1
|
Wu Y, Jin H, Yu Q, Wei Z, Zhu J, Qiu X, Luo G, Li J, Zhan Y, Cai D, Chen S. Optimizing genome editing efficiency in Streptomyces fradiae via a CRISPR/Cas9n-mediated editing system. Appl Environ Microbiol 2025:e0195324. [PMID: 39840981 DOI: 10.1128/aem.01953-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Streptomyces fradiae is an important bioresource to produce various antibacterial natural products, however, the time-consuming and labor-intensive genome editing toolkits hindered the construction and application of engineered strains, and this study aimed to establish an efficient CRISPR/Cas9n genome editing system in S. fradiae. Initially, the CRISPR/Cas9-mediated editing tool was employed to replace those awkward genome editing tools that relied on homologous recombination, while the off-target Cas9 exhibited high toxicity to S. fradiae Sf01. Therefore, the nickase mutation D10A, high-fidelity mutations including N497A, R661A, Q695A, and Q926A, and thiostrepton-induced promotor PtipA were incorporated into the Cas9 expression cassette, which reduced its toxicity. The deletion of single gene neoI and long fragment sequence (13.3 kb) were achieved with efficiencies of 77.8% and 44%, respectively. Additionally, the established tool was applied to facilitate the rapid deletion of nagB, replacement of Pfrr with PermE*, and integration of exogenous vgbS, with respective efficiencies of 77.8%, 100%, and 67.8%, and all of the above modification strategies benefited neomycin synthesis in S. fradiae. Taken together, this research established an efficient CRISPR/Cas9n-mediated genome editing toolkit in S. fradiae, paving the way for developing high-performance neomycin-producing strains and facilitating the genetic modification of Streptomyces.IMPORTANCEThis study describes the development and application of a genome editing system mediated by CRISPR/Cas9n in Streptomyces fradiae for the first time, which overcomes the challenges associated with genome editing caused by high GC content (74.5%) coupling with complex genome structure, and reduces the negative impact of "off-target effect." Our work not only provides a facile editing tool for constructing S. fradiae strains of high-yield neomycin but also offers the technical guidance for the design of a CRISPR/Cas9n mediated genome editing tool in those creatures with high GC content genomes.
Collapse
Affiliation(s)
- Yuhan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Hui Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Qiang Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Zihan Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Xiangqi Qiu
- Lifecome Biochemistry Co. Ltd., Nanping, China
| | - Gan Luo
- Lifecome Biochemistry Co. Ltd., Nanping, China
| | - Junhui Li
- Lifecome Biochemistry Co. Ltd., Nanping, China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
2
|
Parra J, Beaton A, Seipke RF, Wilkinson B, Hutchings MI, Duncan KR. Antibiotics from rare actinomycetes, beyond the genus Streptomyces. Curr Opin Microbiol 2023; 76:102385. [PMID: 37804816 DOI: 10.1016/j.mib.2023.102385] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
Throughout the golden age of antibiotic discovery, Streptomyces have been unsurpassed for their ability to produce bioactive metabolites. Yet, this success has been hampered by rediscovery. As we enter a new stage of biodiscovery, omics data and existing scientific repositories can enable informed choices on the biodiversity that may yield novel antibiotics. Here, we focus on the chemical potential of rare actinomycetes, defined as bacteria within the order Actinomycetales, but not belonging to the genus Streptomyces. They are named as such due to their less-frequent isolation under standard laboratory practices, yet there is increasing evidence to suggest these biologically diverse genera harbour considerable biosynthetic and chemical diversity. In this review, we focus on examples of successful isolation and genera that have been the focus of more concentrated biodiscovery efforts, we survey the representation of rare actinomycete taxa, compared with Streptomyces, across natural product data repositories in addition to its biosynthetic potential. This is followed by an overview of clinically useful drugs produced by rare actinomycetes and considerations for future biodiscovery efforts. There is much to learn about these underexplored taxa, and mounting evidence suggests that they are a fruitful avenue for the discovery of novel antimicrobials.
