1
|
Marais TS, Huddy RJ, Harrison STL. Elemental sulphur recovery from a sulphate-rich aqueous stream in a single hybrid linear flow channel reactor is mediated through microbial community dynamics and adaptation to reactor zones. FEMS Microbiol Ecol 2022; 98:6763417. [PMID: 36259757 DOI: 10.1093/femsec/fiac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/20/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023] Open
Abstract
The coupled application of biological sulphate reduction (BSR) and partial sulphide oxidation to treat sulphate-rich wastewater is an effective strategy to mitigate pollution and recover elemental sulphur for repurposing. The recent development of the hybrid linear flow channel reactor (LFCR) achieves simultaneous BSR and partial sulphide oxidation with biosulphur recovery via a floating sulphur biofilm (FSB). Here, we explore the microbial community zoning and dynamics facilitating the process. A total of three continuous LFCRs were used to evaluate the effect of reactor zones, hydraulic residence time (HRT), carbon source, namely lactate and acetate, as well as reactor geometry and scale on process performance and microbial community dynamics. Community composition of sessile and planktonic microbial consortia were resolved at a 5- and 2-day HRT through 16S rRNA amplicon sequencing. Preferential attachment and prevalence of specific phylotypes within the sessile and planktonic communities revealed clear adaptation of key microorganisms to different microenvironments. Key microbial taxa affiliated with sulphate reduction and sulphide oxidation as well as those implicated in fermentation and syntrophic metabolism, fluctuated in response to changes in HRT and process performance. Through understanding the relationship between microbial community dynamics and process performance, this research will inform better process design and optimization of the hybrid LFCR.
Collapse
Affiliation(s)
- T S Marais
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag X1, Rondebosch 7701, South Africa.,Future Water Institute, 1 Madiba Circle, University of Cape Town, 7700, South Africa
| | - R J Huddy
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag X1, Rondebosch 7701, South Africa.,Future Water Institute, 1 Madiba Circle, University of Cape Town, 7700, South Africa
| | - S T L Harrison
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag X1, Rondebosch 7701, South Africa.,Future Water Institute, 1 Madiba Circle, University of Cape Town, 7700, South Africa
| |
Collapse
|
2
|
Zaborniak I, Sroka M, Chmielarz P. Lemonade as a rich source of antioxidants: Polymerization of 2-(dimethylamino)ethyl methacrylate in lemon extract. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Gu W, Zheng D, Li D, Wei C, Wang X, Yang Q, Tian C, Cui M. Integrative effect of citrate on Cr(Ⅵ) and total Cr removal using a sulfate-reducing bacteria consortium. CHEMOSPHERE 2021; 279:130437. [PMID: 33901894 DOI: 10.1016/j.chemosphere.2021.130437] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/27/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
In controlling toxic Cr(Ⅵ) pollution, the sulfate-reducing bacteria (SRB) method-a bioresource technology-is considered more sustainable and stable than synthetic technologies; however, its mechanisms of metal removal are unclear. This study investigated the mechanism of the use of citrate as a carbon source in an SRB bioreactor for Cr(Ⅵ) removal by disassemble or simulation approach. We show that citrate can mask toxicity, whereby the IC50 value (inhibitory concentration affecting 50% of the test population) of citrate was higher than that of lactate, and that citrate can also protect water systems from oxidation. The anti-oxidation rate of citrate ranged from 76.00% to 90.92%; whereas for citrate‒Cr(Ⅲ), the oxidation rate was only 0.185%-0.587%. Citrate can up-regulate microbial genes and functions, causing acetate and sulfide (NaFeS2) accumulation. Acetate addition promoted Cr adsorption by sulfide (mainly NaFeS2) and promoted sulfide sedimentation. Moreover, in addition to Cr(Ⅵ) reduction and Cr(Ⅲ)‒sulfide generation, the addition of sulfide promoted sedimentation; the correlation coefficient between the sedimentation coefficient and the sulfur content was r = -0.88877 at p < 0.01. Therefore, citrate had a systemic radiative effect on every aspect of the SRB‒citrate system model for Cr(Ⅵ) removal. In addition to the reduction in the former simple model, an integrative effect (including adsorption, sedimentation, and metabolism) was combined with NaFeS2 for Cr removal, which was regulated by the SRB‒citrate system. Exploration and understanding of these mechanisms promote SRB‒citrate methods to be wider implications in practice.
