1
|
Steinke S, Roth KDR, Englick R, Langreder N, Ballmann R, Fühner V, Zilkens KJK, Moreira GMSG, Koch A, Azzali F, Russo G, Schubert M, Bertoglio F, Heine PA, Hust M. Mapping Epitopes by Phage Display. Methods Mol Biol 2023; 2702:563-585. [PMID: 37679639 DOI: 10.1007/978-1-0716-3381-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Monoclonal antibodies (mAbs) are valuable biological molecules, serving for many applications. Therefore, it is advantageous to know the interaction pattern between antibodies and their antigens. Regions on the antigen which are recognized by the antibodies are called epitopes, and the respective molecular counterpart of the epitope on the mAbs is called paratope. These epitopes can have many different compositions and/or structures. Knowing the epitope is a valuable information for the development or improvement of biological products, e.g., diagnostic assays, therapeutic mAbs, and vaccines, as well as for the elucidation of immune responses. Most of the techniques for epitope mapping rely on the presentation of the target, or parts of it, in a way that it can interact with a certain mAb. Among the techniques used for epitope mapping, phage display is a versatile technology that allows the display of a library of oligopeptides or fragments from a single gene product on the phage surface, which then can interact with several antibodies to define epitopes. In this chapter, a protocol for the construction of a single-target oligopeptide phage library, as well as for the panning procedure for epitope mapping using phage display is given.
Collapse
Affiliation(s)
- Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ruben Englick
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Gustavo Marçal Schmidt Garcia Moreira
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Sector for Antibody and Protein Biochemistry, Tacalyx GmbH, Berlin, Germany
| | - Allan Koch
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Innovationszentrum Niedersachsen GmbH, startup.niedersachsen, Hannover, Germany
| | - Filippo Azzali
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
2
|
Heine PA, Ballmann R, Thevarajah P, Russo G, Moreira GMSG, Hust M. Biomarker Discovery by ORFeome Phage Display. Methods Mol Biol 2023; 2702:543-561. [PMID: 37679638 DOI: 10.1007/978-1-0716-3381-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Phage display is an efficient and robust method for protein-protein interaction studies. Although it is mostly used for antibody generation, it can be also utilized for the discovery of immunogenic proteins that could be used as biomarkers. Through this technique, a genome or metagenome is fragmented and cloned into a phagemid vector. The resulting protein fragments from this genetic material are displayed on M13 phage surface, while the corresponding gene fragments are packaged. This packaging process uses the pIII deficient helperphage, called Hyperphage (M13KO7 ΔpIII), so open reading frames (ORFs) are enriched in these libraries, giving the name to this method: ORFeome phage display. After conducting a selection procedure, called "bio-panning," relevant immunogenic peptides or protein fragments are selected using purified antibodies or serum samples, and can be used as potential biomarkers. As ORFeome phage display is an in vitro method, only the DNA or cDNA of the species of interest is needed. Therefore, this approach is also suitable for organisms that are hard to cultivate, or metagenomic samples, for example. An additional advantage is that the biomarker discovery is not limited to surface proteins due to the presentation of virtually every kind of peptide or protein fragment encoded by the ORFeome on the phage surface. At last, the selected biomarkers can be the start for the development of diagnostic assays, vaccines, or protein interaction studies.
Collapse
Affiliation(s)
- Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Praveen Thevarajah
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Gustavo Marçal Schmidt Garcia Moreira
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Tacalyx GmbH, Sector for Antibody and Protein Biochemistry, Berlin, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
3
|
Ballmann R, Hotop SK, Bertoglio F, Steinke S, Heine PA, Chaudhry MZ, Jahn D, Pucker B, Baldanti F, Piralla A, Schubert M, Čičin-Šain L, Brönstrup M, Hust M, Dübel S. ORFeome Phage Display Reveals a Major Immunogenic Epitope on the S2 Subdomain of SARS-CoV-2 Spike Protein. Viruses 2022; 14:1326. [PMID: 35746797 PMCID: PMC9229677 DOI: 10.3390/v14061326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
The development of antibody therapies against SARS-CoV-2 remains a challenging task during the ongoing COVID-19 pandemic. All approved therapeutic antibodies are directed against the receptor binding domain (RBD) of the spike, and therefore lose neutralization efficacy against emerging SARS-CoV-2 variants, which frequently mutate in the RBD region. Previously, phage display has been used to identify epitopes of antibody responses against several diseases. Such epitopes have been applied to design vaccines or neutralize antibodies. Here, we constructed an ORFeome phage display library for the SARS-CoV-2 genome. Open reading frames (ORFs) representing the SARS-CoV-2 genome were displayed on the surface of phage particles in order to identify enriched immunogenic epitopes from COVID-19 patients. Library quality was assessed by both NGS and epitope mapping of a monoclonal antibody with a known binding site. The most prominent epitope captured represented parts of the fusion peptide (FP) of the spike. It is associated with the cell entry mechanism of SARS-CoV-2 into the host cell; the serine protease TMPRSS2 cleaves the spike within this sequence. Blocking this mechanism could be a potential target for non-RBD binding therapeutic anti-SARS-CoV-2 antibodies. As mutations within the FP amino acid sequence have been rather rare among SARS-CoV-2 variants so far, this may provide an advantage in the fight against future virus variants.
Collapse
Affiliation(s)
- Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Sven-Kevin Hotop
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.Z.C.); (L.Č.-Š.); (M.B.)