Collapse
Affiliation(s)
- Jonathan Parra
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica; Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Ainsley Beaton
- John Innes Centre, Department of Molecular Microbiology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ryan F Seipke
- University of Leeds, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, Leeds LS2 9JT, UK
| | - Barrie Wilkinson
- John Innes Centre, Department of Molecular Microbiology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew I Hutchings
- John Innes Centre, Department of Molecular Microbiology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Katherine R Duncan
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, 141 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
3
|
Patel A, Miles A, Strackhouse T, Cook L, Leng S, Patel S, Klinger K, Rudrabhatla S, Potlakayala SD. Methods of crop improvement and applications towards fortifying food security. Front Genome Ed 2023; 5:1171969. [PMID: 37484652 PMCID: PMC10361821 DOI: 10.3389/fgeed.2023.1171969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Agriculture has supported human life from the beginning of civilization, despite a plethora of biotic (pests, pathogens) and abiotic (drought, cold) stressors being exerted on the global food demand. In the past 50 years, the enhanced understanding of cellular and molecular mechanisms in plants has led to novel innovations in biotechnology, resulting in the introduction of desired genes/traits through plant genetic engineering. Targeted genome editing technologies such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) have emerged as powerful tools for crop improvement. This new CRISPR technology is proving to be an efficient and straightforward process with low cost. It possesses applicability across most plant species, targets multiple genes, and is being used to engineer plant metabolic pathways to create resistance to pathogens and abiotic stressors. These novel genome editing (GE) technologies are poised to meet the UN's sustainable development goals of "zero hunger" and "good human health and wellbeing." These technologies could be more efficient in developing transgenic crops and aid in speeding up the regulatory approvals and risk assessments conducted by the US Departments of Agriculture (USDA), Food and Drug Administration (FDA), and Environmental Protection Agency (EPA).
Collapse
Affiliation(s)
- Aayushi Patel
- Penn State Harrisburg, Middletown, PA, United States
| | - Andrew Miles
- Penn State University Park, State College, University Park, PA, United States
| | | | - Logan Cook
- Penn State Harrisburg, Middletown, PA, United States
| | - Sining Leng
- Shanghai United Cell Biotechnology Co Ltd, Shanghai, China
| | - Shrina Patel
- Penn State Harrisburg, Middletown, PA, United States
| | | | | | | |
Collapse
|
4
|
Buyuklyan JA, Zakalyukina YV, Osterman IA, Biryukov MV. Modern Approaches to the Genome Editing of Antibiotic Biosynthetic Clusters in Actinomycetes. Acta Naturae 2023; 15:4-16. [PMID: 37908767 PMCID: PMC10615194 DOI: 10.32607/actanaturae.23426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 11/02/2023] Open
Abstract
Representatives of the phylum Actinomycetota are one of the main sources of secondary metabolites, including antibiotics of various classes. Modern studies using high-throughput sequencing techniques enable the detection of dozens of potential antibiotic biosynthetic genome clusters in many actinomycetes; however, under laboratory conditions, production of secondary metabolites amounts to less than 5% of the total coding potential of producer strains. However, many of these antibiotics have already been described. There is a continuous "rediscovery" of known antibiotics, and new molecules become almost invisible against the general background. The established approaches aimed at increasing the production of novel antibiotics include: selection of optimal cultivation conditions by modifying the composition of nutrient media; co-cultivation methods; microfluidics, and the use of various transcription factors to activate silent genes. Unfortunately, these tools are non-universal for various actinomycete strains, stochastic in nature, and therefore do not always lead to success. The use of genetic engineering technologies is much more efficient, because they allow for a directed and controlled change in the production of target metabolites. One example of such technologies is mutagenesis-based genome editing of antibiotic biosynthetic clusters. This targeted approach allows one to alter gene expression, suppressing the production of previously characterized molecules, and thereby promoting the synthesis of other unknown antibiotic variants. In addition, mutagenesis techniques can be successfully applied both to new producer strains and to the genes of known isolates to identify new compounds.
