1
|
Gholami A, Minai-Tehrani D, Farewell A, Eriksson LA. Discovery of novel inhibitors for Pseudomonas aeruginosa lipase enzyme from in silico and in vitro studies. J Biomol Struct Dyn 2024; 42:2197-2210. [PMID: 37098781 DOI: 10.1080/07391102.2023.2203258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen prone to developing drug-resistance and is a major cause of infection for burn patients and patients suffering from cystic fibrosis or are hospitalized in intensive care units. One of the virulence factors of this bacterium is the lipase enzyme that degrades the extracellular matrix of the host tissue and promotes invasion. Bromhexine is a mucolytic drug and has recently been reported to function as a competitive inhibitor of lipase with an IC50 value of 49 µM. In the present study, an attempt was made to identify stronger inhibitors from the ChEMBL database of bioactive compounds, as compared to the reference compound Bromhexine. Following docking and MD simulations, four hit compounds (N1-N4) were selected that showed promising binding modes and low RMSD values indicative of stable protein-ligand complexes. From subsequent binding pose metadynamics (BPMD) simulations, two of these (N2 and N4) stood out as more potent than Bromhexine, displaying stable interactions with residues in the catalytic site of the enzyme. Biological investigations were performed for all four compounds. Among them, the same two hit compounds were found to be the most effective binders with IC50 values of 22.1 and 27.5 µM, respectively; i.e. roughly twice as efficient as the reference Bromhexine. Taken together, our results show that these hits can be promising new candidates to use as leads for the development of drugs targeting the P. aeruginosa lipase enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Asma Gholami
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Dariush Minai-Tehrani
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Anne Farewell
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Göteborg, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
2
|
Wang Z, Su C, Zhang Y, Shangguan S, Wang R, Su J. Key enzymes involved in the utilization of fatty acids by Saccharomyces cerevisiae: a review. Front Microbiol 2024; 14:1294182. [PMID: 38274755 PMCID: PMC10808364 DOI: 10.3389/fmicb.2023.1294182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Saccharomyces cerevisiae is a eukaryotic organism with a clear genetic background and mature gene operating system; in addition, it exhibits environmental tolerance. Therefore, S. cerevisiae is one of the most commonly used organisms for the synthesis of biological chemicals. The investigation of fatty acid catabolism in S. cerevisiae is crucial for the synthesis and accumulation of fatty acids and their derivatives, with β-oxidation being the predominant pathway responsible for fatty acid metabolism in this organism, occurring primarily within peroxisomes. The latest research has revealed distinct variations in β-oxidation among different fatty acids, primarily attributed to substrate preferences and disparities in the metabolic regulation of key enzymes involved in the S. cerevisiae fatty acid metabolic pathway. The synthesis of lipids, on the other hand, represents another crucial metabolic pathway for fatty acids. The present paper provides a comprehensive review of recent research on the key factors influencing the efficiency of fatty acid utilization, encompassing β-oxidation and lipid synthesis pathways. Additionally, we discuss various approaches for modifying β-oxidation to enhance the synthesis of fatty acids and their derivatives in S. cerevisiae, aiming to offer theoretical support and serve as a valuable reference for future studies.
Collapse
Affiliation(s)
- Zhaoyun Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Chunli Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yisang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Sifan Shangguan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
3
|
Towards understanding the mechanism of n-hexane tolerance in Synechocystis sp. PCC 6803. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Nagarkar RA, Nagabhushana KS, Chaudhari P, Mal NK, Dapurkar SE. Efficient Process for the Production of Alkyl Esters. ACS OMEGA 2022; 7:28129-28137. [PMID: 35990439 PMCID: PMC9386816 DOI: 10.1021/acsomega.2c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
This article reports a scalable process development for the production of alkyl esters through the esterification route by utilizing fly ash as a catalyst. The catalyst consisting of mixed oxides such as alumina, iron oxide, calcium oxide, magnesium oxide, and silica was employed for the esterification reaction without modification. The catalyst was evaluated for the conversion of feedstock containing variable amounts of free fatty acids, mono/dibasic acid, and alcohol/polyols into the corresponding alkyl esters. Three types of fly ash catalysts, viz., FS-1, FP-1, and FC-1, were chosen from three different industrial sources. Synthesis of dimethyl adipate was studied as a model reaction. FS-1 fly ash gave the highest yield of dimethyl adipate, whereas FC-1 gave a low yield of dimethyl adipate. The recyclability of FS-1 was evaluated for three cycles, and no loss of yield was observed. Furthermore, the catalyst FS-I was found to be capable of producing good yields for various esterification reactions with different substrates.
Collapse
Affiliation(s)
- Rahul A. Nagarkar
- Tata
Chemicals Limited, Innovation Centre, Pune 412108, India
- Manipal
Academy of Higher Education, Manipal 576104, India
| | | | | | | | - Sudhir E. Dapurkar
- Tata
Chemicals Limited, Innovation Centre, Pune 412108, India
- Manipal
Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
5
|
Cheng D, Li L, Rizhsky L, Bhandary P, Nikolau BJ. Heterologous Expression and Characterization of Plant Wax Ester Producing Enzymes. Metabolites 2022; 12:metabo12070577. [PMID: 35888701 PMCID: PMC9319179 DOI: 10.3390/metabo12070577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Wax esters are widely distributed among microbes, plants, and mammals, and they serve protective and energy storage functions. Three classes of enzymes catalyze the reaction between a fatty acyl alcohol and a fatty acyl-CoA, generating wax esters. Multiple isozymes of two of these enzyme classes, the membrane-bound O-acyltransferase class of wax synthase (WS) and the bifunctional wax synthase/diacylglycerol acyl transferase (WSD), co-exist in plants. Although WSD enzymes are known to produce the wax esters of the plant cuticle, the functionality of plant WS enzymes is less well characterized. In this study, we investigated the phylogenetic relationships among the 12 WS and 11 WSD isozymes that occur in Arabidopsis, and established two in vivo heterologous expression systems, in the yeast Saccharomyces cerevisiae and in Arabidopsis seeds to investigate the catalytic abilities of the WS enzymes. These two refactored wax assembly chassis were used to demonstrate that WS isozymes show distinct differences in the types of esters that can be assembled. We also determined the cellular and subcellular localization of two Arabidopsis WS isozymes. Additionally, using publicly available Arabidopsis transcriptomics data, we identified the co-expression modules of the 12 Arabidopsis WS coding genes. Collectively, these analyses suggest that WS genes may function in cuticle assembly and in supporting novel photosynthetic function(s).