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - M. Zeeshan Chaudhry
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.Z.C.); (L.Č.-Š.); (M.B.)
| | - Dieter Jahn
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany;
| | - Boas Pucker
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstr 1, 38106 Braunschweig, Germany;
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Fondazione Policlinico, 27100 Pavia, Italy;
| | - Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Fondazione Policlinico, 27100 Pavia, Italy;
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Luka Čičin-Šain
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.Z.C.); (L.Č.-Š.); (M.B.)
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.Z.C.); (L.Č.-Š.); (M.B.)
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| |
Collapse
|
4
|
Verma V, Joshi G, Gupta A, Chaudhary VK. An efficient ORF selection system for DNA fragment libraries based on split beta-lactamase complementation. PLoS One 2020; 15:e0235853. [PMID: 32701967 PMCID: PMC7377443 DOI: 10.1371/journal.pone.0235853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
PCR-based amplification of annotated genes has allowed construction of expression clones at genome-scale using classical and recombination-based cloning technologies. However, genome-scale expression and purification of proteins for down-stream applications is often limited by challenges such as poor expression, low solubility, large size of multi-domain proteins, etc. Alternatively, DNA fragment libraries in expression vectors can serve as the source of protein fragments with each fragment encompassing a function of its whole protein counterpart. However, the random DNA fragmentation and cloning result in only 1 out of 18 clones being in the correct open-reading frame (ORF), thus, reducing the overall efficiency of the system. This necessitates the selection of correct ORF before expressing the protein fragments. This paper describes a highly efficient ORF selection system for DNA fragment libraries, which is based on split beta-lactamase protein fragment complementation. The system has been designed to allow seamless transfer of selected DNA fragment libraries into any downstream vector systems using a restriction enzyme-free cloning strategy. The strategy has been applied for the selection of ORF using model constructs to show near 100% selection of the clone encoding correct ORF. The system has been further validated by construction of an ORF-selected DNA fragment library of 30 genes of M. tuberculosis. Further, we have successfully demonstrated the cytosolic expression of ORF-selected protein fragments in E. coli.
Collapse
Affiliation(s)
- Vaishali Verma
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - Gopal Joshi
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - Amita Gupta
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Vijay K. Chaudhary
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
5
|
Wenzel EV, Bosnak M, Tierney R, Schubert M, Brown J, Dübel S, Efstratiou A, Sesardic D, Stickings P, Hust M. Human antibodies neutralizing diphtheria toxin in vitro and in vivo. Sci Rep 2020; 10:571. [PMID: 31953428 PMCID: PMC6969050 DOI: 10.1038/s41598-019-57103-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
Diphtheria is an infectious disease caused by Corynebacterium diphtheriae. The bacterium primarily infects the throat and upper airways and the produced diphtheria toxin (DT), which binds to the elongation factor 2 and blocks protein synthesis, can spread through the bloodstream and affect organs, such as the heart and kidneys. For more than 125 years, the therapy against diphtheria has been based on polyclonal horse sera directed against DT (diphtheria antitoxin; DAT). Animal sera have many disadvantages including serum sickness, batch-to-batch variation in quality and the use of animals for production. In this work, 400 human recombinant antibodies were generated against DT from two different phage display panning strategies using a human immune library. A panning in microtiter plates resulted in 22 unique in vitro neutralizing antibodies and a panning in solution combined with a functional neutralization screening resulted in 268 in vitro neutralizing antibodies. 61 unique antibodies were further characterized as scFv-Fc with 35 produced as fully human IgG1. The best in vitro neutralizing antibody showed an estimated relative potency of 454 IU/mg and minimal effective dose 50% (MED50%) of 3.0 pM at a constant amount of DT (4x minimal cytopathic dose) in the IgG format. The targeted domains of the 35 antibodies were analyzed by immunoblot and by epitope mapping using phage display. All three DT domains (enzymatic domain, translocation domain and receptor binding domain) are targets for neutralizing antibodies. When toxin neutralization assays were performed at higher toxin dose levels, the neutralizing capacity of individual antibodies was markedly reduced but this was largely compensated for by using two or more antibodies in combination, resulting in a potency of 79.4 IU/mg in the in vivo intradermal challenge assay. These recombinant antibody combinations are candidates for further clinical and regulatory development to replace equine DAT.
Collapse
Affiliation(s)
- Esther Veronika Wenzel
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Braunschweig, Germany
| | - Margarita Bosnak
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Braunschweig, Germany
| | - Robert Tierney
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Maren Schubert
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Braunschweig, Germany
| | - Jeffrey Brown
- PETA International Science Consortium Ltd, London, United Kingdom
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Braunschweig, Germany
| | - Androulla Efstratiou
- WHO Collaborating Centre for Diphtheria and Streptococcal Infections, London, UK
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Paul Stickings
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Michael Hust
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Braunschweig, Germany.