Collapse
Affiliation(s)
- Wenzhi Gu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Decong Zheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Cuicui Wei
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Qingzhuoma Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Chang Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Byrd N, Lloyd JR, Small JS, Taylor F, Bagshaw H, Boothman C, Morris K. Microbial Degradation of Citric Acid in Low Level Radioactive Waste Disposal: Impact on Biomineralization Reactions. Front Microbiol 2021; 12:565855. [PMID: 33995289 PMCID: PMC8114274 DOI: 10.3389/fmicb.2021.565855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/10/2021] [Indexed: 11/18/2022] Open
Abstract
Organic complexants are present in some radioactive wastes and can challenge waste disposal as they may enhance subsurface mobility of radionuclides and contaminant species via chelation. The principal sources of organic complexing agents in low level radioactive wastes (LLW) originate from chemical decontamination activities. Polycarboxylic organic decontaminants such as citric and oxalic acid are of interest as currently there is a paucity of data on their biodegradation at high pH and under disposal conditions. This work explores the biogeochemical fate of citric acid, a model decontaminant, under high pH anaerobic conditions relevant to disposal of LLW in cementitious disposal environments. Anaerobic microcosm experiments were set up, using a high pH adapted microbial inoculum from a well characterized environmental site, to explore biodegradation of citrate under representative repository conditions. Experiments were initiated at three different pH values (10, 11, and 12) and citrate was supplied as the electron donor and carbon source, under fermentative, nitrate-, Fe(III)- and sulfate- reducing conditions. Results showed that citrate was oxidized using nitrate or Fe(III) as the electron acceptor at > pH 11. Citrate was fully degraded and removed from solution in the nitrate reducing system at pH 10 and pH 11. Here, the microcosm pH decreased as protons were generated during citrate oxidation. In the Fe(III)-reducing systems, the citrate removal rate was slower than in the nitrate reducing systems. This was presumably as Fe(III)-reduction consumes fewer moles of citrate than nitrate reduction for the same molar concentrations of electron acceptor. The pH did not change significantly in the Fe(III)-reducing systems. Sulfate reduction only occurred in a single microcosm at pH 10. Here, citrate was fully removed from solution, alongside ingrowth of acetate and formate, likely fermentation products. The acetate and lactate were subsequently used as electron donors during sulfate-reduction and there was an associated decrease in solution pH. Interestingly, in the Fe(III) reducing experiments, Fe(II) ingrowth was observed at pH values recorded up to 11.7. Here, TEM analysis of the resultant solid Fe-phase indicated that nanocrystalline magnetite formed as an end product of Fe(III)-reduction under these extreme conditions. PCR-based high-throughput 16S rRNA gene sequencing revealed that bacteria capable of nitrate Fe(III) and sulfate reduction became enriched in the relevant, biologically active systems. In addition, some fermentative organisms were identified in the Fe(III)- and sulfate-reducing systems. The microbial communities present were consistent with expectations based on the geochemical data. These results are important to improve long-term environmental safety case development for cementitious LLW waste disposal.