Collapse
Affiliation(s)
- Daolin Cheng
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (D.C.); (L.L.); (L.R.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Ling Li
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (D.C.); (L.L.); (L.R.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
- Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Ludmila Rizhsky
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (D.C.); (L.L.); (L.R.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Priyanka Bhandary
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (D.C.); (L.L.); (L.R.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Correspondence: ; Tel.: +1-515-290-3382
| |
Collapse
|
6
|
Mancipe NC, Mulliner KM, Plunkett MH, Barney BM. Canvasing the Substrate-Binding Pockets of the Wax Ester Synthase. Biochemistry 2022; 61:922-932. [PMID: 35507417 DOI: 10.1021/acs.biochem.2c00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthesis of wax esters and triglycerides in bacteria is accomplished through the action of the wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT or wax ester synthase). A hallmark of these enzymes is the broad substrate profile that accepts alcohols, diglycerides, and fatty acyl-CoAs of various carbon chain lengths and degrees of branching. These enzymes have a broad biotechnological potential due to their role in producing high-value lipids or simple fuels similar to biodiesel through biosynthetic routes. Recently, a crystal structure was solved for the wax ester synthase from Marinobacter aquaeolei VT8 (Maqu_0168), providing a much clearer picture of the architecture of this enzyme and enabling a more precise analysis of the important structural features of the protein. In this work, we used the structure to canvas amino acids lining the proposed substrate-binding pockets and tested the effects of exchanging specific residues on the substrate profiles. We also developed an approach to better probe the residues that alter fatty acyl-CoA selectivity, which has proven more difficult to investigate. Our findings provide an improved blueprint for future efforts to understand how these enzymes position substrates for catalysis and to tailor or improve these enzymes in future biosynthetic schemes.
Collapse
Affiliation(s)
- Natalia Calixto Mancipe
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Kalene M Mulliner
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Mary H Plunkett
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Brett M Barney
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota 55108, United States.,BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| |
Collapse
|
7
|
Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Bright Side of Fusarium oxysporum: Secondary Metabolites Bioactivities and Industrial Relevance in Biotechnology and Nanotechnology. J Fungi (Basel) 2021; 7:jof7110943. [PMID: 34829230 PMCID: PMC8625159 DOI: 10.3390/jof7110943] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022] Open
Abstract
Fungi have been assured to be one of the wealthiest pools of bio-metabolites with remarkable potential for discovering new drugs. The pathogenic fungi, Fusarium oxysporum affects many valuable trees and crops all over the world, producing wilt. This fungus is a source of different enzymes that have variable industrial and biotechnological applications. Additionally, it is widely employed for the synthesis of different types of metal nanoparticles with various biotechnological, pharmaceutical, industrial, and medicinal applications. Moreover, it possesses a mysterious capacity to produce a wide array of metabolites with a broad spectrum of bioactivities such as alkaloids, jasmonates, anthranilates, cyclic peptides, cyclic depsipeptides, xanthones, quinones, and terpenoids. Therefore, this review will cover the previously reported data on F. oxysporum, especially its metabolites and their bioactivities, as well as industrial relevance in biotechnology and nanotechnology in the period from 1967 to 2021. In this work, 180 metabolites have been listed and 203 references have been cited.
Collapse
|
9
|
Wei LJ, Ma YY, Cheng BQ, Gao Q, Hua Q. Metabolic engineering Yarrowia lipolytica for a dual biocatalytic system to produce fatty acid ethyl esters from renewable feedstock in situ and in one pot. Appl Microbiol Biotechnol 2021; 105:8561-8573. [PMID: 34661706 DOI: 10.1007/s00253-021-11415-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/22/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
Given the grave concerns over increasing consumption of petroleum resources and dramatic environmental changes arising from carbon dioxide emissions worldwide, microbial biosynthesis of fatty acid ethyl ester (FAEE) biofuels as renewable and sustainable replacements for petroleum-based fuels has attracted much attention. As one of the most important microbial chassis, the nonconventional oleaginous yeast Yarrowia lipolytica has emerged as a paradigm organism for the production of several advanced biofuels and chemicals. Here, we report the engineering of Y. lipolytica for use as an efficient dual biocatalytic system for in situ and one-pot production of FAEEs from renewable feedstock. Compared to glucose with 5.7% (w/w) conversion rate to FAEEs, sunflower seed oil in the culture medium was efficiently used to generate FAEEs with 84% (w/w) conversion rate to FAEEs by the engineered Y. lipolytica strain GQY20 that demonstrates an optimized intercellular heterologous FAEE synthesis pathway. In particular, the titer of extracellular FAEEs from sunflower seed oil reached 9.9 g/L, 10.9-fold higher than that with glucose as a carbon source. An efficient dual biocatalytic system combining ex vivo and strengthened in vitro FAEE production routes was constructed by overexpression of a lipase (Lip2) variant in the background strain GQY20, which further increased FAEEs levels to 13.5 g/L. Notably, deleting the ethanol metabolism pathway had minimal impact on FAEE production. Finally, waste cooking oil, a low-cost oil-based substance, was used as a carbon source for FAEE production in the Y. lipolytica dual biocatalytic system, resulting in production of 12.5 g/L FAEEs. Thus, the developed system represents a promising green and sustainable process for efficient biodiesel production. KEY POINTS: • FAEEs were produced by engineered Yarrowia lipolytica. • A Lip2 variant was overexpressed in the yeast to create a dual biocatalytic system. • Waste cooking oil as a substrate resulted in a high titer of 12.5 g/L FAEEs.
Collapse
Affiliation(s)
- Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Yu-Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Bo-Qian Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qi Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China. .,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
10
|
Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review. ENERGIES 2021. [DOI: 10.3390/en14196011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the recent progress in the design and application of microbial biofuels, assessing the advancement of genetic engineering undertakings and their marketability, and lignocellulosic biomass pretreatment issues. Municipal solid waste (MSW) is a promising sustainable biofuel feedstock due to its high content of lignocellulosic fiber. In this review, we compared the production of fatty alcohols, alkanes, and n-butanol from residual biogenic waste and the environmental/economic parameters to that of conventional biofuels. New synthetic biology tools can be used to engineer fermentation pathways within micro-organisms to produce long-chain alcohols, isoprenoids, long-chain fatty acids, and esters, along with alkanes, as substitutes to petroleum-derived fuels. Biotechnological advances have struggled to address problems with bioethanol, such as lower energy density compared to gasoline and high corrosive and hygroscopic qualities that restrict its application in present infrastructure. Biofuels derived from the organic fraction of municipal solid waste (OFMSW) may have less environmental impacts compared to traditional fuel production, with the added benefit of lower production costs. Unfortunately, current advanced biofuel production suffers low production rates, which hinders commercial scaling-up efforts. Microbial-produced biofuels can address low productivity while increasing the spectrum of produced bioenergy molecules.