| |
Collapse
|
6
|
Ramli SR, Moreira GMSG, Zantow J, Goris MGA, Nguyen VK, Novoselova N, Pessler F, Hust M. Discovery of Leptospira spp. seroreactive peptides using ORFeome phage display. PLoS Negl Trop Dis 2019; 13:e0007131. [PMID: 30677033 PMCID: PMC6363232 DOI: 10.1371/journal.pntd.0007131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/05/2019] [Accepted: 01/05/2019] [Indexed: 12/12/2022] Open
Abstract
Background Leptospirosis is the most common zoonotic disease worldwide. The diagnostic performance of a serological test for human leptospirosis is mainly influenced by the antigen used in the test assay. An ideal serological test should cover all serovars of pathogenic leptospires with high sensitivity and specificity and use reagents that are relatively inexpensive to produce and can be used in tropical climates. Peptide-based tests fulfil at least the latter two requirements, and ORFeome phage display has been successfully used to identify immunogenic peptides from other pathogens. Methodology/Principal findings Two ORFeome phage display libraries of the entire Leptospira spp. genomes from five local strains isolated in Malaysia and seven WHO reference strains were constructed. Subsequently, 18 unique Leptospira peptides were identified in a screen using a pool of sera from patients with acute leptospirosis. Five of these were validated by titration ELISA using different pools of patient or control sera. The diagnostic performance of these five peptides was then assessed against 16 individual sera from patients with acute leptospirosis and 16 healthy donors and was compared to that of two recombinant reference proteins from L. interrogans. This analysis revealed two peptides (SIR16-D1 and SIR16-H1) from the local isolates with good accuracy for the detection of acute leptospirosis (area under the ROC curve: 0.86 and 0.78, respectively; sensitivity: 0.88 and 0.94; specificity: 0.81 and 0.69), which was close to that of the reference proteins LipL32 and Loa22 (area under the ROC curve: 0.91 and 0.80; sensitivity: 0.94 and 0.81; specificity: 0.75 and 0.75). Conclusions/Significance This analysis lends further support for using ORFeome phage display to identify pathogen-associated immunogenic peptides, and it suggests that this technique holds promise for the development of peptide-based diagnostics for leptospirosis and, possibly, of vaccines against this pathogen. Leptospirosis is an infectious disease that is transmitted from animals to humans. It is associated with a broad range of clinical presentations, and diagnostic tests with high diagnostic accuracy are required in order to enable accurate diagnosis. Leptospirosis is diagnosed by detecting DNA of the pathogen or antibodies against it in patients’ blood; the latter are preferred in resource limited regions, and diagnostics based on peptides (small fragments of proteins) are advantageous because they are inexpensive to produce and more stable in hot climates than full-length proteins. We used a technique called open reading frame phage display to identify peptides from Leptospira spp. that could be used to detect antibodies against them in human blood. In this method, the pathogen’s genome is fragmented, the corresponding peptides displayed on the surfaces of phages (viruses that infect bacteria), and the peptides that bind most strongly to the patients’ antibodies are then selected by screening. Using this method, we identified 2 leptospiral peptides that accurately identified antibodies against Leptospira spp. in sera from patients with leptospirosis. These results are encouraging because they demonstrate that ORFeome phage display may be a powerful tool to develop better diagnostics for leptospirosis for use in less developed areas.
Collapse
Affiliation(s)
- Siti Roszilawati Ramli
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology, Braunschweig, Germany
- Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Gustavo M. S. G. Moreira
- Institute for Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology, Braunschweig, Germany
| | - Jonas Zantow
- Institute for Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology, Braunschweig, Germany
| | - Marga G. A. Goris
- OIE and National Collaborating Centre for Reference and Research on Leptospirosis Academic Medical Center, Department of Medical Microbiology, University of Amsterdam, Amsterdam, the Netherlands
| | - Van Kinh Nguyen
- Research Group Biomarkers for Infectious Diseases, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Natalia Novoselova
- Research Group Biomarkers for Infectious Diseases, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Research Group Biomarkers for Infectious Diseases, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany
- * E-mail: (FP); (MH)
| | - Michael Hust
- Institute for Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology, Braunschweig, Germany
- * E-mail: (FP); (MH)
| |
Collapse
|
7
|
Fühner V, Heine PA, Helmsing S, Goy S, Heidepriem J, Loeffler FF, Dübel S, Gerhard R, Hust M. Development of Neutralizing and Non-neutralizing Antibodies Targeting Known and Novel Epitopes of TcdB of Clostridioides difficile. Front Microbiol 2018; 9:2908. [PMID: 30574127 PMCID: PMC6291526 DOI: 10.3389/fmicb.2018.02908] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is the causative bacterium in 15-20% of all antibiotic associated diarrheas. The symptoms associated with C. difficile infection (CDI) are primarily induced by the two large exotoxins TcdA and TcdB. Both toxins enter target cells by receptor-mediated endocytosis. Although different toxin receptors have been identified, it is no valid therapeutic option to prevent receptor endocytosis. Therapeutics, such as neutralizing antibodies, directly targeting both toxins are in development. Interestingly, only the anti-TcdB antibody bezlotoxumab but not the anti-TcdA antibody actoxumab prevented recurrence of CDI in clinical trials. In this work, 31 human antibody fragments against TcdB were selected by antibody phage display from the human naive antibody gene libraries HAL9/10. These antibody fragments were further characterized by in vitro neutralization assays. The epitopes of the neutralizing and non-neutralizing antibody fragments were analyzed by domain mapping, TcdB fragment phage display, and peptide arrays, to identify neutralizing and non-neutralizing epitopes. A new neutralizing epitope within the glucosyltransferase domain of TcdB was identified, providing new insights into the relevance of different toxin regions in respect of neutralization and toxicity.