Collapse
Affiliation(s)
- Natalie Byrd
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Joe S Small
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, United Kingdom.,National Nuclear Laboratory, Warrington, United Kingdom
| | - Frank Taylor
- Low Level Waste Repository Ltd., Seascale, United Kingdom
| | - Heath Bagshaw
- School of Engineering, The University of Liverpool, Liverpool, United Kingdom
| | - Christopher Boothman
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Katherine Morris
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Gu W, Cui M, Tian C, Wei C, Zhang L, Zheng D, Li D. Carboxylic acid reduction and sulfate-reducing bacteria stabilization combined remediation of Cr (VI)-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112263. [PMID: 33975223 DOI: 10.1016/j.ecoenv.2021.112263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
For controlling heavy metal pollution, the utilization of carboxylic acids (CAs) combined with sulfate-reducing bacteria (SRB) for continuous and stable remediation of Cr (VI)-contaminated soil was comprehensively investigated. At pH 3, citrate and lactate had photocatalysis characteristics that enabled them to reduce high Cr (VI) concentrations. The reduction efficiencies of citrate and lactate were 99.16-100% and 80.78-87.00%, respectively. In the 40 mg L-1 Cr (VI) treatment, the total Cr adsorption rate of soil was 61.39-68.31%; as the pH increased, the Cr species adsorption capacity of the soil decreased. Following the addition of exogenous 100 mg L-1 Cr (VI), the Cr (VI) content of re-contaminated soil was reduced to 16.2734 ± 0.9505 mg L-1 or 15.8618 mg kg-1 by adding citrate or lactate. Then, using SRB via culture by mulching, addition of citrate or lactate markedly reduced the toxicity of Cr (VI). The respective citrate or lactate treatments had sulfur concentrations of sulfide from deep soil (high-sulfide layer) of 70.54 ± 17.59 and 98.85 ± 13.84 mg kg-1, respectively, and released Cr (VI) concentrations of 0.22 ± 0.25 and 3.64 ± 3.32 mg kg-1, respectively, due to oxidation upon air exposure. We used a two-stage remediation strategy for these treatments: First, CAs were used for photocatalytic reduction to reduce Cr (VI); next, CAs were utilized as carbon sources by SRB, which further reduced Cr (VI) and stabilized Cr species. In addition, citrate was more conducive than lactate to maintaining the stability of the soil microbial community. The results show that this method has potential in the remediation of Cr (VI)-contaminated soil.
Collapse
Affiliation(s)
- Wenzhi Gu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyao Cui
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Tian
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuicui Wei
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dechong Zheng
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Zhang X, Zhang D, Huang Y, Wu S, Lu P. The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water. WATER RESEARCH 2020; 185:116270. [PMID: 32784035 DOI: 10.1016/j.watres.2020.116270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The flowback water (FW) from shale gas exploitation can be effectively treated by bioelectrochemical technology, but sulfide overproduction remains to be addressed. Herein, sulfate-reducing bacteria (SRB) meditated microbial fuel cells (MFCs) with anodic potential control were used. COD removal gradually increased to 67.4 ± 5.1% in electrode-potential-control (EPC) MFCs and 78.9 ± 2.4% in the MFC with open circuit (OC-MFC). However, in EPC MFCs sulfate removal stabilized at much lower levels (no more than 19.9 ± 1.9%) along with much lower sulfide concentrations, but in OC-MFC it increased and finally stabilized at 59.9 ± 0.1%. Partial sulfur reuse in EPC MFCs was indicated by the current production. Notably, thiosulfate was specially detected under low potentials and effectively oxidized in EPC MFCs, especially under -0.1 V vs. SHE, which probably related to the sulfur reuse. Metagenomics analysis showed that the anode with -0.1 and -0.2 V likely shunted electrons from cytochromes that used for reducing DsrC-S0 trisulfide and thus contributed to producing thiosulfate and decreasing sulfide production. Meanwhile, the anode with -0.1 V specially accumulated sulfur-oxidizing system (Sox) genes regarding thiosulfate and sulfite oxidation to sulfate, which concurred to the effective thiosulfate oxidation and also indicated the possible direct sulfite oxidation to sulfate during the sulfur cycling. But the anode of -0.2 V highly accumulated genes for thiosulfate and sulfite reduction. Both anodes also distinctly accumulated genes regarding thiosulfate oxidation to tetrathionate and sulfide oxidation to sulfur or polysulfide. Further, sulfur-oxidizing bacteria were specially enriched in EPC MFCs and likely contributed to thiosulfate and sulfite oxidation. Thus, we suggested that the higher electrode potential (e.g. -0.1 V) can shape a cryptic sulfur cycling, in which sulfate was first reduced to sulfite, and then reoxidized to sulfate by forming thiosulfate as an important intermediate or by direct sulfite oxidation. The results provide new sights on the bioelectrochemical treatment of wastewater containing complex organics and sulfate.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China.