Collapse
|
11
|
Sharma A, Melo JS, Prakash R, Tejo Prakash N. Lab-scale production of biodiesel from soybean acid oil using immobilized whole cells as catalyst. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1964486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Anirudh Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Jose S. Melo
- NA&BTD, Bhabha Atomic Research Centre, Mumbai, India
| | - Ranjana Prakash
- School of Chemistry & Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - N. Tejo Prakash
- School of Energy & Environment, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
12
|
Chilakamarry CR, Sakinah AMM, Zularisam AW, Pandey A. Glycerol waste to value added products and its potential applications. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2021; 1:378-396. [PMID: 38624889 PMCID: PMC8182736 DOI: 10.1007/s43393-021-00036-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
The rapid industrial and economic development runs on fossil fuel and other energy sources. Limited oil reserves, environmental issues, and high transportation costs lead towards carbon unbiased renewable and sustainable fuel. Compared to other carbon-based fuels, biodiesel is attracted worldwide as a biofuel for the reduction of global dependence on fossil fuels and the greenhouse effect. During biodiesel production, approximately 10% of glycerol is formed in the transesterification process in a biodiesel plant. The ditching of crude glycerol is important as it contains salt, free fatty acids, and methanol that cause contamination of soil and creates environmental challenges for researchers. However, the excessive cost of crude glycerol refining and market capacity encourage the biodiesel industries for developing a new idea for utilising and produced extra sources of income and treat biodiesel waste. This review focuses on the significance of crude glycerol in the value-added utilisation and conversion to bioethanol by a fermentation process and describes the opportunities of glycerol in various applications. Graphic abstract
Collapse
Affiliation(s)
- Chaitanya Reddy Chilakamarry
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300
| | - A. M. Mimi Sakinah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300
| | - A. W. Zularisam
- Faculty of Civil Engineering Technology , Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001 India
| |
Collapse
|
13
|
Liu Y, Benitez MG, Chen J, Harrison E, Khusnutdinova AN, Mahadevan R. Opportunities and Challenges for Microbial Synthesis of Fatty Acid-Derived Chemicals (FACs). Front Bioeng Biotechnol 2021; 9:613322. [PMID: 33575251 PMCID: PMC7870715 DOI: 10.3389/fbioe.2021.613322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Global warming and uneven distribution of fossil fuels worldwide concerns have spurred the development of alternative, renewable, sustainable, and environmentally friendly resources. From an engineering perspective, biosynthesis of fatty acid-derived chemicals (FACs) is an attractive and promising solution to produce chemicals from abundant renewable feedstocks and carbon dioxide in microbial chassis. However, several factors limit the viability of this process. This review first summarizes the types of FACs and their widely applications. Next, we take a deep look into the microbial platform to produce FACs, give an outlook for the platform development. Then we discuss the bottlenecks in metabolic pathways and supply possible solutions correspondingly. Finally, we highlight the most recent advances in the fast-growing model-based strain design for FACs biosynthesis.
Collapse
Affiliation(s)
- Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mauricio Garcia Benitez
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Emma Harrison
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Anna N. Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
15
|
Nazeer U, Rasool N, Mujahid A, Mansha A, Zubair M, Kosar N, Mahmood T, Raza Shah A, Shah SAA, Zakaria ZA, Akhtar MN. Selective Arylation of 2-Bromo-4-chlorophenyl-2-bromobutanoate via a Pd-Catalyzed Suzuki Cross-Coupling Reaction and Its Electronic and Non-Linear Optical (NLO) Properties via DFT Studies. Molecules 2020; 25:molecules25153521. [PMID: 32752125 PMCID: PMC7435822 DOI: 10.3390/molecules25153521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/23/2022] Open
Abstract
In the present study, 2-bromo-4-chlorophenyl-2-bromobutanoate (3) was synthesized via the reaction of 2-bromo-4-chlorophenol with 2-bromobutanoyl bromide in the presence of pyridine. A variety of 2-bromo-4-chlorophenyl-2-bromobutanoate derivatives (5a–f) were synthesized with moderate to good yields via a Pd-catalyzed Suzuki cross-coupling reaction. To find out the reactivity and electronic properties of the compounds, Frontier molecular orbital analysis, non-linear optical properties, and molecular electrostatic potential studies were performed.
Collapse
Affiliation(s)
- Usman Nazeer
- Department of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan; (U.N.); (A.M.); (A.M.); (M.Z.); (A.R.S.)
- College of Chemistry and Molecular Engineering, Zhengzhou University, Kexue road No. 100, Zhengzhou 450001, China
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan; (U.N.); (A.M.); (A.M.); (M.Z.); (A.R.S.)
- Correspondence: (N.R.); (Z.A.Z.); Tel.: +92-332-749-1790 (N.R.); +603-8947-2111 (Z.A.Z.); Fax: +92-419-201-032 (N.R.); +603-8943-6178 (Z.A.Z.)
| | - Aqsa Mujahid
- Department of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan; (U.N.); (A.M.); (A.M.); (M.Z.); (A.R.S.)
| | - Asim Mansha
- Department of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan; (U.N.); (A.M.); (A.M.); (M.Z.); (A.R.S.)
| | - Muhammad Zubair
- Department of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan; (U.N.); (A.M.); (A.M.); (M.Z.); (A.R.S.)
| | - Naveen Kosar
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22060, Pakistan; (N.K.); (T.M.)
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22060, Pakistan; (N.K.); (T.M.)
| | - Ali Raza Shah
- Department of Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan; (U.N.); (A.M.); (A.M.); (M.Z.); (A.R.S.)
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia;
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Halal Institute Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (N.R.); (Z.A.Z.); Tel.: +92-332-749-1790 (N.R.); +603-8947-2111 (Z.A.Z.); Fax: +92-419-201-032 (N.R.); +603-8943-6178 (Z.A.Z.)
| | - Muhammad Nadeem Akhtar
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang Kuantan 26300, Malaysia;
- Bio-Aromatic Research Center of Excellence, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang Kuantan 26300, Malaysia
| |
Collapse
|
16
|
Wancura JHC, Rosset DV, Mazutti MA, Ugalde GA, de Oliveira JV, Tres MV, Jahn SL. Improving the soluble lipase–catalyzed biodiesel production through a two-step hydroesterification reaction system. Appl Microbiol Biotechnol 2019; 103:7805-7817. [DOI: 10.1007/s00253-019-10075-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 11/25/2022]
|
17
|
Guerreiro F, Constantino A, Lima‐Costa E, Raposo S. A new combined approach to improved lipid production using a strictly aerobic and oleaginous yeast. Eng Life Sci 2019; 19:47-56. [PMID: 32624955 PMCID: PMC6999502 DOI: 10.1002/elsc.201800115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/12/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Microbial lipids have potential applications in energy, and food industry, because most of those lipids are triacylglycerol with long-chain fatty-acids that are comparable to conventional vegetable oils and can be obtained without arable land requirement. Rhodosporidium toruloides is a strictly aerobic strain, where oxygen plays a crucial role in growth, maintenance, and metabolite production, such as lipids and carotenoids. Dissolved oxygen concentration is one of the major factors affecting yeast physiological and biochemical characteristics. In this context, different approaches have been developed to increase available oxygen by the increasing the aeration and the addition of an oxygen-vector. The growth of R. toruloides in 2-L mechanical stirred tank reactor equipped with 1 or 2 porous spargers and a 70 C/N ratio, revealed a lipid content of 0.47 and 0.52 g/g and a lipidic productivity of 0.16 and 0.17 g/L day, respectively. The oxygen-vector addition, increased the lipidic productivity for 0.20 g/L day and a lipid contend of 0.51 g of lipids/g of biomass. The combined approach, combining high aeration (AA), and 1% of n-dodecane addition (DA), produced a significant improvement in the lipid accumulation (62%, w/w), when compared with the DA (51%, w/w) and the AA (52%, w/w) approaches. The increasing of lipids accumulation and smaller culture time are key factors for the success of scale-up and profitability of a bioprocess.