Collapse
Affiliation(s)
- Viola Fühner
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Saskia Helmsing
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sebastian Goy
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Jasmin Heidepriem
- Department Synthetic Array Technologies, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Felix F. Loeffler
- Department Synthetic Array Technologies, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Stefan Dübel
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ralf Gerhard
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Michael Hust
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
8
|
Deng X, Zhu Y, Dai P, Yu M, Chen L, Zhu C, You X, Li L, Zeng Y. Three polypeptides screened from phage display random peptide library may be the receptor polypeptide of Mycoplasma genitalium adhesion protein. Microb Pathog 2018; 120:140-146. [DOI: 10.1016/j.micpath.2018.04.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/17/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
|
9
|
Abstract
ORFeome phage display allows the efficient functional screening of entire proteomes or even metaproteomes to identify immunogenic proteins. For this purpose, randomly fragmented, whole genomes or metagenomes are cloned into a phage-display vector allowing positive selection for open reading frames (ORF) to improve the library quality. These libraries display all possible proteins encoded by a pathogen or a microbiome on the phage surface. Consequently, immunogenic proteins can be selected from these libraries using disease-related immunoglobulins from patient serum. ORFeome phage display in particular allows the identification of immunogenic proteins that are only expressed in the host-pathogen interaction but not in cultivation, as well as the detection of very low expressed and very small immunogens and immunogenic proteins of non-cultivable organisms. The identified immunogenic proteins are potential biomarkers for the development of diagnostic assays or vaccines. These articles will give an introduction to ORFeome phage-display technology and give detailed protocols to identify immunogenic proteins by phage display.
Collapse
Affiliation(s)
- Jonas Zantow
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
10
|
Zantow J, Just S, Lagkouvardos I, Kisling S, Dübel S, Lepage P, Clavel T, Hust M. Mining gut microbiome oligopeptides by functional metaproteome display. Sci Rep 2016; 6:34337. [PMID: 27703179 PMCID: PMC5050496 DOI: 10.1038/srep34337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022] Open
Abstract
Pathogen infections, autoimmune diseases, and chronic inflammatory disorders are associated with systemic antibody responses from the host immune system. Disease-specific antibodies can be important serum biomarkers, but the identification of antigens associated with specific immune reactions is challenging, in particular if complex communities of microorganisms are involved in the disease progression. Despite promising new diagnostic opportunities, the discovery of these serological markers becomes more difficult with increasing complexity of microbial communities. In the present work, we used a metagenomic M13 phage display approach to select immunogenic oligopeptides from the gut microbiome of transgenic mice suffering from chronic ileitis. We constructed three individual metaproteome phage display libraries with a library size of approximately 107 clones each. Using serum antibodies, we selected and validated three oligopeptides that induced specific antibody responses in the mouse model. This proof-of-concept study provides the first successful application of functional metaproteome display for the study of protein-protein interactions and the discovery of potential disease biomarkers.
Collapse
Affiliation(s)
- Jonas Zantow
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics - Department for Biotechnology, Germany
| | - Sarah Just
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Ilias Lagkouvardos
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Sigrid Kisling
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics - Department for Biotechnology, Germany
| | - Patricia Lepage
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Thomas Clavel
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics - Department for Biotechnology, Germany
| |
Collapse
|
11
|
Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species. PLoS One 2016; 11:e0160544. [PMID: 27489951 PMCID: PMC4973958 DOI: 10.1371/journal.pone.0160544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus.
Collapse
|
12
|
Connor DO, Zantow J, Hust M, Bier FF, von Nickisch-Rosenegk M. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display. PLoS One 2016; 11:e0148986. [PMID: 26859666 PMCID: PMC4747489 DOI: 10.1371/journal.pone.0148986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/26/2016] [Indexed: 12/14/2022] Open
Abstract
Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.
Collapse
Affiliation(s)
- Daniel O. Connor
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Jonas Zantow
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Frank F. Bier
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Biosystem Integration and Automation, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Markus von Nickisch-Rosenegk
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| |
Collapse
|
13
|
Becker M, Felsberger A, Frenzel A, Shattuck WMC, Dyer M, Kügler J, Zantow J, Mather TN, Hust M. Application of M13 phage display for identifying immunogenic proteins from tick (Ixodes scapularis) saliva. BMC Biotechnol 2015; 15:43. [PMID: 26024663 PMCID: PMC4449557 DOI: 10.1186/s12896-015-0167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
Background Ticks act as vectors for a large number of different pathogens, perhaps most notably Borrelia burgdorferi, the causative agent of Lyme disease. The most prominent tick vector in the United States is the blacklegged tick, Ixodes scapularis. Tick bites are of special public health concern since there are no vaccines available against most tick-transmitted pathogens. Based on the observation that certain non-natural host animals such as guinea pigs or humans can develop adaptive immune responses to tick bites, anti-tick vaccination is a potential approach to tackle health risks associated with tick bites. Results The aim of this study was to use an oligopeptide phage display strategy to identify immunogenic salivary gland proteins from I. scapularis that are recognized by human immune sera. Oligopeptide libraries were generated from salivary gland mRNA of 18 h fed nymphal I. scapularis. Eight immunogenic oligopeptides were selected using human immune sera. Three selected immunogenic oligopeptides were cloned and produced as recombinant proteins. The immunogenic character of an identified metalloprotease (MP1) was validated with human sera. This enzyme has been described previously and was hypothesized as immunogenic which was confirmed in this study. Interestingly, it also has close homologs in other Ixodes species. Conclusion An immunogenic protein of I. scapularis was identified by oligopeptide phage display. MP1 is a potential candidate for vaccine development.