| | - Yongkui Huang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Shanshan Wu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| |
Collapse
|
7
|
Qin J, Li Q, Liu Y, Niu A, Lin C. Biochar-driven reduction of As(V) and Cr(VI): Effects of pyrolysis temperature and low-molecular-weight organic acids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110873. [PMID: 32544750 DOI: 10.1016/j.ecoenv.2020.110873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Batch experiments were conducted to examine the differential effects of biochar pyrolysis temperature and low-molecular-weight organic acids on the reduction of As(V) and Cr(VI) driven by Pennisetum hydridum biochar. The results showed that pyrolysis temperature significantly affected the reducing strength of the biochar. Biochar produced at 500 °C had a stronger electron-donating capacity than did the biochars produced at 300 and 700 °C. In the co-presence of the biochar and a low-molecular-weight organic acid, arsenic and chromium behaved differently. Oxalic acid and malic acid tended to have better effects on enhancing biochar-driven Cr(VI) reduction, as compared to citric acid while the opposite was observed for biochar-driven As(V) reduction. Biochar produced at 300 °C was more favourable for Cr(VI) reduction, as compared to the higher-temperature biochars while the opposite was observed for As(V) reduction in the presence of low-molecular-weight organic acids. This may make the lower-temperature biochar ideal for remediating contaminated soils containing both As(V) and Cr(VI) since it could maximize Cr(VI) reduction while minimizing As(V) reduction.
Collapse
Affiliation(s)
- Junhao Qin
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of the People's Republic of China, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwen Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of the People's Republic of China, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqing Liu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of the People's Republic of China, South China Agricultural University, Guangzhou, 510642, China
| | - Anyi Niu
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia.
| |
Collapse
|
8
|
Xu YN, Chen Y. Advances in heavy metal removal by sulfate-reducing bacteria. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1797-1827. [PMID: 32666937 DOI: 10.2166/wst.2020.227] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Industrial development has led to generation of large volumes of wastewater containing heavy metals, which need to be removed before the wastewater is released into the environment. Chemical and electrochemical methods are traditionally applied to treat this type of wastewater. These conventional methods have several shortcomings, such as secondary pollution and cost. Bioprocesses are gradually gaining popularity because of their high selectivities, low costs, and reduced environmental pollution. Removal of heavy metals by sulfate-reducing bacteria (SRB) is an economical and effective alternative to conventional methods. The limitations of and advances in SRB activity have not been comprehensively reviewed. In this paper, recent advances from laboratory studies in heavy metal removal by SRB were reported. Firstly, the mechanism of heavy metal removal by SRB is introduced. Then, the factors affecting microbial activity and metal removal efficiency are elucidated and discussed in detail. In addition, recent advances in selection of an electron donor, enhancement of SRB activity, and improvement of SRB tolerance to heavy metals are reviewed. Furthermore, key points for future studies of the SRB process are proposed.
