 32664338 PMCID: PMC7407396 DOI: 10.3390/polym12071531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
This study aimed at providing a route towards the production of a novel exopolysaccharide (EPS) from fermented bamboo shoot-isolated Lactobacillus fermentum. A lactic acid bacteria strain, with high EPS production ability, was isolated from fermented bamboo shoots. This strain, R-49757, was identified in the BCCM/LMG Bacteria Collection, Ghent University, Belgium by the phenylalanyl-tRNA synthetase gene sequencing method, and it was named Lb. fermentum MC3. The molecular mass of the EPS measured via gel permeation chromatography was found to be 9.85 × 104 Da. Moreover, the monosaccharide composition in the EPS was analyzed by gas chromatography–mass spectrometry. Consequently, the EPS was discovered to be a heteropolysaccharide with the appearance of two main sugars—D-glucose and D-mannose—in the backbone. The results of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance spectroscopy analyses prove the repeating unit of this polysaccharide to be [→6)-β-D-Glcp-(1→3)-β-D-Manp-(1→6)-β-D-Glcp-(1→]n, which appears to be a new EPS. The obtained results open up an avenue for the production of novel EPSs for biomedical applications.
Collapse
Affiliation(s)
- Thi Bich Thuy Do
- Faculty of Engineering and Food Technology, Hue University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
- Correspondence: (T.B.T.D.); (C.C.N.); (S.Y.K.); (Q.V.L.)
| | | | - Thi Van Thi Tran
- University of Sciences, Hue University, Thua Thien Hue 530000, Vietnam; (T.V.T.T.); (T.H.L.)
| | - Trung Hieu Le
- University of Sciences, Hue University, Thua Thien Hue 530000, Vietnam; (T.V.T.T.); (T.H.L.)
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, NSW 2751 Penrith, Australia;
| | - Thi Hong Chuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Chinh Chien Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence: (T.B.T.D.); (C.C.N.); (S.Y.K.); (Q.V.L.)
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
- Correspondence: (T.B.T.D.); (C.C.N.); (S.Y.K.); (Q.V.L.)
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
- Correspondence: (T.B.T.D.); (C.C.N.); (S.Y.K.); (Q.V.L.)
| |
Collapse
|
6
|
Sun Y, Zhang X, Zhang L, Huang Y, Yang Z, Montagnes D. UVB Radiation Suppresses Antigrazer Morphological Defense in Scenedesmus obliquus by Inhibiting Algal Growth and Carbohydrate-Regulated Gene Expression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4495-4503. [PMID: 32108484 DOI: 10.1021/acs.est.0c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solar ultraviolet-B (UVB) radiation reaching the earth's surface is increasing due to stratospheric ozone depletion. How the elevated UVB affects the trophic interactions is critical for predicting the ecosystem functioning under this global-scale stressor. Usually, inducible defenses in phytoplankton stabilize community dynamics within aquatic environments. To assess the effects of elevated UVB on induced defense, we examined the changes in antigrazer colony formation in Scenedesmus obliquus under environmentally relevant UVB. S. obliquus exposed to Daphnia infochemicals consistently formed multicelled colonies, traits confirmed to be adaptive under predation risk. However, the suppressed photochemical activity and the metabolic cost from colony formation resulted in the severer reductions in algal growth by UVB under predation risk. The transcriptions of key enzyme-encoding genes, regulating the precursor synthesis during polysaccharide production, were also inhibited by UVB. Combination of the reduced production of daughter cells and the ability of daughter cells to remain attached, the antigrazing colony formation was interrupted, leading to the dominant morphs of algal population shifting from larger-sized colonies to smaller ones at raised UVB. The present study revealed that elevated UVB will not only reduce the phytoplankton growth but also increase their vulnerability to predation, probably leading to potential shifts in plankton food webs.