Collapse
Affiliation(s)
- Martin Becker
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany. .,University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA. .,Present Address: Max-Planck-Institute for Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany.
| | - André Felsberger
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany. .,Present Address: YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany.
| | - André Frenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Wendy M C Shattuck
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Megan Dyer
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Jonas Kügler
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Jonas Zantow
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Thomas N Mather
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| |
Collapse
|
14
|
Interaction analysis through proteomic phage display. BIOMED RESEARCH INTERNATIONAL 2014; 2014:176172. [PMID: 25295249 PMCID: PMC4177731 DOI: 10.1155/2014/176172] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance.
Collapse
|
15
|
Oligopeptide m13 phage display in pathogen research. Viruses 2013; 5:2531-45. [PMID: 24136040 PMCID: PMC3814601 DOI: 10.3390/v5102531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 12/19/2022] Open
Abstract
Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline.
Collapse
|
16
|
Gupta A, Shrivastava N, Grover P, Singh A, Mathur K, Verma V, Kaur C, Chaudhary VK. A novel helper phage enabling construction of genome-scale ORF-enriched phage display libraries. PLoS One 2013; 8:e75212. [PMID: 24086469 PMCID: PMC3785514 DOI: 10.1371/journal.pone.0075212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Phagemid-based expression of cloned genes fused to the gIIIP coding sequence and rescue using helper phages, such as VCSM13, has been used extensively for constructing large antibody phage display libraries. However, for randomly primed cDNA and gene fragment libraries, this system encounters reading frame problems wherein only one of 18 phages display the translated foreign peptide/protein fused to phagemid-encoded gIIIP. The elimination of phages carrying out-of-frame inserts is vital in order to improve the quality of phage display libraries. In this study, we designed a novel helper phage, AGM13, which carries trypsin-sensitive sites within the linker regions of gIIIP. This renders the phage highly sensitive to trypsin digestion, which abolishes its infectivity. For open reading frame (ORF) selection, the phagemid-borne phages are rescued using AGM13, so that clones with in-frame inserts express fusion proteins with phagemid-encoded trypsin-resistant gIIIP, which becomes incorporated into the phages along with a few copies of AGM13-encoded trypsin-sensitive gIIIP. In contrast, clones with out-of-frame inserts produce phages carrying only AGM13-encoded trypsin-sensitive gIIIP. Trypsin treatment of the phage population renders the phages with out-of-frame inserts non-infectious, whereas phages carrying in-frame inserts remain fully infectious and can hence be enriched by infection. This strategy was applied efficiently at a genome scale to generate an ORF-enriched whole genome fragment library from Mycobacterium tuberculosis, in which nearly 100% of the clones carried in-frame inserts after selection. The ORF-enriched libraries were successfully used for identification of linear and conformational epitopes for monoclonal antibodies specific to mycobacterial proteins.
Collapse
Affiliation(s)
- Amita Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
- * E-mail: (AG); (VKC)
| | - Nimisha Shrivastava
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Payal Grover
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Ajay Singh
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Kapil Mathur
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Vaishali Verma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Charanpreet Kaur
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Vijay K. Chaudhary
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
- * E-mail: (AG); (VKC)
| |
Collapse
|
17
|
Fabres-Klein MH, Klein RC, De Paula SO, Ribon AOB. Immunorelevant proteins for the diagnosis of bovine staphylococcal mastitis. World J Microbiol Biotechnol 2013; 29:1155-60. [PMID: 23386318 DOI: 10.1007/s11274-013-1274-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/28/2013] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus is a leading cause of bovine mastitis, a condition in which the udder of the cow is inflamed, reducing the quality and quantity of milk produced. Staphylococcal mastitis is a common infection that can develop into a chronic form. The segregation of infected animals is an important preventive practice but relies on an effective diagnostic method. For this purpose, we constructed a genomic library of S. aureus, and a screening step was conducted with antiserum produced using the total protein extract of the pathogen. The nucleotide sequences of the immunoselected clones were aligned with the genome of bovine S. aureus RF122, which enabled the identification of 65 different loci, including proteins related to metabolism, adhesion and cell wall production, toxins, regulatory proteins, and hypothetical proteins. The subcellular location of the immunoreactive polypeptides was also determined. Fifty-two percent were cytoplasmic, 34 % were located in areas exposed to the host's immune system, and for 14 %, the location could not be determined. In silico analysis of the presence of these proteins in mastitis pathogens showed that Fib, ClfA, and the hypothetical protein SAB0166 were the only proteins specific for S. aureus. Therefore, these proteins are promising candidates for the serodiagnosis of staphylococcal mastitis.