Collapse
Affiliation(s)
- J A Buyuklyan
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
| | - Yu V Zakalyukina
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| | - I A Osterman
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025 Russian Federation
| | - M V Biryukov
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| |
Collapse
|
5
|
Lu Y, Happi Mbakam C, Song B, Bendavid E, Tremblay JP. Improvements of nuclease and nickase gene modification techniques for the treatment of genetic diseases. Front Genome Ed 2022; 4:892769. [PMID: 35958050 PMCID: PMC9360573 DOI: 10.3389/fgeed.2022.892769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/08/2022] [Indexed: 12/20/2022] Open
Abstract
Advancements in genome editing make possible to exploit the functions of enzymes for efficient DNA modifications with tremendous potential to treat human genetic diseases. Several nuclease genome editing strategies including Meganucleases (MNs), Zinc Finger Nucleases (ZFNs), Transcription Activator-like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated proteins (CRISPR-Cas) have been developed for the correction of genetic mutations. CRISPR-Cas has further been engineered to create nickase genome editing tools including Base editors and Prime editors with much precision and efficacy. In this review, we summarized recent improvements in nuclease and nickase genome editing approaches for the treatment of genetic diseases. We also highlighted some limitations for the translation of these approaches into clinical applications.
Collapse
Affiliation(s)
- Yaoyao Lu
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Cedric Happi Mbakam
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Bo Song
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Eli Bendavid
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Jacques-P. Tremblay
- CHU de Québec Research Center, Laval University, Quebec City, QC, Canada
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
- *Correspondence: Jacques-P. Tremblay,
| |
Collapse
|
6
|
Enhancement of the solubility of recombinant proteins by fusion with a short-disordered peptide. J Microbiol 2022; 60:960-967. [DOI: 10.1007/s12275-022-2122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
|
7
|
Song C, Luan J, Li R, Jiang C, Hou Y, Cui Q, Cui T, Tan L, Ma Z, Tang YJ, Stewart AF, Fu J, Zhang Y, Wang H. RedEx: a method for seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters. Nucleic Acids Res 2021; 48:e130. [PMID: 33119745 PMCID: PMC7736807 DOI: 10.1093/nar/gkaa956] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022] Open
Abstract
Biosynthesis reprograming is an important way to diversify chemical structures. The large repetitive DNA sequences existing in polyketide synthase genes make seamless DNA manipulation of the polyketide biosynthetic gene clusters extremely challenging. In this study, to replace the ethyl group attached to the C-21 of the macrolide insecticide spinosad with a butenyl group by refactoring the 79-kb gene cluster, we developed a RedEx method by combining Redαβ mediated linear-circular homologous recombination, ccdB counterselection and exonuclease mediated in vitro annealing to insert an exogenous extension module in the polyketide synthase gene without any extra sequence. RedEx was also applied for seamless deletion of the rhamnose 3′-O-methyltransferase gene in the spinosad gene cluster to produce rhamnosyl-3′-desmethyl derivatives. The advantages of RedEx in seamless mutagenesis will facilitate rational design of complex DNA sequences for diverse purposes.