Collapse
Affiliation(s)
- Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xingxing Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - David Montagnes
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
7
|
Validated Postbiotic Screening Confirms Presence of Physiologically-Active Metabolites, Such as Short-Chain Fatty Acids, Amino Acids and Vitamins in Hylak® Forte. Probiotics Antimicrob Proteins 2018; 11:1124-1131. [DOI: 10.1007/s12602-018-9497-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Zhang F, Zhao Q, Tian J, Chang YF, Wen X, Huang X, Wu R, Wen Y, Yan Q, Huang Y, Ma X, Han X, Miao C, Cao S. Effective Pro-Inflammatory Induced Activity of GALT, a Conserved Antigen in A. Pleuropneumoniae, Improves the Cytokines Secretion of Macrophage via p38, ERK1/2 and JNK MAPKs Signal Pathway. Front Cell Infect Microbiol 2018; 8:337. [PMID: 30319993 PMCID: PMC6167544 DOI: 10.3389/fcimb.2018.00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
GALT is a highly conserved antigen in gram-negative bacteria, and has been shown to play a crucial role in the pathogenesis of many zoonoses. Actinobacillus pleuropneumoniae (APP) is a widespread respiratory system pathogen belonging to the Pasteuriaceae family. The functional mechanisms of GALT in the process of infection remain unclear. The aim of this study is to analyze roles of GALT in the pathogenesis of APP infection. Recombinant GALT was expressed in E. coli, purified, and was used to treat a Raw 264.7 macrophage line. Stimulation of Raw 264.7 macrophages with recombinant GALT protein induced the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). Compared with negative control, GALT led to increased production of pro-inflammatory cytokines in treated cells. Furthermore, specific inhibitors of the extracellular signal-regulated P38 and JNK MAPKs pathways significantly decreased GALT-induced pro-inflammatory cytokine production, and a western blot assay showed that GALT stimulation induced the activation of the MAPKs pathway. This process included cell-signaling pathways like P38, ERK1/2 and JNK MAPKs, and NF-κB. Both TLR2 and TLR4 were receptors of GALT antigens, whereas they played negative and positive roles (respectively) in the process of induction and expression of pro-inflammatory cytokines. Taken together, our data indicate that GALT is a novel pro-inflammatory mediator and induces TLR2 and TLR4-dependent pro-inflammatory activity in Raw 264.7 macrophages through P38, ERK1/2, and JNK MAPKs pathways.
Collapse
Affiliation(s)
- Fei Zhang
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Qin Zhao
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Jin Tian
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Xintian Wen
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Rui Wu
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Chang Miao
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
9
|
Zhou J, Bai Y, Dai R, Guo X, Liu ZH, Yuan S. Improved Polysaccharide Production by Homologous Co-overexpression of Phosphoglucomutase and UDP Glucose Pyrophosphorylase Genes in the Mushroom Coprinopsis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4702-4709. [PMID: 29693394 DOI: 10.1021/acs.jafc.8b01343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Coprinopsis polysaccharides exhibit hypoglycemic and antioxidant activities. In this report, increases in polysaccharide production by homologous co-overexpression or individual homologous overexpression of phosphoglucomutase and UDP glucose pyrophosphorylase gene in Coprinopsis cinerea, which participate in polysaccharide biosynthesis. The transcription levels of the target genes were upregulated significantly in the oePGM-UGP strain when compared with the oePGM or oeUGP strain. The maximum intracellular polysaccharide content obtained in the oePGM-UGP strain was 1.49-fold higher than that of the WT strain, whereas a slight improvement in polysaccharide production was obtained in the oePGM and oeUGP strains. Extracellular polysaccharide production was enhanced by 75% in the oePGM-UGP strain when compared with that of the WT strain, whereas improvements of 30% and 16% were observed for the oePGM and oeUGP strains, respectively. These results show that multiple interventions in polysaccharide biosynthesis pathways of Basidiomycetes might improve polysaccharide yields when compared with that of single interventions.
