1
|
Xin Y, Wu S, Miao C, Xu T, Lu Y. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life (Basel) 2024; 14:447. [PMID: 38672718 PMCID: PMC11051065 DOI: 10.3390/life14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae can convert carbon dioxide into organic matter through photosynthesis. Thus, they are considered as an environment-friendly and efficient cell chassis for biologically active metabolites. Microalgal lipids are a class of organic compounds that can be used as raw materials for food, feed, cosmetics, healthcare products, bioenergy, etc., with tremendous potential for commercialization. In this review, we summarized the commercial lipid products from eukaryotic microalgae, and updated the mechanisms of lipid synthesis in microalgae. Moreover, we reviewed the enhancement of lipids, triglycerides, polyunsaturated fatty acids, pigments, and terpenes in microalgae via environmental induction and/or metabolic engineering in the past five years. Collectively, we provided a comprehensive overview of the products, biosynthesis, induced strategies and genetic engineering in microalgal lipids. Meanwhile, the outlook has been presented for the development of microalgal lipids industries, emphasizing the significance of the accurate analysis of lipid bioactivity, as well as the high-throughput screening of microalgae with specific lipids.
Collapse
Affiliation(s)
- Yi Xin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
| | - Shan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Congcong Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Tao Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Wang K, Lin L, Wei P, Ledesma-Amaro R, Ji XJ. Combining orthogonal plant and non-plant fatty acid biosynthesis pathways for efficient production of microbial oil enriched in nervonic acid in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2023; 378:129012. [PMID: 37019413 DOI: 10.1016/j.biortech.2023.129012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nervonic acid has proven efficacy in brain development and the prevention of neurodegenerative diseases. Here, an alternative and sustainable strategy for nervonic acid-enriched plant oil production was established. Different β-ketoacyl-CoA synthases and heterologous Δ15 desaturase were co-expressed, combined with the deletion of the β-oxidation pathway to construct orthogonal plant and non-plant nervonic acid biosynthesis pathways in Yarrowia lipolytica. A "block-pull-restrain" strategy was further applied to improve the supply of stearic acid as the precursor of the non-plant pathway. Then, lysophosphatidic acid acyltransferase from Malania oleifera (MoLpaat) was identified, which showed specificity for nervonic acid. Endogenous LPAAT was exchanged by MoLPAAT resulted in 17.10 % nervonic acid accumulation. Finally, lipid metabolism was engineered and cofactor supply was increased to boost the lipid accumulation in a stable null-hyphal strain. The final strain produced 57.84 g/L oils with 23.44 % nervonic acid in fed-batch fermentation, which has the potential to substitute nervonic acid-enriched plant oil.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
3
|
Wu J, Wu C, Rong C, Tian J, Jiang N, Wu R, Yue X, Shi H. Catalytic mechanisms underlying fungal fatty acid desaturases activities. Crit Rev Biotechnol 2022:1-17. [PMID: 35658758 DOI: 10.1080/07388551.2022.2063106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have beneficial roles in a variety of human pathologies and disorders. Owing to the limited source of PUFAs in animals and plants, microorganisms, especially fungi, have become a new source of PUFAs. In fungi, fatty acid desaturases (F-FADS) are the main enzymes that convert saturated fatty acids (SFAs) into PUFAs. Their catalytic activities and substrate specificities, which are directly dependent on the structure of the FADS proteins, determine their efficiency to convert SFAs to PUFAs. Catalytic mechanisms underlying F-FADS activities can be determined from the findings of the relationship between their structure and function. In this review, the advances made in the past decade in terms of catalytic activities and substrate specificities of the fungal FADS cluster are summarized. The relationship between the key domain(s) and site(s) in F-FADS proteins and their catalytic activity is highlighted, and the FADS cluster is analyzed phylogenetically. In addition, subcellular localization of F-FADS is discussed. Finally, we provide prospective crystal structures of F-FADSs. The findings may provide a reference for the resolution of the crystal structures of F-FADS proteins and facilitate the increase in fungal PUFA production for human health.