Collapse
Affiliation(s)
- Chaoyi Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ruijuan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yu Hou
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Qingwen Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Tianqi Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Long Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Zaichao Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - A Francis Stewart
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
8
|
Borgers K, Vandewalle K, Van Hecke A, Michielsen G, Plets E, van Schie L, Vanmarcke S, Schindfessel L, Festjens N, Callewaert N. Development of a Counterselectable Transposon To Create Markerless Knockouts from an 18,432-Clone Ordered Mycobacterium bovis Bacillus Calmette-Guérin Mutant Resource. mSystems 2020; 5:e00180-20. [PMID: 32788404 PMCID: PMC7426150 DOI: 10.1128/msystems.00180-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/20/2020] [Indexed: 12/02/2022] Open
Abstract
Mutant resources are essential to improve our understanding of the biology of slow-growing mycobacteria, which include the causative agents of tuberculosis in various species, including humans. The generation of deletion mutants in slow-growing mycobacteria in a gene-by-gene approach in order to make genome-wide ordered mutant resources is still a laborious and costly approach, despite the recent development of improved methods. On the other hand, transposon mutagenesis in combination with Cartesian pooling-coordinate sequencing (CP-CSeq) allows the creation of large archived Mycobacterium transposon insertion libraries. However, such mutants contain selection marker genes with a risk of polar gene effects, which are undesired both for research and for use of these mutants as live attenuated vaccines. In this paper, a derivative of the Himar1 transposon is described which allows the generation of clean, markerless knockouts from archived transposon libraries. By incorporating FRT sites for FlpE/FRT-mediated recombination and I-SceI sites for ISceIM-based transposon removal, we enable two thoroughly experimentally validated possibilities to create unmarked mutants from such marked transposon mutants. The FRT approach is highly efficient but leaves an FRT scar in the genome, whereas the I-SceI-mediated approach can create mutants without any heterologous DNA in the genome. The combined use of CP-CSeq and this optimized transposon was applied in the BCG Danish 1331 vaccine strain (WHO reference 07/270), creating the largest ordered, characterized resource of mutants in a member of the Mycobacterium tuberculosis complex (18,432 clones, mutating 83% of the nonessential M. tuberculosis homologues), from which markerless knockouts can be easily generated.IMPORTANCE While speeding up research for many fields of biology (e.g., yeast, plant, and Caenorhabditis elegans), genome-wide ordered mutant collections are still elusive in mycobacterial research. We developed methods to generate such resources in a time- and cost-effective manner and developed a newly engineered transposon from which unmarked mutants can be efficiently generated. Our library in the WHO reference vaccine strain of Mycobacterium bovis BCG Danish targets 83% of all nonessential genes and was made publicly available via the BCCM/ITM Mycobacteria Collection. This resource will speed up Mycobacterium research (e.g., drug resistance research and vaccine development) and paves the way to similar genome-wide mutant collections in other strains of the Mycobacterium tuberculosis complex. The stretch to a full collection of mutants in all nonessential genes is now much shorter, with just 17% remaining genes to be targeted using gene-by-gene approaches, for which highly effective methods have recently also been described.
Collapse
Affiliation(s)
- Katlyn Borgers
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Kristof Vandewalle
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Annelies Van Hecke
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Gitte Michielsen
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Evelyn Plets
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Loes van Schie
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sandrine Vanmarcke
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Nele Festjens
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Mitousis L, Thoma Y, Musiol-Kroll EM. An Update on Molecular Tools for Genetic Engineering of Actinomycetes-The Source of Important Antibiotics and Other Valuable Compounds. Antibiotics (Basel) 2020; 9:E494. [PMID: 32784409 PMCID: PMC7460540 DOI: 10.3390/antibiotics9080494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The first antibiotic-producing actinomycete (Streptomyces antibioticus) was described by Waksman and Woodruff in 1940. This discovery initiated the "actinomycetes era", in which several species were identified and demonstrated to be a great source of bioactive compounds. However, the remarkable group of microorganisms and their potential for the production of bioactive agents were only partially exploited. This is caused by the fact that the growth of many actinomycetes cannot be reproduced on artificial media at laboratory conditions. In addition, sequencing, genome mining and bioactivity screening disclosed that numerous biosynthetic gene clusters (BGCs), encoded in actinomycetes genomes are not expressed and thus, the respective potential products remain uncharacterized. Therefore, a lot of effort was put into the development of technologies that facilitate the access to actinomycetes genomes and activation of their biosynthetic pathways. In this review, we mainly focus on molecular tools and methods for genetic engineering of actinomycetes that have emerged in the field in the past five years (2015-2020). In addition, we highlight examples of successful application of the recently developed technologies in genetic engineering of actinomycetes for activation and/or improvement of the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
| | | | - Ewa M. Musiol-Kroll
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (L.M.); (Y.T.)