Collapse
Affiliation(s)
- Fábio Guerreiro
- Center for Marine and Environmental Research—CIMAUniversity of Algarve—Campus de GambelasFaroPortugal
| | - Ana Constantino
- Center for Marine and Environmental Research—CIMAUniversity of Algarve—Campus de GambelasFaroPortugal
| | - Emília Lima‐Costa
- Center for Marine and Environmental Research—CIMAUniversity of Algarve—Campus de GambelasFaroPortugal
| | - Sara Raposo
- Center for Marine and Environmental Research—CIMAUniversity of Algarve—Campus de GambelasFaroPortugal
| |
Collapse
|
18
|
Paichid N, Yunu T, Klomklao S, Prasertsan P, Sangkharak K. Enhanced Synthesis of Fatty-Acid Methyl Ester using Oil from Palm Oil Mill Effluents and Immobilized Palm Lipase. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nisa Paichid
- Department of Chemistry, Faculty of Science; Thaksin University, Phet Kasem Road; Phatthalung, 93210 Thailand
| | - Tewan Yunu
- Department of Chemistry, Faculty of Science; Thaksin University, Phet Kasem Road; Phatthalung, 93210 Thailand
| | - Sappasith Klomklao
- Department of Food Science and Technology, Faculty of Technology and Community Development; Thaksin University, Phet Kasem Road; Phatthalung, 93210 Thailand
| | - Poonsuk Prasertsan
- Department of Industrial Biotechnology, Faculty of Agro-Industry; Prince of Songkla University, Kanjanavanich Road; Songkhla, 90112 Thailand
| | - Kanokphorn Sangkharak
- Department of Chemistry, Faculty of Science; Thaksin University, Phet Kasem Road; Phatthalung, 93210 Thailand
| |
Collapse
|
19
|
Singh N, Choudhury B. Potential of Lentibacillus sp. NS12IITR for production of lipids with enriched branched-chain fatty acids for improving biodiesel properties along with hydrocarbon co-production. Extremophiles 2018; 22:865-875. [PMID: 30032330 DOI: 10.1007/s00792-018-1043-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/13/2018] [Indexed: 01/05/2023]
Abstract
Hypersaline environment is inhabited by array of microbes which have the potential to produce industrially important products. This study explored biomass and lipid production potential of the halophilic bacterium, strain NS12IITR which was isolated from Sambhar Lake, Rajasthan. Sequencing and phylogenetic analysis revealed that the bacterium belonged to genus Lentibacillus. The salient feature of the isolate is its ability to accumulate total cellular lipid up to 18.9 ± 0.45% of dry cell weight. In addition, trans-esterification of extracted lipid yielded 77.6 ± 5.56% of total esters as methyl ester of branched-chain fatty acids (BCFAs). To assess the nature of extracted lipid, lipid sample was fractionated on the silicic acid column, which demonstrated that 49.03 ± 1.35% of the total lipids was neutral in nature. Trans-esterification of the neutral lipid fraction yielded 60.62 ± 4.88% of total esters as methyl ester of BCFAs. Methyl esters of BCFAs were present in trans-esterified products of neutral as well as polar lipid fractions. Furthermore, the isolate produced hydrocarbons both extracellularly (C10-C30) and intra-cellularly (C15-C28). The concentration of extracellular hydrocarbon (21.11 ± 0.78 mg/L) synthesized by strain NS12IITR is in close agreement with the yield reported from other hydrocarbon producing bacteria. This is hereby a first report on the co-production of lipids and hydrocarbon from a halophilic bacterium. The production of neutral lipid with high percentage of BCFAs and co-production of hydrocarbons makes the isolate NS12IITR a potential claimant for biofuel production.
Collapse
Affiliation(s)
- Noopur Singh
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Bijan Choudhury
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
20
|
Liu CL, Tian T, Alonso-Gutierrez J, Garabedian B, Wang S, Baidoo EEK, Benites V, Chen Y, Petzold CJ, Adams PD, Keasling JD, Tan T, Lee TS. Renewable production of high density jet fuel precursor sesquiterpenes from Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:285. [PMID: 30377444 PMCID: PMC6195743 DOI: 10.1186/s13068-018-1272-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/26/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Aviation fuels are an important target of biofuels research due to their high market demand and competitive price. Isoprenoids have been demonstrated as good feedstocks for advanced renewable jet fuels with high energy density, high heat of combustion, and excellent cold-weather performance. In particular, sesquiterpene compounds (C15), such as farnesene and bisabolene, have been identified as promising jet fuel candidates. RESULTS In this study, we explored three sesquiterpenes-epi-isozizaene, pentalenene and α-isocomene-as novel jet fuel precursors. We performed a computational analysis to calculate the energy of combustion of these sesquiterpenes and found that their specific energies are comparable to commercial jet fuel A-1. Through heterologous MVA pathway expression and promoter engineering, we produced 727.9 mg/L epi-isozizaene, 780.3 mg/L pentalenene and 77.5 mg/L α-isocomene in Escherichia coli and 344 mg/L pentalenene in Saccharomyces cerevisiae. We also introduced a dynamic autoinduction system using previously identified FPP-responsive promoters for inducer-free production and managed to achieve comparable amounts of each compound. CONCLUSION We produced tricyclic sesquiterpenes epi-isozizaene, pentalenene and α-isocomene, promising jet fuel feedstocks at high production titers, providing novel, sustainable alternatives to petroleum-based jet fuels.
Collapse
Affiliation(s)
- Chun-Li Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Tian Tian
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Jorge Alonso-Gutierrez
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Brett Garabedian
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Shuai Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Edward E. K. Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Veronica Benites
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Christopher J. Petzold
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Paul D. Adams
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 USA
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
21
|
Thermodynamics of enzyme-catalyzed esterifications: I. Succinic acid esterification with ethanol. Appl Microbiol Biotechnol 2017; 101:5973-5984. [DOI: 10.1007/s00253-017-8287-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
22
|
Yu P, Chen X, Li P. Enhancing microbial production of biofuels by expanding microbial metabolic pathways. Biotechnol Appl Biochem 2017; 64:606-619. [PMID: 27507087 DOI: 10.1002/bab.1529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/31/2016] [Indexed: 12/29/2022]
Abstract
Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected.