Collapse
Affiliation(s)
- Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| | - Chen Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chunchi Rong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Nan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
4
|
González-Rovira A, Mourente G, Igartuburu JM, Pendon C. Molecular and functional characterization of a SCD 1b from European sea bass (Dicentrarchus labrax L.). Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110698. [PMID: 34801709 DOI: 10.1016/j.cbpb.2021.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Fatty acid desaturation is a highly complex and regulated process involving different molecular and genetic actors. Ultimally, the fatty acid desaturase enzymes are responsible for the introduction of double bonds at different positions of specific substrates, resulting in a wide variety of mono- and poly-unsaturated fatty acids. This substrate-specificity makes it possible to meet all the functional needs of the different tissues against a wide variety of internal and external conditions, giving rise to a varied profile of expression and functionality of the different desaturases in the body. Being our main interest to study and characterize at the molecular level the fatty acid desaturation process in fishes, we have focused our effort on characterizing SCD 1b from European sea bass (Dicentrarchus labrax, L.). In this work, we have characterized a tearoyl-CoA Desaturase cDNA that codes a protein of 334 amino acids, which shares the greatest homology to marine fish SCD 1b. Northern blot analysis showed two transcripts of 3.5 kb and 1.4 kb. Two putative cis-acting conserved motifs are localized in the cDNA 5'-end: a polypyrimidine CT dinucleotide repeat tract and two non-palindromic putative NRL-response elements (NREs). The deduced protein presents two Δ9 FADs like domain, three His-rich motifs, a total of nine His residues acting as di‑iron coordination ligands. The SCD 1b 3D protein modelling shows a structure made up primarily of α-helices, four of which could be transmembrane helices. The catalytic region is oriented to the cytosolic side of the Endoplasmic Reticulum membrane, where the 9-histidine residues are arranged coordinated to two non-heme Fe2+ ions. A new His-containing motif NX3H-like includes an Asn residue that participates in the coordination of Fe2+1 through a water molecule. The protein has a large pocket with a large opening to the outside. It includes a tunnel in which the substrate-binding site is located. The external shape is reminiscent of a boathook. It shows group specificity, although a greater preference for 18C substrates. The length of the tunnel, delimited by seven amino acids that forms a pocket at the end of the tunnel, the possibility that the substrates adopt different conformations inside the tunnel as well as and the movement of acyl chain inside the tunnel, could explain the high preference for 18C fatty acids and the group specificity of the enzyme. The cDNA encodes a functional SCD enzyme, whose subcellular localization is the Endoplasmic Reticulum, which complements the ole1Δ gene-disrupted gene in DTY-11A Saccharomyces cerevisiae strain and produces an increment of palmitoleic and oleic acids. The scd 1b gene is expressed in all tested tissues, showing the liver and adipose tissue a higher level of expression against the brain, heart, gonad and intestine. Scd 1b expression was always bigger than those of the Δ6 fad gene, being especially significant in adipose tissue and liver. From our data, we conclude that, in contrast to the functional significance of SCD 1b in adipose tissue, liver and heart, Δ6 FAD seems to play a more determining role in the biosynthesis of unsaturated fatty acids in the intestine, brain and gonad in fish.
Collapse
Affiliation(s)
- Almudena González-Rovira
- Departamento de Biomedicina, Biotecnología y Salud Pública, INBIO, Facultad de Ciencias, Universidad de Cádiz, 11519 Puerto Real, Cádiz, Spain.
| | - Gabriel Mourente
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11519 Puerto Real, Cádiz, Spain.
| | - José Manuel Igartuburu
- Departamento de Química Orgánica, INBIO, Facultad de Ciencias, Universidad de Cádiz, 11519 Puerto Real, Cádiz, Spain.
| | - Carlos Pendon
- Departamento de Biomedicina, Biotecnología y Salud Pública, INBIO, Facultad de Ciencias, Universidad de Cádiz, 11519 Puerto Real, Cádiz, Spain.