| |
Collapse
|
10
|
Expression and purification of codon-optimized cre recombinase in E. coli. Protein Expr Purif 2020; 167:105546. [DOI: 10.1016/j.pep.2019.105546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/15/2019] [Accepted: 11/24/2019] [Indexed: 12/31/2022]
|
11
|
Dual-function chromogenic screening-based CRISPR/Cas9 genome editing system for actinomycetes. Appl Microbiol Biotechnol 2019; 104:225-239. [DOI: 10.1007/s00253-019-10223-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/19/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
|
12
|
Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces. Appl Microbiol Biotechnol 2019; 103:5463-5482. [DOI: 10.1007/s00253-019-09901-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
|
13
|
Abstract
This article reviews CRISPR/Cas9-based toolkits available to investigate natural product biosynthesis and regulation in streptomycete bacteria.
Collapse
Affiliation(s)
- Fabrizio Alberti
- School of Life Sciences
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Christophe Corre
- School of Life Sciences
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| |
Collapse
|
14
|
Abstract
This article reviews CRISPR/Cas9-based toolkits available to investigate natural product biosynthesis and regulation in streptomycete bacteria.
Collapse
Affiliation(s)
- Fabrizio Alberti
- School of Life Sciences
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Christophe Corre
- School of Life Sciences
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| |
Collapse
|
15
|
An efficient blue-white screening system for markerless deletions and stable integrations in Streptomyces chromosomes based on the blue pigment indigoidine biosynthetic gene bpsA. Appl Microbiol Biotechnol 2018; 102:10231-10244. [DOI: 10.1007/s00253-018-9393-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
|
16
|
Robertsen HL, Weber T, Kim HU, Lee SY. Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201700465] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Helene Lunde Robertsen
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Korea Advanced Institute of Science and Technology (KAIST); Yuseong-gu Daejeon 306-701 Republic of Korea
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Korea Advanced Institute of Science and Technology (KAIST); Yuseong-gu Daejeon 306-701 Republic of Korea
| |
Collapse
|
17
|
Bilyk O, Luzhetskyy A. Metabolic engineering of natural product biosynthesis in actinobacteria. Curr Opin Biotechnol 2016; 42:98-107. [DOI: 10.1016/j.copbio.2016.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
|
18
|
Affiliation(s)
- Oksana Bilyk
- Helmholtz Institute for Pharmaceutical Research; Actinobacteria Metabolic Engineering Group; Universitätscampus E8 66123 Saarbrücken Germany
| | - Andriy Luzhetskyy
- Helmholtz Institute for Pharmaceutical Research; Actinobacteria Metabolic Engineering Group; Universitätscampus E8 66123 Saarbrücken Germany
- University of Saarland; Department of Pharmaceutical Biotechnology; UdS Campus C2.366123 Saarbrücken Germany
| |
Collapse
|
19
|
Horbal L, Luzhetskyy A. Dual control system - A novel scaffolding architecture of an inducible regulatory device for the precise regulation of gene expression. Metab Eng 2016; 37:11-23. [PMID: 27040671 PMCID: PMC4915818 DOI: 10.1016/j.ymben.2016.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
Here, we present a novel scaffolding architecture of an inducible regulatory device. This dual control system is completely silent in the off stage and is coupled to the regulation of gene expression at both the transcriptional and translational levels. This system also functions as an AND gate. We demonstrated the effectiveness of the cumate-riboswitch dual control system for the control of pamamycin production in Streptomyces albus. Placing the cre recombinase gene under the control of this system permitted the construction of synthetic devices with non-volatile memory that sense the signal and respond by altering DNA at the chromosomal level, thereby producing changes that are heritable. In addition, we present a library of synthetic inducible promoters based on the previously described cumate switch. With only one inducer and different promoters, we demonstrate that simultaneous modulation of the expression of several genes to different levels in various operons is possible. Because all modules of the AND gates are functional in bacteria other than Streptomyces, we anticipate that these regulatory devices can be used to control gene expression in other Actinobacteria. The features described in this study make these systems promising tools for metabolic engineering and biotechnology in Actinobacteria.
