1
|
Zhang H, Shao F, Cong J, Huang Y, Chen M, He W, Zhang T, Liu L, Yao M, Gwabin H, Lin Y. Modification of the second PEP4-allele enhances citric acid stress tolerance during cultivation of an industrial rice wine yeast strain with one PEP4-allele disrupted. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Redesigning of Microbial Cell Surface and Its Application to Whole-Cell Biocatalysis and Biosensors. Appl Biochem Biotechnol 2017; 185:396-418. [PMID: 29168153 DOI: 10.1007/s12010-017-2662-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Microbial cell surface display technology can redesign cell surfaces with functional proteins and peptides to endow cells some unique features. Foreign peptides or proteins are transported out of cells and immobilized on cell surface by fusing with anchoring proteins, which is an effective solution to avoid substance transfer limitation, enzyme purification, and enzyme instability. As the most frequently used prokaryotic and eukaryotic protein surface display system, bacterial and yeast surface display systems have been widely applied in vaccine, biocatalysis, biosensor, bioadsorption, and polypeptide library screening. In this review of bacterial and yeast surface display systems, different cell surface display mechanisms and their applications in biocatalysis as well as biosensors are described with their strengths and shortcomings. In addition to single enzyme display systems, multi-enzyme co-display systems are presented here. Finally, future developments based on our and other previous reports are discussed.
Collapse
|
3
|
Decreased proteinase A excretion by strengthening its vacuolar sorting and weakening its constitutive secretion in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2017; 44:149-159. [DOI: 10.1007/s10295-016-1868-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022]
Abstract
Abstract
Proteinase A (PrA), encoded by PEP4 gene, is detrimental to beer foam stability. There are two transport pathways for the new synthesized PrA in yeast, sorting to the vacuole normally, or excreting out of the cells under stress conditions. They were designated as the Golgi-to-vacuole pathway and the constitutive secretory pathway, respectively. To reduce PrA excretion in some new way instead of its coding gene deletion, which had a negative effect on cell metabolism and beer fermentation, we modified the PrA transport based on these above two pathways. In the Golgi-to-vacuole pathway, after the verification that Vps10p is the dominant sorting receptor for PrA Golgi-to-vacuolar transportation by VPS10 deletion, VPS10 was then overexpressed. Furthermore, SEC5, encoding exocyst complexes’ central subunit (Sec5p) in the constitutive secretory pathway, was deleted. The results show that PrA activity in the broth fermented with WGV10 (VPS10 overexpressing strain) and W∆SEC5 (SEC5 deletion strain) was lowered by 76.96 and 32.39%, compared with the parental strain W303-1A, at the end of main fermentation. There are negligible changes in fermentation performance between W∆SEC5 and W303-1A, whereas, surprisingly, WGV10 had a significantly improved fermentation performance compared with W303-1A. WGV10 has an increased growth rate, resulting in higher biomass and faster fermentation speed; finally, wort fermentation is performed thoroughly. The results show that the biomass production of WGV10 is always higher than that of W∆SEC5 and W303-1A at all stages of fermentation, and that ethanol production of WGV10 is 1.41-fold higher than that of W303-1A. Obviously, VPS10 overexpression is beneficial for yeast and is a more promising method for reduction of PrA excretion.
Collapse
|
4
|
Purification of Inactive Precursor of Carboxypeptidase Y Using Selective Cleavage Method Coupled with Molecular Display. Biosci Biotechnol Biochem 2014; 73:753-5. [DOI: 10.1271/bbb.80678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 2012; 95:577-91. [DOI: 10.1007/s00253-012-4175-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
6
|
Nagayama M, Maeda H, Kuroda K, Ueda M. Mutated Intramolecular Chaperones Generate High-Activity Isomers of Mature Enzymes. Biochemistry 2012; 51:3547-53. [DOI: 10.1021/bi3001159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitsuru Nagayama
- Division
of Applied Life Sciences, Graduate School
of Agriculture, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Haruko Maeda
- Division
of Applied Life Sciences, Graduate School
of Agriculture, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Kouichi Kuroda
- Division
of Applied Life Sciences, Graduate School
of Agriculture, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Mitsuyoshi Ueda
- Division
of Applied Life Sciences, Graduate School
of Agriculture, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Development of a glutathione production process from proteinaceous biomass resources using protease-displaying Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2011; 93:1495-502. [PMID: 22075633 DOI: 10.1007/s00253-011-3665-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 10/02/2011] [Accepted: 10/23/2011] [Indexed: 12/30/2022]
Abstract
Glutathione is a valuable tri-peptide that is widely used in the pharmaceutical, food, and cosmetic industries. Glutathione is produced industrially by fermentation using Saccharomyces cerevisiae, and supplementation of fermentation with several amino acids can increase intracellular GSH content. More recently, however, focus has been given to protein as a resource for biofuel and fine chemical production. We demonstrate that expression of a protease on the cell surface of S. cerevisiae enables the direct use of keratin and soy protein as a source of amino acids and that these substrates enhanced intracellular GSH content. Furthermore, fermentation using soy protein also enhanced cell concentration. GSH fermentation from keratin and to a greater extent from soy protein using protease-displaying yeast yielded greater GSH productivity compared to GSH fermentation with amino acid supplementation. This protease-displaying yeast is potentially applicable to a variety of processes for the bio-production of value-added chemicals from proteinaceous biomass resources.