Collapse
Affiliation(s)
- Jiangsheng Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Yang Bai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Rujuan Dai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Xiaoli Guo
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Zhong-Hua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| |
Collapse
|
10
|
Characterization of Lactobacillus amylolyticus L6 as potential probiotics based on genome sequence and corresponding phenotypes. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168-S200. [DOI: 10.1093/femsre/fux017] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
|
12
|
Characterization and upregulation of bifunctional phosphoglucomutase/phosphomannomutase enzyme in an exobiopolymer overproducing strain of Acinetobacter haemolyticus. Microbiol Res 2015; 181:8-14. [PMID: 26640047 DOI: 10.1016/j.micres.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 11/24/2022]
Abstract
Several members of the Acinetobacter spp. produce exobiopolymer (EBP) of considerable biotechnological interest. In a previous study, we reported phosphate removal capacity of EBP produced by Acinetobacter haemolyticus. Insertional mutagenesis was attempted to develop EBP-overproducing strains of A. haemolyticus and mutant MG606 was isolated. In order to understand the underlying mechanism of overproduction, the EBP overproducing mutant MG606 was analyzed and compared with the wild type counterpart for its key EBP synthetic enzymes. The EBP produced by MG606 mutant was 650 mg/L compared to 220 mg/L in its wild type counterpart. Significantly high (p<0.05) levels of phosphoglucomutase/phosphomannomutase (PGM/PMM) in MG606 mutant was noted, whereas activities of other enzymes responsible for EBP synthesis showed no significant change (p>0.05). The up-regulation of PGM/PMM expression in mutant was further confirmed by real time reverse transcriptase (RT)-PCR of PGM/PMM transcripts. The optimal conditions for PGM/PMM activity were found to be 35 °C and pH 7.5; PGM/PMM activity was inhibited by ions such as lithium, zinc, nickel. Further, incubation of cells with a PGM inhibitor (lithium) resulted in a concentration-dependent decrease in EBP production further confirming the role of PGM/PMM overexpression in enhanced EBP production by the mutant. Overall the results of our study indicate a key role of PGM/PMM in enhanced EBP production, as evident from enhanced enzyme activity, increased PGM/PMM transcripts and reduction in EBP synthesis by a PGM inhibitor. We envisage a potential exploitation of the insights so obtained to effectively engineer strains of Acinetobacter for overproducing phosphate binding EBP.
Collapse
|
13
|
Patten D, Laws A. Lactobacillus-produced exopolysaccharides and their potential health benefits: a review. Benef Microbes 2015; 6:457-71. [DOI: 10.3920/bm2014.0117] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lactic acid bacteria, such as those of the Lactobacillus genus, naturally reside within the microbiota of the human body and have long been used as starter cultures and probiotic enhancers in fermented foods, such as fermented drinks, yoghurts and cheeses. Many of the beneficial qualities of these bacteria have traditionally been associated with the bacteria themselves, however, a recent spate of studies have demonstrated a wide variety of biological effects exhibited by lactobacilli-produced exopolysaccharides which could, theoretically, confer a range of local and systemic health benefits upon the host. In this review, we discuss the production of exopolysaccharides within the Lactobacillus genus and explore their potential as beneficial bioactive compounds.