Collapse
Affiliation(s)
- M H Fabres-Klein
- Laboratory of Molecular Biotechnology, Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | |
Collapse
|
18
|
Zhou M, Meyer T, Koch S, Koch J, von Briesen H, Benito JM, Soriano V, Haberl A, Bickel M, Dübel S, Hust M, Dietrich U. Identification of a new epitope for HIV-neutralizing antibodies in the gp41 membrane proximal external region by an Env-tailored phage display library. Eur J Immunol 2012. [PMID: 23180650 DOI: 10.1002/eji.201242974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
HIV controllers are a valuable source for the identification of HIV-neutralizing antibodies, as chronic infection over decades allows extensive affinity maturation of antibodies for improved Ag recognition. We analyzed a small cohort of elite controllers (ECs) for HIV-neutralizing antibodies using a panel of standardized HIV-1 pseudovirions on TZM-bl cells. An HIV-1 Env-tailored phage display library was generated to select epitopes targeted by neutralizing antibodies in the EC26 plasma sample showing the broadest neutralizing activity. Selected Env fragments were mostly allocated to the membrane proximal external region of gp41. After preabsorbing the EC26 plasma with the selected phage EC26-2A4, we achieved 50% depletion of its neutralizing activity. Furthermore, antibodies affinity-purified with the EC26-2A4 epitope from EC26 plasma showed neutralizing activity, proving that the selected phage indeed contains an epitope targeted by neutralizing plasma antibodies. Epitope fine mapping of the purified plasma antibodies on peptide arrays identified a new epitope overlapping, but clearly distinct, from the prominent 2F5 epitope. Of note, the purified antibodies did not show autoreactivity with cardiolipin, whereas low reactivity with phosphatidylserine comparable to mAb 2F5 was observed. Thus, this new epitope represents a promising candidate for further analysis in view of HIV vaccine development.
Collapse
Affiliation(s)
- Mingkui Zhou
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zeng Y, Liu L, He J, Liu Y, Zhu C, You X, Wu Y. Screening and identification of the mimic epitope of the adhesion protein of Mycoplasma genitalium. Can J Microbiol 2012; 58:898-908. [DOI: 10.1139/w2012-057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mycoplasma genitalium adhesion protein (MgPa) is the major adhesion protein of M. genitalium, and its C-terminal domain (amino acid 1075–1444) is the most immunogenic region. However, the exact epitopes of the adhesion protein of M. genitalium are still unclear. We used the purified polyclonal antibody against the recombinant adhesion protein to screen the mimic epitopes of MgPa using a random 12-peptide phage display library. Immunoscreening via the phage display peptide library revealed that 3 motifs (P-S-A-A/V-X-R-F/W-E/S-L-S-P, A-K-I/L-T/Q-X-T-L-X-L, and K-S-L-S-R-X-D-X-I) may represent 3 different mimotopes of MgPa. Results of bioinformatics analysis by MIMOX demonstrated that the key consensus amino acid residues in the aligned mimotopes may be S, A, and F for cluster 1; A, K, I, T, and L for cluster 2; and K, S, L, R, D, and I for cluster 3. Three representative phages could recognize sera from M. genitalium-positive patients to varying degrees, whereas they could not recognize the sera from Mycoplasma pneumoniae -positive patients or the sera from healthy people. These findings will help to clarify the mimic epitopes of MgPa to facilitate diagnosis of the antigen and to understand the antigenic structure of MgPa.
Collapse
Affiliation(s)
- Yanhua Zeng
- Institute of Pathogenic Biology, University of South China, Hengyang, 421001, People’s Republic of China
| | - Liangzhuan Liu
- Institute of Pathogenic Biology, University of South China, Hengyang, 421001, People’s Republic of China
| | - Jun He
- The Affiliated Nanhua Hospital, University of South China, Hengyang, 421000, People’s Republic of China
| | - Yan Liu
- Institute of Pathogenic Biology, University of South China, Hengyang, 421001, People’s Republic of China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, University of South China, Hengyang, 421001, People’s Republic of China
| | - Xiaoxing You
- Institute of Pathogenic Biology, University of South China, Hengyang, 421001, People’s Republic of China
| | - Yimou Wu
- Institute of Pathogenic Biology, University of South China, Hengyang, 421001, People’s Republic of China
| |
Collapse
|
20
|
Meyer T, Schirrmann T, Frenzel A, Miethe S, Stratmann-Selke J, Gerlach GF, Strutzberg-Minder K, Dübel S, Hust M. Identification of immunogenic proteins and generation of antibodies against Salmonella Typhimurium using phage display. BMC Biotechnol 2012; 12:29. [PMID: 22703709 PMCID: PMC3423037 DOI: 10.1186/1472-6750-12-29] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/25/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Solely in Europoe, Salmonella Typhimurium causes more than 100,000 infections per year. Improved detection of livestock colonised with S. Typhimurium is necessary to prevent foodborne diseases. Currently, commercially available ELISA assays are based on a mixture of O-antigens (LPS) or total cell lysate of Salmonella and are hampered by cross-reaction. The identification of novel immunogenic proteins would be useful to develop ELISA based diagnostic assays with a higher specificity. RESULTS A phage display library of the entire Salmonella Typhimurium genome was constructed and 47 immunogenic oligopeptides were identified using a pool of convalescent sera from pigs infected with Salmonella Typhimurium. The corresponding complete genes of seven of the identified oligopeptids were cloned. Five of them were produced in E. coli. The immunogenic character of these antigens was validated with sera from pigs infeced with S. Tyhimurium and control sera from non-infected animals. Finally, human antibody fragments (scFv) against these five antigens were selected using antibody phage display and characterised. CONCLUSION In this work, we identified novel immunogenic proteins of Salmonella Typhimurium and generated antibody fragments against these antigens completely based on phage display. Five immunogenic proteins were validated using a panel of positive and negative sera for prospective applications in diagnostics of Salmonela Typhimurium.