Collapse
Affiliation(s)
- L Horbal
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany; University of Saarland, Pharmaceutical Biotechnology, 66123 Saarbrucken, Germany
| | - A Luzhetskyy
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany; University of Saarland, Pharmaceutical Biotechnology, 66123 Saarbrucken, Germany.
| |
Collapse
|
20
|
Rivas-Marín E, Canosa I, Santero E, Devos DP. Development of Genetic Tools for the Manipulation of the Planctomycetes. Front Microbiol 2016; 7:914. [PMID: 27379046 PMCID: PMC4910669 DOI: 10.3389/fmicb.2016.00914] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/27/2016] [Indexed: 01/03/2023] Open
Abstract
Bacteria belonging to the Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) superphylum are of interest for biotechnology, evolutionary cell biology, ecology, and human health. Some PVC species lack a number of typical bacterial features while others possess characteristics that are usually more associated to eukaryotes or archaea. For example, the Planctomycetes phylum is atypical for the absence of the FtsZ protein and for the presence of a developed endomembrane system. Studies of the cellular and molecular biology of these infrequent characteristics are currently limited due to the lack of genetic tools for most of the species. So far, genetic manipulation in Planctomycetes has been described in Planctopirus limnophila only. Here, we show a simple approach that allows mutagenesis by homologous recombination in three different planctomycetes species (i.e., Gemmata obscuriglobus, Gimesia maris, and Blastopirellula marina), in addition to P. limnophila, thus extending the repertoire of genetically modifiable organisms in this superphylum. Although the Planctomycetes show high resistance to most antibiotics, we have used kanamycin resistance genes in G. obscuriglobus, P. limnophila, and G. maris, and tetracycline resistance genes in B. marina, as markers for mutant selection. In all cases, plasmids were introduced in the strains by mating or electroporation, and the genetic modification was verified by Southern Blotting analysis. In addition, we show that the green fluorescent protein (gfp) is expressed in all four backgrounds from an Escherichia coli promoter. The genetic manipulation achievement in four phylogenetically diverse planctomycetes will enable molecular studies in these strains, and opens the door to developing genetic approaches not only in other planctomycetes but also other species of the superphylum, such as the Lentisphaerae.
Collapse
Affiliation(s)
- Elena Rivas-Marín
- Laboratory of Evolutionary Innovations, Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de OlavideSeville, Spain
| | - Inés Canosa
- Microbiology Area, Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de OlavideSeville, Spain
| | - Eduardo Santero
- Microbiology Area, Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de OlavideSeville, Spain
| | - Damien P. Devos
- Laboratory of Evolutionary Innovations, Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de OlavideSeville, Spain
| |
Collapse
|
21
|
Thibessard A, Bertrand C, Hiblot J, Piotrowski E, Leblond P. Construction of pDYN6902, a new Streptomyces integrative expression vector designed for cloning sequences interfering with Escherichia coli viability. Plasmid 2015; 82:43-9. [PMID: 26476355 DOI: 10.1016/j.plasmid.2015.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Annabelle Thibessard
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France
| | - Claire Bertrand
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France
| | - Julien Hiblot
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; Ecole Polytechnique Fédérale de Lausanne, Laboratory of Protein Engineering, EPFL SB ISIC LIP1, BCH 4303 (Bât. BCH), CH-1015 Lausanne, Switzerland
| | - Emilie Piotrowski
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France
| | - Pierre Leblond
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France
| |
Collapse
|
22
|
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 2015; 43:343-70. [PMID: 26364200 DOI: 10.1007/s10295-015-1682-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022]
Abstract
Actinomycetes continue to be important sources for the discovery of secondary metabolites for applications in human medicine, animal health, and crop protection. With the maturation of actinomycete genome mining as a robust approach to identify new and novel cryptic secondary metabolite gene clusters, it is critical to continue developing methods to activate and enhance secondary metabolite biosynthesis for discovery, development, and large-scale manufacturing. This review covers recent reports on promising new approaches and further validations or technical improvements of existing approaches to strain improvement applicable to a wide range of Streptomyces species and other actinomycetes.