Collapse
Affiliation(s)
- D.A. Patten
- Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, HD1 3DH Huddersfield, United Kingdom
- Centre for Liver Research, School of Immunity and Infection, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - A.P. Laws
- Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, HD1 3DH Huddersfield, United Kingdom
| |
Collapse
|
14
|
Characterization of a novel polysaccharide with anti-colon cancer activity from Lactobacillus helveticus MB2-1. Carbohydr Res 2015; 411:6-14. [DOI: 10.1016/j.carres.2014.12.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/26/2014] [Accepted: 12/28/2014] [Indexed: 01/22/2023]
|
15
|
Stressler T, Eisele T, Kranz B, Fischer L. PepX from Lactobacillus helveticus: Automated multi-step purification and determination of kinetic parameters with original tripeptide substrates. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Xu JW, Ji SL, Li HJ, Zhou JS, Duan YQ, Dang LZ, Mo MH. Increased polysaccharide production and biosynthetic gene expressions in a submerged culture of Ganoderma lucidum by the overexpression of the homologous α-phosphoglucomutase gene. Bioprocess Biosyst Eng 2014; 38:399-405. [DOI: 10.1007/s00449-014-1279-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/31/2014] [Indexed: 11/28/2022]
|
17
|
Kim HR, Park SY, Kim SB, Jeong H, Choi SK, Park SH. Inactivation of the phosphoglucomutase gene pgm in Paenibacillus polymyxa leads to overproduction of fusaricidin. ACTA ACUST UNITED AC 2014; 41:1405-14. [DOI: 10.1007/s10295-014-1470-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/28/2014] [Indexed: 11/29/2022]
Abstract
Abstract
Fusaricidin, a lipodepsipeptide isolated from Paenibacillus polymyxa, has high antimicrobial activity against fungi and Gram-positive bacteria. Through mutagenesis, we obtained two mutant strains, N1U7 and N17U7, which produce 6.2- to 7.9-fold more fusaricidin than their parent strain. Causal mutations were identified by whole-genome sequencing, and the two strains each contained at least eleven point mutations, including four common mutations. A mutation in the PPE04441 gene (pgm), encoding an α-phosphoglucomutase, was found to be an important factor in fusaricidin overproduction by complementation experiments. Null mutation of pgm in the parental strain increased fusaricidin production by 5.2-fold. Increased growth and cell viability in stationary phase, reduced exopolysaccharide production, and increased fusA expression were observed in the pgm mutant strains, which might be related to fusaricidin overproduction. This is the first report revealing that PGM deficiency leads to an overproduction of fusaricidin.
Collapse
Affiliation(s)
- Ha-Rim Kim
- grid.249967.7 0000000406363099 Super-Bacteria Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro 305-806 Daejeon Yuseong-gu Republic of Korea
- grid.412786.e 0000000417918264 Biosystems and Bioengineering Program Korea University of Science and Technology (UST) 217 Gajung-ro 305-350 Daejeon Yuseong-gu Republic of Korea
| | - Soo-Young Park
- grid.249967.7 0000000406363099 Super-Bacteria Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro 305-806 Daejeon Yuseong-gu Republic of Korea
| | - Seong-Bin Kim
- grid.249967.7 0000000406363099 Super-Bacteria Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro 305-806 Daejeon Yuseong-gu Republic of Korea
| | - Haeyoung Jeong
- grid.249967.7 0000000406363099 Korean Bioinformation Center, KRIBB 125 Gwahak-ro 305-806 Daejeon Yuseong-gu Republic of Korea
- grid.412786.e 0000000417918264 Biosystems and Bioengineering Program Korea University of Science and Technology (UST) 217 Gajung-ro 305-350 Daejeon Yuseong-gu Republic of Korea
| | - Soo-Keun Choi
- grid.249967.7 0000000406363099 Super-Bacteria Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro 305-806 Daejeon Yuseong-gu Republic of Korea
- grid.412786.e 0000000417918264 Biosystems and Bioengineering Program Korea University of Science and Technology (UST) 217 Gajung-ro 305-350 Daejeon Yuseong-gu Republic of Korea
| | - Seung-Hwan Park
- grid.249967.7 0000000406363099 Super-Bacteria Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro 305-806 Daejeon Yuseong-gu Republic of Korea
- grid.412786.e 0000000417918264 Biosystems and Bioengineering Program Korea University of Science and Technology (UST) 217 Gajung-ro 305-350 Daejeon Yuseong-gu Republic of Korea
| |
Collapse
|
18
|
Li W, Ji J, Chen X, Jiang M, Rui X, Dong M. Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr Polym 2014; 102:351-9. [DOI: 10.1016/j.carbpol.2013.11.053] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/30/2013] [Accepted: 11/27/2013] [Indexed: 01/01/2023]
|
19
|
Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 2013; 6:493-502. [PMID: 23302511 PMCID: PMC3918152 DOI: 10.1111/1751-7915.12029] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022] Open
Abstract
Summary The current knowledge of trehalose biosynthesis under stress conditions is incomplete and needs further research. Since trehalose finds industrial and pharmaceutical applications, enhanced accumulation of trehalose in bacteria seems advantageous for commercial production. Moreover, physiological role of trehalose is a key to generate stress resistant bacteria by metabolic engineering. Although trehalose biosynthesis requires few metabolites and enzyme reactions, it appears to have a more complex metabolic regulation. Trehalose biosynthesis in bacteria is known through three pathways – OtsAB, TreYZ and TreS. The interconnections of in vivo synthesis of trehalose, glycogen or maltose were most interesting to investigate in recent years. Further, enzymes at different nodes (glucose-6-P, glucose-1-P and NDP-glucose) of metabolic pathways influence enhancement of trehalose accumulation. Most of the study of trehalose biosynthesis was explored in medically significant Mycobacterium, research model Escherichia coli, industrially applicable Corynebacterium and food and probiotic interest Propionibacterium freudenreichii. Therefore, the present review dealt with the trehalose metabolism in these bacteria. In addition, an effort was made to recognize how enzymes at different nodes of metabolic pathway can influence trehalose accumulation.