Collapse
Affiliation(s)
- Torsten Meyer
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr.7, 38106 Braunschweig, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr.7, 38106 Braunschweig, Germany
| | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr.7, 38106 Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr.7, 38106 Braunschweig, Germany
| | - Janin Stratmann-Selke
- IVD GmbH Heisterbergallee 12, 30453 Hannover, Germany
- Present address: vaxxinova GmbH diagnostics, Johann-Krane-Weg 42, 48149 Münster, Germany
| | | | | | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr.7, 38106 Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr.7, 38106 Braunschweig, Germany
| |
Collapse
|
21
|
Schirrmann T, Meyer T, Schütte M, Frenzel A, Hust M. Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 2011; 16:412-26. [PMID: 21221060 PMCID: PMC6259421 DOI: 10.3390/molecules16010412] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/04/2011] [Accepted: 01/07/2011] [Indexed: 12/15/2022] Open
Abstract
Twenty years after its development, antibody phage display using filamentous bacteriophage represents the most successful in vitro antibody selection technology. Initially, its development was encouraged by the unique possibility of directly generating recombinant human antibodies for therapy. Today, antibody phage display has been developed as a robust technology offering great potential for automation. Generation of monospecific binders provides a valuable tool for proteome research, leading to highly enhanced throughput and reduced costs. This review presents the phage display technology, application areas of antibodies in research, diagnostics and therapy and the use of antibody phage display for these applications.
Collapse
Affiliation(s)
| | | | | | | | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry and Biotechnology, Department of Biotechnology, Spielmannstr. 7, 38106 Braunschweig, Germany
| |
Collapse
|
22
|
González E, Robles Y, Govezensky T, Bobes RJ, Gevorkian G, Manoutcharian K. Isolation of neurocysticercosis-related antigens from a genomic phage display library of Taenia solium. ACTA ACUST UNITED AC 2010; 15:1268-73. [PMID: 20974903 DOI: 10.1177/1087057110385229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the authors have generated a tapeworm Taenia solium genomic DNA expression library where foreign peptides/proteins were fused to N-termini of M13 cpVIII and expressed at a high copy number on the phage surface, and they showed that this library may be used in bioselection against antipathogen immune sera, allowing the identification of disease-related antigens recognizing antibodies present in clinical samples. They isolated 2 phage clones expressing T. solium-derived antigens specifically reacting with antibodies present in plasma and cerebrospinal fluid samples of neuroimaging-confirmed neurocysticercosis patients. The described antigen discovery strategy may be used for the direct identification of antigens useful for host-pathogen interaction studies as well as for the development of molecular vaccines and diagnostics.
Collapse
Affiliation(s)
- Erik González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México
| | | | | | | | | | | |
Collapse
|
23
|
Hust M, Meyer T, Voedisch B, Rülker T, Thie H, El-Ghezal A, Kirsch MI, Schütte M, Helmsing S, Meier D, Schirrmann T, Dübel S. A human scFv antibody generation pipeline for proteome research. J Biotechnol 2010; 152:159-70. [PMID: 20883731 DOI: 10.1016/j.jbiotec.2010.09.945] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 09/13/2010] [Accepted: 09/16/2010] [Indexed: 01/28/2023]
Abstract
The functional decryption of the human proteome is the challenge which follows the sequencing of the human genome. Specific binders to every human protein are key reagents for this purpose. In vitro antibody selection using phage display offers one possible solution that can meet the demand for 25,000 or more antibodies, but needs substantial standardisation and minimalisation. To evaluate this potential, three human, naive antibody gene libraries (HAL4/7/8) were constructed and a standardised antibody selection pipeline was set up. The quality of the libraries and the selection pipeline was validated with 110 antigens, including human, other mammalian, fungal or bacterial proteins, viruses or haptens. Furthermore, the abundance of VH, kappa and lambda subfamilies during library cloning and the E. coli based phage display system on library packaging and the selection of scFvs was evaluated from the analysis of 435 individual antibodies, resulting in the first comprehensive comparison of V gene subfamily use for all steps of an antibody phage display pipeline. Further, a compatible cassette vector set for E. coli and mammalian expression of antibody fragments is described, allowing in vivo biotinylation, enzyme fusion and Fc fusion.
Collapse
Affiliation(s)
- Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Naseem S, Meens J, Jores J, Heller M, Dübel S, Hust M, Gerlach GF. Phage display-based identification and potential diagnostic application of novel antigens from Mycoplasma mycoides subsp. mycoides small colony type. Vet Microbiol 2009; 142:285-92. [PMID: 19900769 DOI: 10.1016/j.vetmic.2009.09.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 09/26/2009] [Accepted: 09/29/2009] [Indexed: 11/28/2022]
Abstract
Contagious Bovine Pleuropneumonia caused by Mycoplasma mycoides subsp. mycoides small colony type is a respiratory disease of considerable economic importance in sub-Saharan Africa; control of the disease in Africa is hampered by diagnostic tests which are suited for herd-level but not for individual animal diagnostics. In the work presented we identified 22 potential immunogenic antigens of the Kenyan outbreak strain B237 by using phage display technology. We determined the relative strength of immunogenicity, the discriminatory capacity between bovine positive and negative sera, and the cross-reactivity with rabbit hyperimmune sera directed against 15 different mycoplasmal species. The three best-performing antigens, a conserved hypothetical protein (MSC_0636), a glycosyl transferase (MSC_0108), and an acyl carrier protein phosphodiesterase (MSC_0029) were considered candidate diagnostic proteins. They were expressed as GST-fusion proteins in Escherichia coli, purified, and used in an ELISA as solid phase antigens. The diagnostic potential of the recombinant antigens was tested using the sera of ten experimentally infected animals and six control animals. This prototype test resulted in 100% diagnostic sensitivity and specificity. In comparison, the complement fixation test and the competitive ELISA performed with a diagnostic sensitivity of 70% and 60%, respectively.