Collapse
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xingge Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Peng Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
23
|
Aulakh SS, Sharma A, Tejo Prakash N, Prakash R. Biocatalyzed esterification of oleic acid using cell suspension and dried biomass of Aspergillus sp. RBD01. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1292502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Anirudh Sharma
- School of Chemistry and Biochemistry, Thapar University, Patiala, India and
| | - N. Tejo Prakash
- School of Energy and Environment, Thapar University, Patiala, India
| | - Ranjana Prakash
- School of Chemistry and Biochemistry, Thapar University, Patiala, India and
| |
Collapse
|
24
|
Lee HJ, Choi J, Lee SM, Um Y, Sim SJ, Kim Y, Woo HM. Photosynthetic CO 2 Conversion to Fatty Acid Ethyl Esters (FAEEs) Using Engineered Cyanobacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1087-1092. [PMID: 28128561 DOI: 10.1021/acs.jafc.7b00002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to fatty acid-derived chemicals that are widely used in the food and chemical industries. Herein, Synechococcus elongatus PCC 7942, a model cyanobacterium, was engineered for the first time to produce fatty acid ethyl esters (FAEEs) from CO2. Due to the lack of an endogenous ethanol production pathway and wax ester synthase (AftA) activity in the wild-type cyanobacterium, we metabolically engineered S. elongatus PCC 7942 by expressing heterologous AftA and introducing the ethanol pathway, resulting in detectable peaks of FAEEs. To enhance FAEE production, a heterologous phosphoketolase pathway was introduced in the FAEE-producing strain to supply acetyl-CoA. Subsequent optimization of the cyanobacterial culture with a hexadecane overlay resulted in engineered S. elongatus PCC 7942 that produced photosynthetic FAEEs (10.0 ± 0.7 mg/L/OD730) from CO2. This paper is the first report of photosynthetic production of FAEEs from CO2 in cyanobacteria.
Collapse
Affiliation(s)
- Hyun Jeong Lee
- Clean Energy Research Center, Korea Institute of Science and Technology , Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jaeyeon Choi
- Clean Energy Research Center, Korea Institute of Science and Technology , Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology , Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology , Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yunje Kim
- Clean Energy Research Center, Korea Institute of Science and Technology , Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU) , 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
25
|
Castro AR, Rocha I, Alves MM, Pereira MA. Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. AMB Express 2016; 6:35. [PMID: 27179529 PMCID: PMC4870530 DOI: 10.1186/s13568-016-0207-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 11/10/2022] Open
Abstract
Bacterial lipids have relevant applications in the production of renewable fuels and biobased oleochemicals. The genus Rhodococcus is one of the most relevant lipid producers due to its capability to accumulate those compounds, mainly triacylglycerols (TAG), when cultivated on different defined substrates, namely sugars, organic acids and hydrocarbons but also on complex carbon sources present in industrial wastes. In this work, the production of storage lipids by Rhodococcus opacus B4 using glucose, acetate and hexadecane is reported for the first time and its productivity compared with Rhodococcus opacus PD630, the best TAG producer bacterium reported. Both strains accumulated mainly TAG from all carbon sources, being influenced by the carbon source itself and by the duration of the accumulation period. R. opacus B4 produced 0.09 and 0.14 g L(-1) at 24 and 72 h, with hexadecane as carbon source, which was 2 and 3.3 fold higher than the volumetric production obtained by R. opacus PD630. Both strains presented similar fatty acids (FA) profiles in intact cells while in TAG produced fraction, R. opacus B4 revealed a higher variability in fatty acid composition than R. opacus PD630, when both strains were cultivated on hexadecane. The obtained results open new perspectives for the use of R. opacus B4 to produce TAG, in particular using oily (alkane-contaminated) waste and wastewater as cheap raw-materials. Combining TAG production with hydrocarbons degradation is a promising strategy to achieve environmental remediation while producing added value compounds.
Collapse
|
26
|
Da Silva PDMP, Lima F, Alves MM, Bijmans MFM, Pereira MA. Valorization of lubricant-based wastewater for bacterial neutral lipids production: Growth-linked biosynthesis. WATER RESEARCH 2016; 101:17-24. [PMID: 27244293 DOI: 10.1016/j.watres.2016.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/20/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Lipids produced by microorganisms are currently of great interest as raw material for either biofuels or oleochemicals production. Significant biosynthesis of neutral lipids, such as triacylglycerol (TAG) and wax esters (WE) are thought to be limited to a few strains. Hydrocarbonoclastic bacteria (HCB), key players in bioremediation of hydrocarbon contaminated ecosystems, are among this group of strains. Hydrocarbon rich wastewaters have been overlooked concerning their potential as raw material for microbial lipids production. In this study, lubricant-based wastewater was fed, as sole carbon source, to two HCB representative wild strains: Alcanivorax borkumensis SK2, and Rhodococcus opacus PD630. Neutral lipid production was observed with both strains cultivated under uncontrolled conditions of pH and dissolved oxygen. A. borkumensis SK2 was further investigated in a pH- and OD-controlled fermenter. Different phases were assessed separately in terms of lipids production and alkanes removal. The maximum TAG production rate occurred during stationary phase (4 mg-TAG/L h). The maximum production rate of WE-like compounds was 15 mg/L h, and was observed during exponential growth phase. Hydrocarbons removal was 97% of the gas chromatography (GC) resolved straight-chain alkanes. The maximum removal rate was observed during exponential growth phase (6 mg-alkanes/L h). This investigation proposes a novel approach for the management of lubricant waste oil, aiming at its conversion into valuable lipids. The feasibility of the concept is demonstrated under low salt (0.3%) and saline (3.3%) conditions, and presents clues for its technological development, since growth associated oil production opens the possibility for establishing continuous fermentation processes.
Collapse
Affiliation(s)
- Pedro D M P Da Silva
- Wetsus, European Centre of Excellence for Sustainable Water Technology, PO Box 1113, 8900 CC Leeuwarden, The Netherlands; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-57 Braga, Portugal
| | - Filipa Lima
- Wetsus, European Centre of Excellence for Sustainable Water Technology, PO Box 1113, 8900 CC Leeuwarden, The Netherlands; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-57 Braga, Portugal
| | - Maria Madalena Alves
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-57 Braga, Portugal
| | - Martijn F M Bijmans
- Wetsus, European Centre of Excellence for Sustainable Water Technology, PO Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - Maria Alcina Pereira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-57 Braga, Portugal.
| |
Collapse
|
27
|
Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol 2016; 225:48-56. [PMID: 27034020 DOI: 10.1016/j.jbiotec.2016.03.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 01/30/2023]
Abstract
As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability.
Collapse
Affiliation(s)
- Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Philippa Hauschild
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Mohamed H Madkour
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Ahmed M Al-Ansari
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Naief H Almakishah
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
28
|
Norjannah B, Ong HC, Masjuki HH, Juan JC, Chong WT. Enzymatic transesterification for biodiesel production: a comprehensive review. RSC Adv 2016. [DOI: 10.1039/c6ra08062f] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biodiesel catalyzed by enzyme is affected by many factors. This review will critically discuss the three major components of enzymatic production of biodiesel and the methods used to improve the reaction.