Collapse
Affiliation(s)
- Rohit Ruhal
- Department of Chemistry, Umeå University, Umeå, Sweden; Department of Biotechnology, IIT Roorkee, Roorkee, India.
| | | | | |
Collapse
|
20
|
Raza W, Makeen K, Wang Y, Xu Y, Qirong S. Optimization, purification, characterization and antioxidant activity of an extracellular polysaccharide produced by Paenibacillus polymyxa SQR-21. BIORESOURCE TECHNOLOGY 2011; 102:6095-103. [PMID: 21392978 DOI: 10.1016/j.biortech.2011.02.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 05/24/2023]
Abstract
The optimization, purification and characterization of an extracellular polysaccharide (EPS) from a bacterium Paenibacillus polymyxa SQR-21 (SQR-21) were investigated. The results showed that SQR-21 produced one kind of EPS having molecular weight of 8.96 × 10(5)Da. The EPS was comprised of mannose, galactose and glucose in a ratio of 1.23:1.14:1. The ratio of monosaccharides and glucuronic acid was 7.5:1. The preferable culture conditions for EPS production were pH 6.5, temperature 30°C for 96 h with yeast extract and galactose as best N and C sources, respectively. The maximum EPS production (3.44 g L(-1)) was achieved with galactose 48.5 g L(-1), Fe(3+) 242 μM and Ca(2+) 441 μM. In addition, the EPS showed good superoxide scavenging, flocculating and metal chelating activities while moderate inhibition of lipid peroxidation and reducing activities were determined. These results showed the great potential of EPS produced by SQR-21 to be used in industry in place of synthetic compounds.
Collapse
Affiliation(s)
- Waseem Raza
- Jiangsu Provincial Key Lab for Organic Slid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | | | | | | | | |
Collapse
|
21
|
Williams TJ, Lauro FM, Ertan H, Burg DW, Poljak A, Raftery MJ, Cavicchioli R. Defining the response of a microorganism to temperatures that span its complete growth temperature range (-2°C to 28°C) using multiplex quantitative proteomics. Environ Microbiol 2011; 13:2186-203. [PMID: 21443741 DOI: 10.1111/j.1462-2920.2011.02467.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The growth of all microorganisms is limited to a specific temperature range. However, it has not previously been determined to what extent global protein profiles change in response to temperatures that incrementally span the complete growth temperature range of a microorganism. As a result it has remained unclear to what extent cellular processes (inferred from protein abundance profiles) are affected by growth temperature and which, in particular, constrain growth at upper and lower temperature limits. To evaluate this, 8-plex iTRAQ proteomics was performed on the Antarctic microorganism, Methanococcoides burtonii. Methanococcoides burtonii was chosen due to its importance as a model psychrophilic (cold-adapted) member of the Archaea, and the fact that proteomic methods, including subcellular fractionation procedures, have been well developed. Differential abundance patterns were obtained for cells grown at seven different growth temperatures (-2°C, 1°C, 4°C, 10°C, 16°C, 23°C, 28°C) and a principal component analysis (PCA) was performed to identify trends in protein abundances. The multiplex analysis enabled three largely distinct physiological states to be described: cold stress (-2°C), cold adaptation (1°C, 4°C, 10°C and 16°C), and heat stress (23°C and 28°C). A particular feature of the thermal extremes was the synthesis of heat- and cold-specific stress proteins, reflecting the important, yet distinct ways in which temperature-induced stress manifests in the cell. This is the first quantitative proteomic investigation to simultaneously assess the response of a microorganism to numerous growth temperatures, including the upper and lower growth temperatures limits, and has revealed a new level of understanding about cellular adaptive responses.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Vogelmann SA, Seitter M, Singer U, Brandt MJ, Hertel C. Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. Int J Food Microbiol 2009; 130:205-12. [PMID: 19239979 DOI: 10.1016/j.ijfoodmicro.2009.01.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