Collapse
|
8
|
Su GD, Huang DF, Han SY, Zheng SP, Lin Y. Display of Candida antarctica lipase B on Pichia pastoris and its application to flavor ester synthesis. Appl Microbiol Biotechnol 2009; 86:1493-501. [PMID: 20033404 DOI: 10.1007/s00253-009-2382-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 11/25/2022]
Abstract
Two alternative cell-surface display systems were developed in Pichia pastoris using the alpha-agglutinin and Flo1p (FS) anchor systems, respectively. Both the anchor cell wall proteins were obtained originally from Saccharomyces cerevisiae. Candida antarctica lipase B (CALB) was displayed functionally on the cell surface of P. pastoris using the anchor proteins alpha-agglutinin and FS. The activity of CALB displayed on P. pastoris was tenfold higher than that of S. cerevisiae. The hydrolytic and synthetic activities of CALB fused with alpha-agglutinin and FS anchored on P. pastoris were investigated. The hydrolytic activities of both lipases displayed on yeast cells surface were more than 200 U/g dry cell after 120 h of culture (200 and 270 U/g dry cell, respectively). However, the synthetic activity of CALB fused with alpha-agglutinin on P. pastoris was threefold higher than that of the FS fusion protein when applied to the synthesis of ethyl caproate. Similarly, the CALB displayed on P. pastoris using alpha-agglutinin had a higher catalytic efficiency with respect to the synthesis of other short-chain flavor esters than that displayed using the FS anchor. Interestingly, for some short-chain esters, the synthetic activity of displaying CALB fused with alpha-agglutinin on P. pastoris was even higher than that of the commercial CALB Novozyme 435.
Collapse
Affiliation(s)
- Guo-Dong Su
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | | | | | | | | |
Collapse
|
9
|
Creation of a novel peptide endowing yeasts with acid tolerance using yeast cell-surface engineering. Appl Microbiol Biotechnol 2009; 82:105-13. [DOI: 10.1007/s00253-008-1761-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 10/15/2008] [Accepted: 10/18/2008] [Indexed: 11/26/2022]
|
10
|
Zhang W, Han S, Wei D, Lin Y, Wang X. Functional display of Rhizomucor miehei lipase on surface of Saccharomyces cerevisiae with higher activity and its practical properties. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2008; 83:329-335. [DOI: 10.1002/jctb.1814] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 09/22/2007] [Indexed: 10/31/2023]
Abstract
AbstractBACKGROUND: A display system, which can translate DNA to functional peptides or proteins, is used as a new protein expression system. In this system, peptides or proteins are displayed on the cell surface as a fusion form with some anchoring proteins. Yeast cells displaying lipases on their cell‐surface could be used as whole‐cell biocatalysts. This research focuses on the functional display of Rhizomucor miehei lipase (RML) on the surface of Saccharomyces cerevisiae with higher activity.RESULTS: The lipases (RML) from R.miehei 3.4960 were of active form. The RML‐α‐agglutinin fusion proteins produced were not secreted into the culture media and were mostly immobilized on the yeast cells. Cell surface displayed lipase showed the highest activity at 45 °C and pH 8.0.CONCLUSION: The gene encoding RML from R.miehei 3.4960 can be functionally expressed on the cell surface of S. cerevisiae MT8‐1 using a glycosylphosphatidylinositol (GPI) anchor with higher activity. Copyright © 2007 Society of Chemical Industry
Collapse
|
11
|
A novel immunodetection screen for vacuolar defects identifies a unique allele of VPS35 in S. cerevisiae. Mol Cell Biochem 2008; 311:121-36. [PMID: 18224426 DOI: 10.1007/s11010-008-9703-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 01/10/2008] [Indexed: 12/11/2022]
Abstract
The late endosome and vacuole of yeast Saccharomyces cerevisiae are functionally equivalent to the mammalian late endosome and lysosome. The late endosome is the convergence point of the biosynthetic and endocytic trafficking to the vacuole. Here, we describe a novel immunodetection screen to isolate mutants defective in trafficking the soluble hydrolase carboxypeptidase Y (CPY) at the late endosome to vacuole interface (env mutants). Mutants exhibit vacuolar morphology and endocytosis defects as assayed by electron, fluorescent, and nomarski microscopy. In biochemical assays, they internally accumulate p2CPY in a dense membrane compartment lacking vacuolar properties yet display normal secretion phenotypes. The results suggest vacuolar morphology and function defects that are exclusively at the late endosome/vacuole interface. env mutants define five complementation groups. The first gene of the collection to be cloned, ENV1 is allelic to VPS35 whose established function is in retrograde trafficking from late endosome to trans-Golgi network (TGN). Microscopic, biochemical, and growth analyses establish that env1 is distinct from other alleles of VPS35 in vacuolar morphology, growth characteristics, and internal accumulation of p2CPY. Our results indicate that ENV genes may define new gene functions at the late endosome to vacuole interface.