Collapse
Affiliation(s)
- Ya-Nan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China E-mail:
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
9
|
El-Bialy HA, Khalil OAA, Gomaa OM. Bacterial-mediated biodegradation of pentachlorophenol via electron shuttling. ENVIRONMENTAL TECHNOLOGY 2019; 40:2416-2424. [PMID: 29455620 DOI: 10.1080/09593330.2018.1442501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Pentachlorophenol (PCP) degradation by soil indigenous bacteria represents a practical and cost-effective solution. In the present study, bacteria isolated from paddy soil was investigated and the role of electron shuttling (ES) in the PCP degradation process was assessed. Two strains demonstrated the highest PCP degradation of 93.5% and 94.88% in the presence of citrate and were identified using 16S rRNA phylogenetic analysis as Pseudomonas chengduensis and Pseudomonas plecoglossicida, respectively. Both strains showed higher PCP degradation in free form as opposed to a reduced activity in immobilized and respiratory impaired form. The addition of pyruvate resulted in about 80% PCP degradation in 5 days for P. chengduensis, on the other hand, P. plecoglossicida showed the same result under anaerobic conditions whether pyruvate was added or not. Phenazine and the outer membrane c-type cytochrome were reported only for P. chengduensis as opposed to P. plecoglossicida. The results indicate that despite following different approaches in PCP degradation, both strains are useful in PCP clean-up under aerobic and anaerobic conditions and in free direct contact. The degradation is enhanced via ES. This is considered both an effective and feasible technology for in situ clean-up of contaminated sites or on-site bioreactors.
Collapse
Affiliation(s)
- Heba A El-Bialy
- a Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| | - Ola A A Khalil
- a Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| | - Ola M Gomaa
- a Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| |
Collapse
|
10
|
Hessler T, Harrison STL, Huddy RJ. Stratification of microbial communities throughout a biological sulphate reducing up-flow anaerobic packed bed reactor, revealed through 16S metagenomics. Res Microbiol 2018; 169:543-551. [PMID: 30308248 DOI: 10.1016/j.resmic.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
Abstract
Biological sulphate reduction (BSR) is a promising low-cost treatment of acid rock drainage effluents. In this paper, the system performance and microbial ecology of a lactate supplemented BSR up-flow anaerobic packed bed reactor (UAPBR) are evaluated across reactor height and compared to a continuous stirred tank reactor (CSTR). The biomass concentrations of planktonic and biofilm communities were quantified and subsequently characterised by 16S rRNA gene amplicon sequencing. The defined microbial communities were shown to correlate with differing availability of lactate, volatile fatty acids produced from lactate degradation and sulphate concentration. The UAPBR was able to achieve near complete sulphate conversion at a 4-day hydraulic residence time (HRT) at a sulphate feed concentration of 10.41 mM (1 g/L). The high volumetric sulphate reduction rate of 0.184 mM/L.h achieved in the first third of the reactor was attributed to OTUs present in the planktonic and biofilm communities. While the scavenging of sulphate within the final third of the UAPBR was attributed to an acetate oxidising genus of SRB which was not detected in the lactate-fed CSTR. The detailed analyses of the microbial communities throughout the UAPBR and CSTR contribute to the growing understanding of the impact of the microbial communities of BSR reactors on system performance.
Collapse
Affiliation(s)
- Tomas Hessler
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, South Africa.
| | - Susan T L Harrison
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, South Africa.
| | - Robert J Huddy
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, South Africa.
| |
Collapse
|
11
|
Mielcarek A, Rodziewicz J, Janczukowicz W, Dabrowska D, Ciesielski S, Thornton A, Struk-Sokołowska J. Citric acid application for denitrification process support in biofilm reactor. CHEMOSPHERE 2017; 171:512-519. [PMID: 28038423 DOI: 10.1016/j.chemosphere.2016.12.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
The study demonstrated that citric acid, as an organic carbon source, can improve denitrification in Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR). The consumption rate of the organic substrate and the denitrification rate were lower during the period of the reactor's acclimatization (cycles 1-60; 71.5 mgCOD L-1 h-1 and 17.81 mgN L-1 h-1, respectively) than under the steady state conditions (cycles 61-180; 143.8 mgCOD L-1 h-1 and 24.38 mgN L-1 h-1). The biomass yield coefficient reached 0.04 ± 0.02 mgTSS· mgCODre-1 (0.22 ± 0.09 mgTSS mgNre-1). Observations revealed the diversified microbiological ecology of the denitrifying bacteria. Citric acid was used mainly by bacteria representing the Trichoccocus genus, which represented above 40% of the sample during the first phase of the process (cycles 1-60). In the second phase (cycles 61-180) the microorganisms the genera that consumed the acetate and formate, as the result of citric acid decomposition were Propionibacterium (5.74%), Agrobacterium (5.23%), Flavobacterium (1.32%), Sphaerotilus (1.35%), Erysipelothrix (1.08%).