| |
Collapse
|
5
|
Chang L, Lu H, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Lipid metabolism research in oleaginous fungus Mortierella alpina: Current progress and future prospects. Biotechnol Adv 2021; 54:107794. [PMID: 34245810 DOI: 10.1016/j.biotechadv.2021.107794] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The oleaginous fungus Mortierella alpina has distinct advantages in long-chain PUFAs production, and it is the only source for dietary arachidonic acid (ARA) certificated by FDA and European Commission. This review provides an overall introduction to M. alpina, including its major research methods, key factors governing lipid biosynthesis, metabolic engineering and omics studies. Currently, the research interests in M. alpina focus on improving lipid yield and fatty acid desaturation degree by enhancing fatty acid precursors and the reducing power NADPH, and genetic manipulation on PUFAs synthetic pathways is carried to optimise fatty acid composition. Besides, multi-omics studies have been applied to elucidate the global regulatory mechanism of lipogenesis in M. alpina. However, research challenges towards achieving a lipid cell factory lie in strain breeding and cost control due to the coenocytic mycelium, long fermentation period and insufficient conversion rate from carbon to lipid. We also proposed future research goals based on a multilevel regulating strategy: obtaining ideal chassis by directional evolution and high-throughput screening; rewiring central carbon metabolism and inhibiting competitive pathways by multi-gene manipulation system to enhance carbon to lipid conversion rate; optimisation of protein function based on post-translational modification; application of dynamic fermentation strategies suitable for different fermentation phases. By reviewing the comprehensive research progress of this oleaginous fungus, we aim to further comprehend the fungal lipid metabolism and provide reference information and guidelines for the exploration of microbial oils from the perspectives of fundamental research to industrial application.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, PR China; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
6
|
Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 2020; 79:101047. [DOI: 10.1016/j.plipres.2020.101047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
7
|
Kikukawa H, Sakuradani E, Ando A, Shimizu S, Ogawa J. Arachidonic acid production by the oleaginous fungus Mortierella alpina 1S-4: A review. J Adv Res 2018; 11:15-22. [PMID: 30034872 PMCID: PMC6052653 DOI: 10.1016/j.jare.2018.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 11/29/2022] Open
Abstract
The filamentous fungus Mortierella alpina 1S-4 is capable of accumulating a large amount of triacylglycerol containing C20 polyunsaturated fatty acids (PUFAs). Indeed, triacylglycerol production by M. alpina 1S-4 can reach 20 g/L of culture broth, and the critical cellular signaling and structural PUFA arachidonic acid (ARA) comprises 30%–70% of the total fatty acid. The demonstrated health benefits of functional PUFAs have in turn encouraged the search for rich sources of these compounds, including fungal strains showing enhanced production of specific PUFAs. Screening for mutants and targeted gene manipulation of M. alpina 1S-4 have elucidated the functions of various enzymes involved in PUFA biosynthesis and established lines with improved PUFA productivity. In some cases, these strains have been used for indistrial-scale production of PUFAs, including ARA. In this review, we described practical ARA production through mutant breeding, functional analyses of genes encoding enzymes involved in PUFA biosynthesis, and recent advances in the production of specific PUFAs through molecular breeding of M. alpina 1S-4.
Collapse
Affiliation(s)
- Hiroshi Kikukawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Eiji Sakuradani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute of Technology and Science, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506, Japan
| | - Akinori Ando
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sakayu Shimizu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto Gakuen University, 1-1 Nanjo, Sogabe, Kameoka 621-8555, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Corresponding author.
| |
Collapse
|
8
|
Sakamoto T, Sakuradani E, Okuda T, Kikukawa H, Ando A, Kishino S, Izumi Y, Bamba T, Shima J, Ogawa J. Metabolic engineering of oleaginous fungus Mortierella alpina for high production of oleic and linoleic acids. BIORESOURCE TECHNOLOGY 2017; 245:1610-1615. [PMID: 28673516 DOI: 10.1016/j.biortech.2017.06.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to study the molecular breeding of oleaginous filamentous Mortierella alpina for high production of linoleic (LA) or oleic acid (OA). Heterologous expression of the Δ12-desaturase (DS) gene derived from Coprinopsis cinerea in the Δ6DS activity-defective mutant of M. alpina increased the LA production rate as to total fatty acid to 5 times that in the wild strain. By suppressing the endogenous Δ6I gene expression by RNAi in the Δ12DS activity-defective mutant of M. alpina, the OA accumulation rate as to total fatty acid reached 68.0%. The production of LA and OA in these transformants reached 1.44 and 2.76g/L, respectively, on the 5th day. The Δ6I transcriptional levels of the RNAi-treated strains were suppressed to 1/10th that in the parent strain. The amount of Δ6II RNA in the Δ6I RNAi-treated strain increased to 8 times that in the wild strain.