Collapse
Affiliation(s)
- B. Norjannah
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Hwai Chyuan Ong
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - H. H. Masjuki
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - J. C. Juan
- Nanotechnology & Catalysis Research Centre (NanoCat)
- Institute of Postgraduate Studies
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - W. T. Chong
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| |
Collapse
|
29
|
Teo WS, Ling H, Yu AQ, Chang MW. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:177. [PMID: 26543501 PMCID: PMC4634726 DOI: 10.1186/s13068-015-0361-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/22/2015] [Indexed: 06/01/2023]
Abstract
BACKGROUND Biodiesel is a mixture of fatty acid short-chain alkyl esters of different fatty acid carbon chain lengths. However, while fatty acid methyl or ethyl esters are useful biodiesel produced commercially, fatty acid esters with branched-chain alcohol moieties have superior fuel properties. Crucially, this includes improved cold flow characteristics, as one of the major problems associated with biodiesel use is poor low-temperature flow properties. Hence, microbial production as a renewable, nontoxic and scalable method to produce fatty acid esters with branched-chain alcohol moieties from biomass is critical. RESULTS We engineered Saccharomyces cerevisiae to produce fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters using endogenously synthesized fatty acids and alcohols. Two wax ester synthase genes (ws2 and Maqu_0168 from Marinobacter sp.) were cloned and expressed. Both enzymes were found to catalyze the formation of fatty acid esters, with different alcohol preferences. To boost the ability of S. cerevisiae to produce the aforementioned esters, negative regulators of the INO1 gene in phospholipid metabolism, Rpd3 and Opi1, were deleted to increase flux towards fatty acyl-CoAs. In addition, five isobutanol pathway enzymes (Ilv2, Ilv5, Ilv3, Aro10, and Adh7) targeted into the mitochondria were overexpressed to enhance production of alcohol precursors. By combining these engineering strategies with high-cell-density fermentation, over 230 mg/L fatty acid short- and branched-chain alkyl esters were produced, which is the highest titer reported in yeast to date. CONCLUSIONS In this work, we engineered the metabolism of S. cerevisiae to produce biodiesels in the form of fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters. To our knowledge, this is the first report of the production of fatty acid isobutyl and active amyl esters in S. cerevisiae. Our findings will be useful for engineering S. cerevisiae strains toward high-level and sustainable biodiesel production.
Collapse
Affiliation(s)
- Wei Suong Teo
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117597 Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| | - Hua Ling
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117597 Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| | - Ai-Qun Yu
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117597 Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| | - Matthew Wook Chang
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117597 Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| |
Collapse
|
30
|
Röttig A, Zurek PJ, Steinbüchel A. Assessment of bacterial acyltransferases for an efficient lipid production in metabolically engineered strains of E. coli. Metab Eng 2015; 32:195-206. [PMID: 26460058 DOI: 10.1016/j.ymben.2015.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/21/2015] [Accepted: 09/25/2015] [Indexed: 12/25/2022]
Abstract
Microbially produced lipids like triacylglycerols or fatty acid ethyl esters are currently of great interest as fuel replacements or other industrially relevant compounds. They can even be produced by non-oleaginous microbes, like Escherichia coli, upon metabolic engineering. However, there is still much room for improvement regarding the yield for a competitive microbial production of lipids or biofuels. We genetically engineered E. coli by expressing fadD, fadR, pgpB, plsB and 'tesA in combination with atfA from Acinetobacter baylyi. A total fatty acid contents of up to 16% (w/w) was obtained on complex media, corresponding to approximately 9% (w/w) triacylglycerols and representing the highest titers of fatty acids and triacylglycerols obtained in E. coli under comparable cultivation conditions, so far. To evaluate further possibilities for an optimization of lipid production, ten promising bacterial wax ester synthase/acyl-Coenzyme A:diacylglycerol acyltransferases were tested and compared. While highest triacylglycerol storage was achieved with AtfA, the mutated variant AtfA-G355I turned out to be most suitable for fatty acid ethyl ester biosynthesis and enabled an accumulation of approx. 500 mg/L without external ethanol supplementation.
Collapse
Affiliation(s)
- Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Paul Jannis Zurek
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
31
|
Recycling biodiesel-derived glycerol by the oleaginous yeast Rhodosporidium toruloides Y4 through the two-stage lipid production process. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.07.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Thompson RA, Trinh CT. Enhancing fatty acid ethyl ester production inSaccharomyces cerevisiaethrough metabolic engineering and medium optimization. Biotechnol Bioeng 2014; 111:2200-8. [DOI: 10.1002/bit.25292] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 11/12/2022]
Affiliation(s)
- R. Adam Thompson
- Bredesen Center for Interdisciplinary Research and Graduate Education; The University of Tennessee; Knoxville Tennessee
| | - Cong T. Trinh
- Bredesen Center for Interdisciplinary Research and Graduate Education; The University of Tennessee; Knoxville Tennessee
- Department of Chemical and Biomolecular Engineering; The University of Tennessee; Knoxville Tennessee 37996
| |
Collapse
|
33
|
van Gelder AH, Sousa DZ, Rijpstra WIC, Damsté JSS, Stams AJM, Sánchez-Andrea I. Ercella succinigenes gen. nov., sp. nov., an anaerobic succinate-producing bacterium. Int J Syst Evol Microbiol 2014; 64:2449-2454. [DOI: 10.1099/ijs.0.058966-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel anaerobic succinate-producing bacterium, strain ZWBT, was isolated from sludge collected from a biogas desulfurization bioreactor (Eerbeek, the Netherlands). Cells were non-spore-forming, motile, slightly curved rods (0.4–0.5 µm in diameter and 2–3 µm in length), and stained Gram-negative. The temperature range for growth was 25–40 °C, with an optimum at 37 °C. The pH range for growth was 7.0–9.0, with an optimum at pH 7.5. Strain ZWBT was able to ferment glycerol and several carbohydrates mainly to H2, succinate and acetate. Sulfur and fumarate could be used as electron acceptors by strain ZWBT. The G+C content of the genomic DNA was 37.6 mol%. The most abundant fatty acids were iso-C14 : 0 and iso-C16 : 0 DMA. On the basis of 16S rRNA gene sequence similarity, strain ZWBT belongs to the family
Ruminococcaceae
and it is distantly related to
Saccharofermentans acetigenes
JCM 14006T (92.1 %). Based on the physiological features and phylogenetic analysis, strain ZWBT represents a novel species of a new genus, for which the name Ercella succinigenes gen. nov., sp. nov. is proposed. The type strain of Ercella succinigenes is ZWBT ( = DSM 27333T = JCM 19283T).