Collapse
|
12
|
Okochi N, Kato-Murai M, Kadonosono T, Ueda M. Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface. Appl Microbiol Biotechnol 2007; 77:597-603. [PMID: 17899065 DOI: 10.1007/s00253-007-1197-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/26/2022]
Abstract
Lc-WT, the wild-type light chain of antibody, and Lc-Triad, its double mutant with E1D and T27aS designing for the construction of catalytic triad within Asp1, Ser27a, and original His93 residues, were displayed on the cell surface of the protease-deficient yeast strain BJ2168. When each cell suspension was reacted with BODIPY FL casein and seven kinds of peptide-MCA substrates, respectively, a remarkable difference in hydrolytic activities toward Suc-GPLGP-MCA (succinyl-Gly-Pro-Leu-Gly-Pro-MCA), a substrate toward collagenase-like peptidase, was observed between the constructs: Lc-Triad-displaying cells showed higher catalytic activity than Lc-WT-displaying cells. The difference disappeared in the presence of the serine protease inhibitor diisopropylfluorophosphate, suggesting that the three amino acid residues, Ser27a, His93, and Asp1, functioned as a catalytic triad responsible for the proteolytic activity in a similar way to the anti-vasoactive intestinal peptide (VIP) antibody light chain. A serine protease-like catalytic triad (Ser, His, and Asp) is considered to be directly involved in the catalytic mechanism of the anti-VIP antibody light chain, which moderately catalyzes the hydrolysis of VIP. These results suggest the possibility of new approach for the creation of tailor-made proteases beyond limitations of the traditional immunization approach.
Collapse
Affiliation(s)
- Norihiko Okochi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | |
Collapse
|
13
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Kato M, Fuchimoto J, Tanino T, Kondo A, Fukuda H, Ueda M. Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties. Appl Microbiol Biotechnol 2007; 75:549-55. [PMID: 17262207 DOI: 10.1007/s00253-006-0835-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 12/25/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
To prepare a whole-cell biocatalyst of a stable lipase at a low price, mutated Candida antarctica lipase B (mCALB) constructed on the basis of the primary sequences of CALBs from C. antarctica CBS 6678 strain and from C. antarctica LF 058 strain was displayed on a yeast cell surface by alpha-agglutinin as the anchor protein for easy handling and stability of the enzyme. When mCALB was displayed on the yeast cell surface, it showed a preference for short chain fatty acids, an advantage for producing flavors; although when Rhizopus oryzae lipase (ROL) was displayed, the substrate specificity was for middle chain lengths. When the thermal stability of mCALB on the cell surface was compared with that of ROL on a cell surface, T (1/2), the temperature required to give a residual activity of 50% for heat treatment of 30 min, was 60 degrees C for mCALB and 44 degrees C for ROL indicating that mCALB displayed on cell surface has a higher thermal stability. Furthermore, the activity of the displayed mCALB against p-nitrophenyl butyrate was 25-fold higher than that of soluble CALB, as reported previously. These findings suggest that mCALB-displaying yeast is more practical for industrial use as the whole-cell biocatalyst.
Collapse
Affiliation(s)
- Michiko Kato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | | | | | | | | | | |
Collapse
|