Collapse
Affiliation(s)
- Artur Mielcarek
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska St. 117a, Olsztyn 10-719, Poland.
| | - Joanna Rodziewicz
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska St. 117a, Olsztyn 10-719, Poland.
| | - Wojciech Janczukowicz
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska St. 117a, Olsztyn 10-719, Poland.
| | - Dorota Dabrowska
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna St. 45g, Olsztyn 10-709, Poland.
| | - Slawomir Ciesielski
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna St. 45g, Olsztyn 10-709, Poland.
| | - Arthur Thornton
- Atkins, Woodcote Grove, Ashley Road, Epsom KT18, United Kingdom.
| | - Joanna Struk-Sokołowska
- Bialystok University of Technology, Department of Technology in Engineering and Environmental Protection, Wiejska St. 45a, Białystok 15-351, Poland.
| |
Collapse
|
12
|
Strepis N, Sánchez-Andrea I, van Gelder AH, van Kruistum H, Shapiro N, Kyrpides N, Göker M, Klenk HP, Schaap P, Stams AJM, Sousa DZ. Description of Trichococcus ilyis sp. nov. by combined physiological and in silico genome hybridization analyses. Int J Syst Evol Microbiol 2016; 66:3957-3963. [DOI: 10.1099/ijsem.0.001294] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nikolaos Strepis
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Antonie H. van Gelder
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Henri van Kruistum
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Nicole Shapiro
- DOE Joint Genome Institute, 2800 Mitchell Drive 100, Walnut Creek, CA 94598, USA
| | - Nikos Kyrpides
- DOE Joint Genome Institute, 2800 Mitchell Drive 100, Walnut Creek, CA 94598, USA
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- School of Biology, Newcastle University, Ridley Building 2, Newcastle, NE1 7RU, UK
| | - Peter Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Diana Z. Sousa
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
13
|
Collins CEV, Foght JM, Siddique T. Co-occurrence of methanogenesis and N2 fixation in oil sands tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:306-312. [PMID: 27177137 DOI: 10.1016/j.scitotenv.2016.04.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N2 fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N2 headspace. Some cultures were further amended with citrate, which is used in oil sands processing, as a relevant carbon source, and/or with PAM. After an initial delay, N-deficient cultures with or without PAM produced methane (CH4) at the same rate as N-containing cultures, indicating a mechanism of overcoming apparent N-deficiency. Acetylene reduction and (15)N2 incorporation in all N-deficient cultures (with or without PAM) suggested active N2 fixation concurrently with methanogenesis but inability to use PAM as a N source. 16S rRNA gene pyrosequencing revealed little difference between archaeal populations regardless of N content. However, bacterial sequences in N-deficient cultures showed enrichment of Hyphomicrobiaceae and Clostridium members that might contain N2-fixing species. The results are important in understanding long-term production of biogenic greenhouse gases in oil sands tailings.
Collapse
Affiliation(s)
- C E Victoria Collins
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7, Canada
| | - Julia M Foght
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7, Canada.