Collapse
Affiliation(s)
- Antonie H. van Gelder
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Diana Z. Sousa
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - W. Irene C. Rijpstra
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Organic Biogeochemistry, PO Box 59, 1790 AB Den Burg, The Netherlands
| | - Jaap S. Sinninghe Damsté
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Organic Biogeochemistry, PO Box 59, 1790 AB Den Burg, The Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
34
|
Speers AM, Young JM, Reguera G. Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6350-8. [PMID: 24802954 DOI: 10.1021/es500690a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The in situ generation of ethanol from glycerol-containing wastewater shows promise to improve the economics of the biodiesel industry. Consequently, we developed a microbial electrolysis cell (MEC) driven by the synergistic metabolisms of the exoelectrogen Geobacter sulfurreducens and the bacterium Clostridium cellobioparum, which fermented glycerol into ethanol in high yields (90%) and produced fermentative byproducts that served as electron donors for G. sulfurreducens. Syntrophic cooperation stimulated glycerol consumption, ethanol production, and the conversion of fermentation byproducts into cathodic H2 in the MEC. The platform was further improved by adaptively evolving glycerol-tolerant strains with robust growth at glycerol loadings typical of biodiesel wastewater and by increasing the buffering capacity of the anode medium. This resulted in additional increases in glycerol consumption (up to 50 g/L) and ethanol production (up to 10 g/L) at rates that greatly exceeded the capacity of the anode biofilms to concomitantly remove the fermentation byproducts. As a result, 1,3-propanediol was generated as a metabolic sink for electrons not converted into electricity syntrophically. The results highlight the potential of consortia to process glycerol in MECs and provide insights into genetic engineering and system design approaches that can be implemented to further improve MEC performance to satisfy industrial needs.
Collapse
Affiliation(s)
- Allison M Speers
- Department of Microbiology and Molecular Genetics, Michigan State University , 6190 Biomedical and Physical Science Building, 567 Wilson Road, East Lansing, Michigan 48824, United States
| | | | | |
Collapse
|
35
|
Löser C, Urit T, Bley T. Perspectives for the biotechnological production of ethyl acetate by yeasts. Appl Microbiol Biotechnol 2014; 98:5397-415. [DOI: 10.1007/s00253-014-5765-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
|
36
|
Nasaruddin RR, Alam MZ, Jami MS. Evaluation of solvent system for the enzymatic synthesis of ethanol-based biodiesel from sludge palm oil (SPO). BIORESOURCE TECHNOLOGY 2014; 154:155-161. [PMID: 24384322 DOI: 10.1016/j.biortech.2013.11.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/25/2013] [Accepted: 11/30/2013] [Indexed: 06/03/2023]
Abstract
A green technology of biodiesel production focuses on the use of enzymes as the catalyst. In enzymatic biodiesel synthesis, suitable solvent system is very essential to reduce the inhibition effects of the solvent to the enzymes. This study produced ethanol-based biodiesel from a low-cost sludge palm oil (SPO) using locally-produced Candida cylindracea lipase from fermentation of palm oil mill effluent (POME) based medium. The optimum levels of ethanol-to-SPO molar ratio and enzyme loading were found to be 4:1 and 10 U/25 g of SPO respectively with 54.4% w/w SPO yield of biodiesel and 21.7% conversion of free fatty acid (FFA) into biodiesel. Addition of tert-butanol at 2:1 tert-butanol-to-SPO molar ratio into the ethanol-solvent system increased the yield of biodiesel to 71.6% w/w SPO and conversion of FFA into biodiesel to 28.8%. The SPO and ethanol have promising potential for the production of renewable biodiesel using enzymatic-catalyzed esterification and transesterification.
Collapse
Affiliation(s)
- Ricca Rahman Nasaruddin
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
| | - Md Zahangir Alam
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia.
| | - Mohammed Saedi Jami
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol 2014; 27:115-22. [PMID: 24487179 DOI: 10.1016/j.copbio.2014.01.003] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/30/2013] [Accepted: 01/06/2014] [Indexed: 01/17/2023]
Abstract
Different microbial pathways can elongate the carbon chains of molecules in open cultures of microbial populations (i.e. reactor microbiomes) under anaerobic conditions. Here, we discuss three such pathways: 1. homoacetogenesis to combine two carbon dioxide molecules into acetate; 2. succinate formation to elongate glycerol with one carbon from carbon dioxide; and 3. reverse β oxidation to elongate short-chain carboxylates with two carbons into medium-chain carboxylates, leading to more energy-dense and insoluble products (e.g. easier to separate from solution). The ability to use reactor microbiomes to treat complex substrates can simultaneously address two pressing issues: 1. providing proper waste management; and 2. producing renewable chemicals and fuels.
Collapse
|
38
|
Liu R, Zhu F, Lu L, Fu A, Lu J, Deng Z, Liu T. Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metab Eng 2013; 22:10-21. [PMID: 24333607 DOI: 10.1016/j.ymben.2013.12.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 11/14/2013] [Accepted: 12/03/2013] [Indexed: 12/24/2022]
Abstract
Fatty alcohols are important components of surfactants and cosmetic products. The production of fatty alcohols from sustainable resources using microbial fermentation could reduce dependence on fossil fuels and greenhouse gas emission. However, the industrialization of this process has been hampered by the current low yield and productivity of this synthetic pathway. As a result of metabolic engineering strategies, an Escherichia coli mutant containing Synechococcus elongatus fatty acyl-ACP reductase showed improved yield and productivity. Proteomics analysis and in vitro enzymatic assays showed that endogenous E. coli AdhP is a major contributor to the reduction of fatty aldehydes to fatty alcohols. Both in vitro and in vivo results clearly demonstrated that the activity and expression level of fatty acyl-CoA/ACP reductase is the rate-limiting step in the current protocol. In 2.5-L fed-batch fermentation with glycerol as the only carbon source, the most productive E. coli mutant produced 0.75 g/L fatty alcohols (0.02 g fatty alcohol/g glycerol) with a productivity of up to 0.06 g/L/h. This investigation establishes a promising synthetic pathway for industrial microbial production of fatty alcohols.
Collapse
Affiliation(s)
- Ran Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Wuhan J1 Biotech Co., Ltd., Wuhan 430075, China
| | - Fayin Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Lei Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Aisi Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jiankai Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China.
| |
Collapse
|
39
|
Yang L, Zhu Z, Wang W, Lu X. Microbial recycling of glycerol to biodiesel. BIORESOURCE TECHNOLOGY 2013; 150:1-8. [PMID: 24140944 DOI: 10.1016/j.biortech.2013.09.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 05/18/2023]
Abstract
The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | | | | | | |
Collapse
|
40
|
Singh V, Mani I, Chaudhary DK, Dhar PK. Metabolic engineering of biosynthetic pathway for production of renewable biofuels. Appl Biochem Biotechnol 2013; 172:1158-71. [PMID: 24197521 DOI: 10.1007/s12010-013-0606-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 10/23/2013] [Indexed: 12/12/2022]
Abstract
Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.