The adaptability of lactic acid bacteria (LAB) and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava was investigated using PCR-DGGE and bacteriological culture combined with rRNA gene sequence analysis. Sourdoughs were prepared either from flours of the cereals wheat, rye, oat, barley, rice, maize, and millet, or from the pseudocereals amaranth, quinoa, and buckwheat, or from cassava, using a starter consisting of various species of LAB and yeasts. Doughs were propagated until a stable microbiota was established. The dominant LAB and yeast species were Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pontis, Lactobacillus spicheri, Issatchenkia orientalis and Saccharomyces cerevisiae. The proportion of the species within the microbiota varied. L. paralimentarius dominated in the pseudocereal sourdoughs, L. fermentum, L. plantarum and L. spicheri in the cassava sourdough, and L. fermentum, L. helveticus and L. pontis in the cereal sourdoughs. S. cerevisiae constituted the dominating yeast, except for quinoa sourdough, where I. orientalis also reached similar counts, and buckwheat and oat sourdoughs, where no yeasts could be detected. To assess the usefulness of competitive LAB and yeasts as starters, the fermentations were repeated using flours from rice, maize, millet and the pseudocereals, and by starting the dough fermentation with selected dominant strains. At the end of fermentation, most of starter strains belonged to the dominating microbiota. For the rice, millet and quinoa sourdoughs the species composition was similar to that of the prior fermentation, whereas in the other sourdoughs, the composition differed.
Collapse
Affiliation(s)
- Stephanie A Vogelmann
- University of Hohenheim, Institute of Food Science and Biotechnology, Section Food Microbiology, Garbenstrasse 28, D-70599 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
23
|
Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.09.010] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Physico-chemical characterization of a new heteropolysaccharide produced by a native isolate of heterofermentative Lactobacillus sp. CFR-2182. Arch Microbiol 2008; 191:303-10. [DOI: 10.1007/s00203-008-0453-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 11/30/2008] [Accepted: 12/04/2008] [Indexed: 11/29/2022]
|
25
|
Vijayendra S, Palanivel G, Mahadevamma S, Tharanathan R. Physico-chemical characterization of an exopolysaccharide produced by a non-ropy strain of Leuconostoc sp. CFR 2181 isolated from dahi, an Indian traditional lactic fermented milk product. Carbohydr Polym 2008. [DOI: 10.1016/j.carbpol.2007.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Velasco SE, Yebra MJ, Monedero V, Ibarburu I, Dueñas MT, Irastorza A. Influence of the carbohydrate source on beta-glucan production and enzyme activities involved in sugar metabolism in Pediococcus parvulus 2.6. Int J Food Microbiol 2007; 115:325-34. [PMID: 17303279 DOI: 10.1016/j.ijfoodmicro.2006.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
The influence of carbohydrate source on growth, exopolysaccharide (EPS) production and on the activity of the enzymes implicated in energy generation and UDP-glucose synthesis in Pediococcus parvulus 2.6 was evaluated. The highest EPS production was obtained on glucose, while fructose was a poor substrate for EPS synthesis. HPLC and NMR analysis on monomer composition and structure of the EPS showed that this strain produced the same beta-glucan, regardless of the carbohydrate source. The alpha-phosphoglucomutase specific activities were dependent on the carbohydrate source and a high correlation between the activity of this enzyme and the amount of EPS was found in glucose- and maltose-grown cultures. alpha-UDP-glucose pyrophosphorylase activity, necessary for the activation of glucose, was very low, but significantly higher on glucose as sugar source. In vitro phosphorylation assays and transport activities showed that glucose is taken up by a proton motive force-dependent permease, while fructose is internalized by an inducible phosphotransferase system, which renders fructose-6-phosphate. The levels of 6-phosphofructokinase activity and alpha-phosphoglucomutase activities determined on fructose were higher and lower, than those found on glucose or maltose, respectively. This suggests that fructose-6-phosphate is mainly diverted to glycolysis and explains the low EPS synthesis on fructose. Results indicate that alpha-phosphoglucomutase and/or alpha-UDP-glucose pyrophosphorylase might be the bottlenecks for EPS biosynthesis, opening the field for metabolic-engineering strategies aimed to improve EPS production.