| |
Collapse
|
14
|
Clothier LN, Gieg LM. Anaerobic biodegradation of surrogate naphthenic acids. WATER RESEARCH 2016; 90:156-166. [PMID: 26724449 DOI: 10.1016/j.watres.2015.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/05/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Surface bitumen extraction from the Alberta's oil sands region generates large settling basins known as tailings ponds. The oil sands process-affected water (OSPW) stored in these ponds contain solid and residual bitumen-associated compounds including naphthenic acids (NAs) that can potentially be biodedgraded by indigenous tailings microorganisms. While the biodegradation of some NAs is known to occur under aerobic conditions, little is understood about anaerobic NA biodegradation even though tailings ponds are mainly anoxic. Here, we investigated the potential for anaerobic NA biodegradation by indigenous tailings microorganisms. Enrichment cultures were established from anoxic tailings that were amended with 5 single-ringed surrogate NAs or acid-extractable organics (AEO) from OSPW and incubated under nitrate-, sulfate-, iron-reducing, and methanogenic conditions. Surrogate NA depletion was observed under all anaerobic conditions tested to varying extents, correlating to losses in the respective electron acceptor (sulfate or nitrate) or the production of predicted products (Fe(II) or methane). Tailings-containing cultures incubated under the different electron-accepting conditions resulted in the enrichment and putative identification of microbial community members that may function in metabolizing surrogate NAs under the various anoxic conditions. In addition, more complex NAs (in the form of AEO) was observed to drive sulfate and iron reduction relative to controls. Overall, this study has shown that simple surrogate NAs can be biodegraded under a variety of anoxic conditions, a key first step in understanding the potential anaerobic metabolism of NAs in oil sands tailings ponds and other industrial wastewaters.
Collapse
Affiliation(s)
- Lindsay N Clothier
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Lisa M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
15
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
16
|
Qian J, Zhu X, Tao Y, Zhou Y, He X, Li D. Promotion of Ni2+ removal by masking toxicity to sulfate-reducing bacteria: addition of citrate. Int J Mol Sci 2015; 16:7932-43. [PMID: 25860948 PMCID: PMC4425059 DOI: 10.3390/ijms16047932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/22/2015] [Accepted: 04/03/2015] [Indexed: 11/16/2022] Open
Abstract
The sulfate-reducing bioprocess is a promising technology for the treatment of heavy metal-containing wastewater. This work was conducted to investigate the possibility of promoting heavy metal removal by the addition of citrate to mask Ni2+ toxicity to sulfate-reducing bacteria (SRB) in batch reactors. SRB growth was completely inhibited in Ni2+-containing medium (1 mM) when lactate served as the sole carbon resource, leading to no sulfate reduction and Ni2+ removal. However, after the addition of citrate, SRB grew well, and sulfate was quickly reduced to sulfide. Simultaneously, the Ni-citrate complex was biodegraded to Ni2+ and acetate. The NiS precipitate was then formed, and Ni2+ was completely removed from the solution. It was suggested that the addition of citrate greatly alleviates Ni2+ toxicity to SRB and improves the removal of Ni2+, which was confirmed by quantitative real-time PCR targeting dissimilatory sulfite reductase (dsrAB) genes. Analysis of the carbon metabolism indicated that lactate instead of acetate served as the electron donor for sulfate reduction. This study offers a potential approach to increase the removal of heavy metals from wastewater in the single stage SRB-based bioprocess.
Collapse
Affiliation(s)
- Junwei Qian
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China.
| | - Xiaoyu Zhu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China.
| | - Yong Tao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China.
| | - Yan Zhou
- College of Life Science, Sichuan University, Chengdu 610064, China.
| | - Xiaohong He
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China.
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China.
| |
Collapse
|
17
|
Khaksar M, Jolley DF, Sekine R, Vasilev K, Johannessen B, Donner E, Lombi E. In situ chemical transformations of silver nanoparticles along the water-sediment continuum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:318-325. [PMID: 25405257 DOI: 10.1021/es504395m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In order to accurately assess the potential environmental risk posed by silver nanoparticles (Ag-NPs), their transformation and fate must be investigated in natural systems. This has proven to be very challenging due to the difficulties encountered in retrieving/analyzing NPs dispersed in complex and heterogeneous environmental matrices at relevant (i.e., low) concentrations. In this study, we overcame this challenge by immobilizing functionalized Ag-NPs onto plasma polymerized solid substrates to form "nano in situ deployment devices" (nIDDs). This method allowed us to retrieve and analyze the Ag-NPs after 48 h of direct exposure in freshwater-sediment and saltwater-sediment environments. The type and extent of Ag-NPs transformation was expected to vary along the water-sediment continuum as sediments typically contain steep gradients in solute concentrations and redox potential. To trace the distribution of redox sensitive elements (e.g., Fe, Mn), Diffusive Equilibration in Thin-films (DET) devices were inserted into the sediments alongside the nIDDs. Chemical transformation of the immobilized Ag-NPs across the water-sediment continuum was investigated after retrieval by synchrotron radiation X-ray Absorption Spectroscopy. Linear combination fitting of Ag K-edge X-ray absorption spectra indicated that the chemical transformations of Ag-NPs in both freshwater and saltwater sediments were strongly affected by the redox conditions over the investigated range. Silver bound to reduced sulfur was the principal product of Ag-NP transformations but different extents of transformation were observed for Ag-NPs exposed to different depths in the sediment. These field results add important insights about the transformation of Ag-NPs in heterogeneous environments.