Collapse
Affiliation(s)
- Shamoon Naseem
- Stiftung Tierärztliche Hochschule Hannover, Institut für Mikrobiologie, Zentrum für Infektionsmedizin, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Miltiadou DR, Mather A, Vilei EM, Du Plessis DH. Identification of genes coding for B cell antigens of Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC) by using phage display. BMC Microbiol 2009; 9:215. [PMID: 19818124 PMCID: PMC2767359 DOI: 10.1186/1471-2180-9-215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 10/09/2009] [Indexed: 11/26/2022] Open
Abstract
Background Contagious bovine pleuropneumonia (CBPP) is a mycoplasmal disease caused by Mycoplasma mycoides subsp. mycoides SC (MmmSC). Since the disease is a serious problem that can affect cattle production in parts of Africa, there is a need for an effective and economical vaccine. Identifying which of the causative agent's proteins trigger potentially protective immune responses is an important step towards developing a subunit vaccine. Accordingly, the purpose of this study was to determine whether phage display combined with bioinformatics could be used to narrow the search for genes that code for potentially immunogenic proteins of MmmSC. Since the production of IgG2 and IgA are associated with a Th1 cellular immune response which is implicated in protection against CBPP, antigens which elicit these immunoglobulin subclasses may be useful in developing a subunit vaccine. Results A filamentous phage library displaying a repertoire of peptides expressed by fragments of the genome of MmmSC was constructed. It was subjected to selection using antibodies from naturally- and experimentally-infected cattle. Mycoplasmal genes were identified by matching the nucleotide sequences of DNA from immunoselected phage particles with the mycoplasmal genome. This allowed a catalogue of genes coding for the proteins that elicited an immune response to be compiled. Using this method together with computer algorithms designed to score parameters that influence surface accessibility and hence potential antigenicity, five genes (abc, gapN, glpO, lppB and ptsG) were chosen to be expressed in Escherichia coli. After appropriate site-directed mutagenesis, polypeptides representing portions of each of these proteins were tested for immunoreactivity. Of these five, polypeptides representing expression products of abc and lppB were recognised on immunoblots by sera obtained from cattle during a natural outbreak of the disease. Conclusion Since phage display physically couples phenotype with genotype, it was used to compile a list of sequences that code for MmmSC proteins bearing epitopes which were recognised by antibodies in the serum of infected animals. Together with the appropriate bioinformatic analyses, this approach provided several potentially useful vaccine or diagnostic leads. The phage display step empirically identified sequences by their interaction with antibodies which accordingly reduced the number of ORFs that had to be expressed for testing. This is a particular advantage when working with MmmSC since the mycoplasmal codon for tryptophan needs to be mutated to prevent it from being translated as a stop in E. coli.
Collapse
Affiliation(s)
- Dubravka R Miltiadou
- Immunology Section, Onderstepoort Veterinary Institute, Private Bag X5, Onderstepoort, Republic of South Africa.
| | | | | | | |
Collapse
|
26
|
Pelat T, Hust M, Hale M, Lefranc MP, Dübel S, Thullier P. Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity. BMC Biotechnol 2009; 9:60. [PMID: 19563687 PMCID: PMC2716335 DOI: 10.1186/1472-6750-9-60] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 06/30/2009] [Indexed: 11/26/2022] Open
Abstract
Background Ricin is a lethal toxin that inhibits protein synthesis. It is easily extracted from a ubiquitously grown plant, Ricinus communis, and thus readily available for use as a bioweapon (BW). Anti-ricin antibodies provide the only known therapeutic against ricin intoxication. Results In this study, after immunizing a non-human primate (Macaca fascicularis) with the ricin chain A (RTA), a phage-displayed immune library was built (2 × 108 clones), that included the λ light chain fragment. The library was screened against ricin, and specific binders were sequenced and further analyzed. The best clone, 43RCA, was isolated using a new, stringent neutralization test. 43RCA had a high, picomolar affinity (41 pM) and neutralized ricin efficiently (IC50 = 23 ± 3 ng/ml, corresponding to a [scFv]/[ricin] molar ratio of 4). The neutralization capacity of 43RCA compared favourably with that of polyclonal anti-deglycosylated A chain (anti-dgRCA) IgGs, obtained from hyperimmune mouse serum, which were more efficient than any monoclonal at our disposal. The 43RCA sequence is very similar to that for human IgG germline genes, with 162 of 180 identical amino acids for the VH and VL (90% sequence identity). Conclusion Results of the characterization studies, and the high degree of identity with human germline genes, altogether make this anti-ricin scFv, or an IgG derived from it, a likely candidate for use in humans to minimize effects caused by ricin intoxication.
Collapse
Affiliation(s)
- Thibaut Pelat
- Groupe de biotechnologie des anticorps, Département de biologie des agents transmissibles, Centre de Recherche du Service de Santé des Armées, La Tronche, France.
| | | | | | | | | | | |
Collapse
|