Collapse
Affiliation(s)
- S E Velasco
- Departamento de Química Aplicada, Facultad de Ciencias Químicas, Universidad del País Vasco, Box 1072, 20080, San Sebastián, Spain.
| | | | | | | | | | | |
Collapse
|
27
|
Mozzi F, Vaningelgem F, Hébert EM, Van der Meulen R, Foulquié Moreno MR, Font de Valdez G, De Vuyst L. Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers. Appl Environ Microbiol 2006; 72:4431-5. [PMID: 16751563 PMCID: PMC1489642 DOI: 10.1128/aem.02780-05] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thirty-one lactic acid bacterial strains from different species were evaluated for exopolysaccharide (EPS) production in milk. Thermophilic strains produced more EPS than mesophilic ones, but EPS yields were generally low. Ropiness or capsular polysaccharide formation was strain dependent. Six strains produced high-molecular-mass EPS. Polymers were classified into nine groups on the basis of their monomer composition. EPS from Enterococcus strains were isolated and characterized.
Collapse
Affiliation(s)
- Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, 4000 San Miguel de Tucumán, Tucumán, Argentina.
| | | | | | | | | | | | | |
Collapse
|
28
|
Dal Bello F, Walter J, Roos S, Jonsson H, Hertel C. Inducible gene expression in Lactobacillus reuteri LTH5531 during type II sourdough fermentation. Appl Environ Microbiol 2005; 71:5873-8. [PMID: 16204499 PMCID: PMC1266011 DOI: 10.1128/aem.71.10.5873-5878.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus reuteri LTH5531 is a dominant member of the microbiota of type II sourdough fermentations. To investigate the genetic background of the ecological performance of LTH5531, in vivo expression technology was used to identify promoters that show elevated levels of expression during growth of this organism in a type II sourdough fermentation. Thirty-eight sourdough-induced fusions were detected, and 29 genes could be identified on the basis of the available sequence information. Four genes encoded stress-related functions (e.g., acid and general stress response), reflecting the harsh conditions prevailing during sourdough fermentation. Further, eight genes were involved in acquisition and synthesis of amino acids and nucleotides, indicating their limited availability in sourdough. The remaining genes were either part of functionally unrelated pathways or encoded hypothetical proteins. The identification of a putative proteinase and a component of the arginine deiminase pathway is of technological interest, as they are potentially involved in the formation of aroma precursors. Our study allowed insight into the transcriptional response of Lactobacillus reuteri to the dough environment, which establishes the molecular basis to investigate bacterial properties that are likely to contribute to the ecological performance of the organism and influence the final outcome of the fermentation.
Collapse
Affiliation(s)
- Fabio Dal Bello
- Institute of Food Technology, University of Hohenheim, Garbenstr. 28, D-70599 Stuttgart, Germany
| | | | | | | | | |
Collapse
|