Collapse
Affiliation(s)
- Maryam Khaksar
- Mawson Institute, University of South Australia , Building V, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Tan L, Ning S, Wang Y, Cao X. Aerobic decolorization of Acid Brilliant Scarlet GR by microbial community and the community dynamics during sequencing batch processes. World J Microbiol Biotechnol 2013; 29:1763-71. [DOI: 10.1007/s11274-012-1249-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/27/2012] [Indexed: 10/26/2022]
|
19
|
van Gelder AH, Aydin R, Alves MM, Stams AJM. 1,3-Propanediol production from glycerol by a newly isolated Trichococcus strain. Microb Biotechnol 2011; 5:573-8. [PMID: 22117537 PMCID: PMC3815333 DOI: 10.1111/j.1751-7915.2011.00318.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A coccal bacterium (strain ES5) was isolated from methanogenic bioreactor sludge with glycerol as the sole energy and carbon source. Strain ES5 fermented glycerol to 1,3‐propanediol as main product, and lactate, acetate and formate as minor products. The strain was phylogenetically closely related to Trichococcus flocculiformis; the rRNA gene sequence similarity was 99%. However, strain ES5 does not show the typical growth in chains of T. flocculiformis. Moreover, T. flocculiformis does not ferment glycerol. Strain ES5 used a variety of sugars for growth. With these substrates, lactate, acetate and formate were the main products, while 1,3‐propanediol was not formed. The optimum growth temperature of strain ES5 ranges from 30–37°C, but like several other Trichoccoccus strains, strain ES5 is able to grow at low temperature (< 10°C). Therefore, strain ES5 may be an appropriate catalyst for the biotechnological production of 1,3‐propanediol from glycerol at low ambient temperature.
Collapse
|
20
|
Gu YY, Yeung AT. Desorption of cadmium from a natural Shanghai clay using citric acid industrial wastewater. JOURNAL OF HAZARDOUS MATERIALS 2011; 191:144-149. [PMID: 21555180 DOI: 10.1016/j.jhazmat.2011.04.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 05/30/2023]
Abstract
The sorption/desorption characteristics of heavy metals onto/from soil particle surfaces are the primary factors controlling the success of the remediation of heavy-metal contaminated soils. These characteristics are pH-dependent, chemical-specific, and reversible; and can be modified by enhancement agents such as chelates and surfactants. In this study, batch experiments were conducted to evaluate the feasibility of using citric acid industrial wastewater (CAIW) to desorb cadmium from a natural clay from Shanghai, China at different soil mixture pHs. It can be observed from the results that the proportion of cadmium desorbed from the soil using synthesized CAIW is generally satisfactory, i.e., >60%, when the soil mixture pH is lower than 6. However, the proportion of desorbed cadmium decreases significantly with increase in soil mixture pH. The dominant cadmium desorption mechanism using CAIW is the complexion of cadmium with citric acid and acetic acid in CAIW. It is concluded that CAIW can be a promising enhancement agent for the remediation of cadmium-contaminated natural soils when the environmental conditions are favorable. As a result, CAIW, a waste product itself, can be put into productive use in soil remediation.
Collapse
Affiliation(s)
- Ying-Ying Gu
- Department of Environmental Science & Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao China.
| | | |
Collapse
|