Collapse
Affiliation(s)
- Takaiku Sakamoto
- Graduate School of Bioscience and Bioindustry, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Eiji Sakuradani
- Graduate School of Bioscience and Bioindustry, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan.
| | - Tomoyo Okuda
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kikukawa
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akinori Ando
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigenobu Kishino
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshihiro Izumi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jun Shima
- Faculty of Agriculture, Ryukoku University, 67 Tsukamoto-cho, Fukakusa Fushimi-ku, Kyoto 612-8577, Japan
| | - Jun Ogawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Arachidonic Acid Synthesis in Mortierella alpina: Origin, Evolution and Advancements. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40011-016-0714-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Papp T, Nyilasi I, Csernetics Á, Nagy G, Takó M, Vágvölgyi C. Improvement of Industrially Relevant Biological Activities in Mucoromycotina Fungi. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Hao G, Chen H, Yang B, Du K, Wang H, Gu Z, Zhang H, Chen W, Chen YQ. Substrate specificity ofMortierella alpinaΔ9-III fatty acid desaturase and its value for the production of omega-9 MUFA. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guangfei Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan University; Wuxi P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan University; Wuxi P. R. China
- Synergistic Innovation Center for Food Safety and Nutrition; Wuxi P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan University; Wuxi P. R. China
| | - Kai Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan University; Wuxi P. R. China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan University; Wuxi P. R. China
- Synergistic Innovation Center for Food Safety and Nutrition; Wuxi P. R. China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan University; Wuxi P. R. China
- Synergistic Innovation Center for Food Safety and Nutrition; Wuxi P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan University; Wuxi P. R. China
- Synergistic Innovation Center for Food Safety and Nutrition; Wuxi P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan University; Wuxi P. R. China
- Synergistic Innovation Center for Food Safety and Nutrition; Wuxi P. R. China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan University; Wuxi P. R. China
- Synergistic Innovation Center for Food Safety and Nutrition; Wuxi P. R. China
- Departments of Cancer Biology and Biochemistry; Wake Forest School of Medicine; Winston-Salem NC USA
| |
Collapse
|
12
|
Kikukawa H, Sakuradani E, Nishibaba Y, Okuda T, Ando A, Shima J, Shimizu S, Ogawa J. Production of cis-11-eicosenoic acid by Mortierella fungi. J Appl Microbiol 2015; 118:641-7. [PMID: 25495454 DOI: 10.1111/jam.12725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/06/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
AIM To find cis-11-eicosenoic acid (20:1ω9, EA)-producing micro-organisms. METHODS AND RESULTS We found EA-producing fungi by screening about 300 fungal strains and identified a major fatty acid accumulated in the Mortierella fungi as EA by means of GC-MS analysis. In particular, Mortierella chlamydospora CBS 529.75 produced a high amount of EA (36.3 mg g(-1) of dried cells) on cultivation at 28°C for 4 days and then at 12°C for 3 days. In the result of lipid analysis, most of the EA was a component of triacylglycerols, not phospholipids. CONCLUSION We found that M. chlamydospora CBS 529.75 was the best producer for the microbial production of EA. SIGNIFICANCE AND IMPACT OF THE STUDY EA is beneficial as a raw material for medical supplies and a moisturizing component of cosmetic creams. This is the first report of microbial production of EA.