Collapse
Affiliation(s)
- Vijai Singh
- Department of Biotechnology, Invertis University, Bareilly-Lucknow National Highway 24, Bareilly, 243123, India,
| | | | | | | |
Collapse
|
41
|
Isolation and characterization of a metagenome-derived thermoalkaliphilic esterase with high stability over a broad pH range. Extremophiles 2013; 17:1013-21. [DOI: 10.1007/s00792-013-0583-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/26/2013] [Indexed: 12/12/2022]
|
42
|
|
43
|
Straathof AJJ. Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells. Chem Rev 2013; 114:1871-908. [DOI: 10.1021/cr400309c] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Adrie J. J. Straathof
- Department of Biotechnology, Delft University of Technology, Julianalaan
67, 2628
BC Delft, The Netherlands
| |
Collapse
|
44
|
Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A. PHA Recovery from Biomass. Biomacromolecules 2013; 14:2963-72. [DOI: 10.1021/bm4010244] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohamed H. Madkour
- Institut
für Molekulare Mikrobiologie und Biotechnologie, Westfälische
Wilhelms-Universität Münster, and ‡Environmental Sciences Department,
Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589,
Saudi-Arabia
| | - Daniel Heinrich
- Institut
für Molekulare Mikrobiologie und Biotechnologie, Westfälische
Wilhelms-Universität Münster, and ‡Environmental Sciences Department,
Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589,
Saudi-Arabia
| | - Mansour A. Alghamdi
- Institut
für Molekulare Mikrobiologie und Biotechnologie, Westfälische
Wilhelms-Universität Münster, and ‡Environmental Sciences Department,
Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589,
Saudi-Arabia
| | - Ibraheem I. Shabbaj
- Institut
für Molekulare Mikrobiologie und Biotechnologie, Westfälische
Wilhelms-Universität Münster, and ‡Environmental Sciences Department,
Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589,
Saudi-Arabia
| | - Alexander Steinbüchel
- Institut
für Molekulare Mikrobiologie und Biotechnologie, Westfälische
Wilhelms-Universität Münster, and ‡Environmental Sciences Department,
Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589,
Saudi-Arabia
| |
Collapse
|
45
|
Janßen HJ, Ibrahim MHA, Bröker D, Steinbüchel A. Optimization of macroelement concentrations, pH and osmolarity for triacylglycerol accumulation in Rhodococcus opacus strain PD630. AMB Express 2013; 3:38. [PMID: 23855965 PMCID: PMC3723911 DOI: 10.1186/2191-0855-3-38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/12/2013] [Indexed: 11/16/2022] Open
Abstract
The refinement of biodiesel or renewable diesel from bacterial lipids has a great potential to make a contribution for energy production in the future. This study provides new data concerning suitable nutrient concentrations for cultivation of the Gram-positive Rhodococcus opacus PD630, which is able to accumulate large amounts of lipids during nitrogen limitation. Enhanced concentrations of magnesium have been shown to increase the final optical density and the lipid content of the cells. Elevated phosphate concentrations slowed down the onset of the accumulation phase, without a clear effect on the final optical density and the cell's lipid content. A robust growth of R. opacus was possible in the presence of ammonium concentrations of up to 1.4 g l(-1) and sucrose concentrations of up to 240 g l(-1), with an optimum regarding growth and lipid storage observed in the range of 0.2 to 0.4 g l(-1) ammonium and 20 to 40 g l(-1) sucrose, respectively. Moreover, R. opacus showed tolerance to high salt concentrations.
Collapse
Affiliation(s)
- Helge Jans Janßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | - Mohammad H A Ibrahim
- Natural and Microbial Products Chemistry Department, Pharmaceutical & Drugs Industries Research Division, National Research Centre, Dokki, Egypt
| | - Daniel Bröker
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
46
|
Abstract
Long-chain-length hydrophobic acyl residues play a vital role in a multitude of essential biological structures and processes. They build the inner hydrophobic layers of biological membranes, are converted to intracellular storage compounds, and are used to modify protein properties or function as membrane anchors, to name only a few functions. Acyl thioesters are transferred by acyltransferases or transacylases to a variety of different substrates or are polymerized to lipophilic storage compounds. Lipases represent another important enzyme class dealing with fatty acyl chains; however, they cannot be regarded as acyltransferases in the strict sense. This review provides a detailed survey of the wide spectrum of bacterial acyltransferases and compares different enzyme families in regard to their catalytic mechanisms. On the basis of their studied or assumed mechanisms, most of the acyl-transferring enzymes can be divided into two groups. The majority of enzymes discussed in this review employ a conserved acyltransferase motif with an invariant histidine residue, followed by an acidic amino acid residue, and their catalytic mechanism is characterized by a noncovalent transition state. In contrast to that, lipases rely on completely different mechanism which employs a catalytic triad and functions via the formation of covalent intermediates. This is, for example, similar to the mechanism which has been suggested for polyester synthases. Consequently, although the presented enzyme types neither share homology nor have a common three-dimensional structure, and although they deal with greatly varying molecule structures, this variety is not reflected in their mechanisms, all of which rely on a catalytically active histidine residue.
Collapse
Affiliation(s)
- Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
47
|
Buijs NA, Siewers V, Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 2013; 17:480-8. [DOI: 10.1016/j.cbpa.2013.03.036] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/06/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
|
48
|
Röttig A, Steinbüchel A. Random mutagenesis ofatfAand screening forAcinetobacter baylyimutants with an altered lipid accumulation. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201200401] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Lennen RM, Pfleger BF. Microbial production of fatty acid-derived fuels and chemicals. Curr Opin Biotechnol 2013; 24:1044-53. [PMID: 23541503 DOI: 10.1016/j.copbio.2013.02.028] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/21/2022]
Abstract
Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance.
Collapse
Affiliation(s)
- Rebecca M Lennen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Room 3629, Madison, WI 53706, United States; U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | | |
Collapse
|
50
|
Liu Z, Gao Y, Chen J, Imanaka T, Bao J, Hua Q. Analysis of metabolic fluxes for better understanding of mechanisms related to lipid accumulation in oleaginous yeast Trichosporon cutaneum. BIORESOURCE TECHNOLOGY 2013; 130:144-51. [PMID: 23306122 DOI: 10.1016/j.biortech.2012.12.072] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 05/11/2023]
Abstract
Microbial fermentation for producing biodiesel from lignocellulosic hydrolysates is receiving increasing attention and attempts have been made to screen an oleaginous Trichosporon sp. with high lipid content and a strong tolerance to lignocellulose hydrolysates. In order to better understand mechanisms related to its lipid accumulation, metabolic flux analysis was performed under 5gL(-1) ammonium sulfate (high nitrogen) and/or 0.4gL(-1) ammonium sulfate (low nitrogen) conditions. Cell growth phase and lipid accumulation phase were shown for cells grown under low nitrogen condition. Results of flux distribution demonstrated that NADPH provided by cytosolic malic enzyme and the acetyl-CoA from cytoplasmic citrate by the ATP: citrate lyase were the two primary sources for excess lipid accumulation. Flux data also supported the fact that the citrate pyruvate cycle plays an essential role in the lipid accumulation. The flux information obtained could also motivate new design strategies for oleaginous yeasts for enhanced biodiesel production.
Collapse
Affiliation(s)
- Zhijie Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | |
Collapse
|