Collapse
Affiliation(s)
- H Kikukawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ye C, Xu N, Chen H, Chen YQ, Chen W, Liu L. Reconstruction and analysis of a genome-scale metabolic model of the oleaginous fungus Mortierella alpina. BMC SYSTEMS BIOLOGY 2015; 9:1. [PMID: 25582171 PMCID: PMC4301621 DOI: 10.1186/s12918-014-0137-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/11/2014] [Indexed: 12/30/2022]
Abstract
Background Mortierella alpina is an oleaginous fungus used in the industrial scale production of arachidonic acid (ARA). In order to investigate the metabolic characteristics at a systems level and to explore potential strategies for enhanced lipid production, a genome-scale metabolic model of M. alpina was reconstructed. Results This model included 1106 genes, 1854 reactions and 1732 metabolites. On minimal growth medium, 86 genes were identified as essential, whereas 49 essential genes were identified on yeast extract medium. A series of sequential desaturase and elongase catalysed steps are involved in the synthesis of polyunsaturated fatty acids (PUFAs) from acetyl-CoA precursors, with concomitant NADPH consumption, and these steps were investigated in this study. Oxygen is known to affect the degree of unsaturation of PUFAs, and robustness analysis determined that an oxygen uptake rate of 2.0 mmol gDW−1 h−1 was optimal for ARA accumulation. The flux of 53 reactions involving NADPH was significantly altered at different ARA levels. Of these, malic enzyme (ME) was confirmed as a key component in ARA production and NADPH generation. When using minimization of metabolic adjustment, a knock-out of ME led to a 38.28% decrease in ARA production. Conclusions The simulation results confirmed the model as a useful tool for future research on the metabolism of PUFAs. Electronic supplementary material The online version of this article (doi:10.1186/s12918-014-0137-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Nan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergistic Innovation Center for Food Safety and Nutrition, School of Food Science and technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergistic Innovation Center for Food Safety and Nutrition, School of Food Science and technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergistic Innovation Center for Food Safety and Nutrition, School of Food Science and technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
14
|
Umemoto H, Sawada K, Kurata A, Hamaguchi S, Tsukahara S, Ishiguro T, Kishimoto N. Fermentative Production of Nervonic Acid by Mortierella capitata RD000969. J Oleo Sci 2014; 63:671-9. [DOI: 10.5650/jos.ess14029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Sakuradani E, Ando A, Shimizu S, Ogawa J. Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. J Biosci Bioeng 2013; 116:417-22. [DOI: 10.1016/j.jbiosc.2013.04.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
|
16
|
Jiao J, Zhang Y. Transgenic Biosynthesis of Polyunsaturated Fatty Acids: A Sustainable Biochemical Engineering Approach for Making Essential Fatty Acids in Plants and Animals. Chem Rev 2013; 113:3799-814. [DOI: 10.1021/cr300007p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jingjing Jiao
- Chronic Disease Research Institute,
Department of Nutrition and Food Hygiene, School of Public Health,
Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Department of Food Science and
Nutrition, School of Biosystems Engineering and Food Science, Zhejiang
University, Hangzhou 310058, China
| |
Collapse
|
17
|
Li R, Yu K, Wu Y, Tateno M, Hatanaka T, Hildebrand DF. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds. Metab Eng 2012; 14:29-38. [PMID: 22107928 DOI: 10.1016/j.ymben.2011.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 11/21/2022]
Abstract
Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds.
Collapse
Affiliation(s)
- Runzhi Li
- Department of Plant and Soil Science, University of Kentucky, KY 40546-0312, USA
| | | | | | | | | | | |
Collapse
|
18
|
Nishimura H, Murayama K, Watanabe T, Honda Y, Watanabe T. Diverse rare lipid-related metabolites including ω-7 and ω-9 alkenylitaconic acids (ceriporic acids) secreted by a selective white rot fungus, Ceriporiopsis subvermispora. Chem Phys Lipids 2012; 165:97-104. [DOI: 10.1016/j.chemphyslip.2011.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
19
|
The evolution of fatty acid desaturases and cytochrome b5 in eukaryotes. J Membr Biol 2010; 233:63-72. [PMID: 20146059 DOI: 10.1007/s00232-010-9225-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
Desaturases that introduce double bonds into the fatty acids are involved in the adaptation of membrane fluidity to changes in the environment. Besides, polyunsaturated fatty acids (PUFAs) are increasingly recognized as important pharmaceutical and nutraceutical compounds. To successfully engineer organisms with increased stress tolerance or the ability to synthesize valuable PUFAs, detailed knowledge about the complexity of the desaturase family as well as understanding of the coevolution of desaturases and their cytochrome b5 electron donors is needed. We have constructed phylogenies of several hundred desaturase sequences from animals, plants, fungi and bacteria and of the cytochrome b5 domains that are fused to some of these enzymes. The analysis demonstrates the existence of three major desaturase acyl-CoA groups that share few similarities. Our results indicate that the fusion of Delta(6)-desaturase-like enzymes with their cytochrome b5 electron donor was a single event that took place in the common ancestor of all eukaryotes. We also propose the Delta(6)-desaturase-like enzymes as the most probable donor of the cytochrome b5 domain found in fungal Delta(9)-desaturases and argue that the recombination most likely happened soon after the separation of the animal and fungal ancestors. These findings answer some of the previously unresolved questions and contribute to the quickly expanding field of research on desaturases.
Collapse
|
20
|
Sakuradani E, Abe T, Matsumura K, Tomi A, Shimizu S. Identification of mutation sites on Delta12 desaturase genes from Mortierella alpina 1S-4 mutants. J Biosci Bioeng 2009; 107:99-101. [PMID: 19217543 DOI: 10.1016/j.jbiosc.2008.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/22/2008] [Accepted: 10/02/2008] [Indexed: 11/26/2022]
Abstract
The mutation sites on the Delta12 desaturase gene in Mortierella alpina Delta12 desaturase-defective mutants SR88, TM912, and Mut48 accumulating Mead acid were identified. Each mutation resulted in an amino acid replacement (H116Y and P166L) in the Delta12 desaturase gene from SR88 and Mut48, respectively.
Collapse
Affiliation(s)
- Eiji Sakuradani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
21
|
Sakuradani E, Ando A, Ogawa J, Shimizu S. Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotechnol 2009; 84:1-10. [DOI: 10.1007/s00253-009-2076-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/03/2009] [Accepted: 06/03/2009] [Indexed: 11/30/2022]
|
22
|
Sakuradani E, Abe T, Shimizu S. Identification of mutation sites on omega3 desaturase genes from Mortierella alpina 1S-4 mutants. J Biosci Bioeng 2009; 107:7-9. [PMID: 19147101 DOI: 10.1016/j.jbiosc.2008.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 08/26/2008] [Indexed: 11/25/2022]
Abstract
The mutation sites on omega3 desaturase genes in two omega3 desaturase-defective mutants derived from arachidonic acid-producing Mortierella alpina 1S-4 were identified. The mutations each resulted in an amino acid replacement (W232Stop or W386Stop) which caused a lack of omega3 desaturase activity in these mutants.
Collapse
Affiliation(s)
- Eiji Sakuradani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
23
|
Functional analysis of a fatty acid elongase from arachidonic acid-producing Mortierella alpina 1S-4. Appl Microbiol Biotechnol 2008; 81:497-503. [DOI: 10.1007/s00253-008-1675-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 08/21/2008] [Accepted: 08/21/2008] [Indexed: 11/26/2022]
|
24
|
Filamentous fungi for production of food additives and processing aids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [PMID: 18253709 DOI: 10.1007/10_2007_094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Filamentous fungi are metabolically versatile organisms with a very wide distribution in nature. They exist in association with other species, e.g. as lichens or mycorrhiza, as pathogens of animals and plants or as free-living species. Many are regarded as nature's primary degraders because they secrete a wide variety of hydrolytic enzymes that degrade waste organic materials. Many species produce secondary metabolites such as polyketides or peptides and an increasing range of fungal species is exploited commercially as sources of enzymes and metabolites for food or pharmaceutical applications. The recent availability of fungal genome sequences has provided a major opportunity to explore and further exploit fungi as sources of enzymes and metabolites. In this review chapter we focus on the use of fungi in the production of food additives but take a largely pre-genomic, albeit a mainly molecular, view of the topic.
Collapse
|
25
|
Lounds C, Eagles J, Carter AT, MacKenzie DA, Archer DB. Spore germination in Mortierella alpina is associated with a transient depletion of arachidonic acid and induction of fatty acid desaturase gene expression. Arch Microbiol 2007; 188:299-305. [PMID: 17492269 DOI: 10.1007/s00203-007-0248-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/19/2007] [Accepted: 04/10/2007] [Indexed: 11/30/2022]
Abstract
Mortierella alpina is an oleaginous filamentous fungus whose vegetative mycelium is known to accumulate triglyceride oil containing large amounts of arachidonic acid (ARA 20:4, n - 6). We report that the spores of Mortierella alpina also contain a large proportion of ARA, comprising 50% of total fatty acid. Fatty acid desaturase genes were not expressed in dormant spores but were induced during germination, following a significant drop in the level of ARA (down from 50% of total fatty acid to 12%) prior to germ-tube emergence. We propose that ARA serves as a reserve supply of carbon and energy that is utilised during the early stages of spore germination in Mortierella alpina.
Collapse
Affiliation(s)
- C Lounds
- School of Biology, University of Nottingham, University Park, Nottingham, UK
| | | | | | | | | |
Collapse
|