Collapse
|
23
|
Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 2015; 99:10575-85. [DOI: 10.1007/s00253-015-6931-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022]
|
24
|
Cobb RE, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 2015; 4:723-8. [PMID: 25458909 PMCID: PMC4459934 DOI: 10.1021/sb500351f] [Citation(s) in RCA: 415] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Actinobacteria,
particularly those of genus Streptomyces, remain
invaluable hosts for the discovery and engineering of natural
products and their cognate biosynthetic pathways. However, genetic
manipulation of these bacteria is often labor and time intensive.
Here, we present an engineered CRISPR/Cas system for rapid multiplex
genome editing of Streptomyces strains, demonstrating
targeted chromosomal deletions in three different Streptomyces species and of various sizes (ranging from 20 bp to 30 kb) with
efficiency ranging from 70 to 100%. The designed pCRISPomyces plasmids
are amenable to assembly of spacers and editing templates via Golden
Gate assembly and isothermal assembly (or traditional digestion/ligation),
respectively, allowing rapid plasmid construction to target any genomic
locus of interest. As such, the pCRISPomyces system represents a powerful
new tool for genome editing in Streptomyces.
Collapse
Affiliation(s)
- Ryan E. Cobb
- Department of Chemical and Biomolecular
Engineering, ‡Institute for Genomic Biology, §Departments of Chemistry,
Biochemistry and Bioengineering, Center for Biophysics and Computational
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yajie Wang
- Department of Chemical and Biomolecular
Engineering, ‡Institute for Genomic Biology, §Departments of Chemistry,
Biochemistry and Bioengineering, Center for Biophysics and Computational
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular
Engineering, ‡Institute for Genomic Biology, §Departments of Chemistry,
Biochemistry and Bioengineering, Center for Biophysics and Computational
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
25
|
I-SceI-mediated scarless gene modification via allelic exchange in Clostridium. J Microbiol Methods 2015; 108:49-60. [DOI: 10.1016/j.mimet.2014.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023]
|
26
|
Song CW, Lee J, Lee SY. Genome engineering and gene expression control for bacterial strain development. Biotechnol J 2014; 10:56-68. [PMID: 25155412 DOI: 10.1002/biot.201400057] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 07/26/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022]
Abstract
In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen.
Collapse
Affiliation(s)
- Chan Woo Song
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | | | | |
Collapse
|
27
|
Guha TK, Hausner G. A homing endonuclease with a switch: Characterization of a twintron encoded homing endonuclease. Fungal Genet Biol 2014; 65:57-68. [DOI: 10.1016/j.fgb.2014.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
|
28
|
Yau YY, Stewart CN. Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 2013; 13:36. [PMID: 23617583 PMCID: PMC3689633 DOI: 10.1186/1472-6750-13-36] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/05/2013] [Indexed: 02/07/2023] Open
Abstract
Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification.
Collapse
Affiliation(s)
- Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
29
|
In vivo random mutagenesis of streptomycetes using mariner-based transposon Himar1. Appl Microbiol Biotechnol 2012; 97:351-9. [PMID: 23143534 DOI: 10.1007/s00253-012-4550-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
We report here the in vivo expression of the synthetic transposase gene himar1(a) in Streptomyces coelicolor M145 and Streptomyces albus. Using the synthetic himar1(a) gene adapted for Streptomyces codon usage, we showed random insertion of the transposon into the streptomycetes genome. The insertion frequency for the Himar1-derived minitransposons is nearly 100 % of transformed Streptomyces cells, and insertions are stably inherited in the absence of an antibiotic selection. The minitransposons contain different antibiotic resistance selection markers (apramycin, hygromycin, and spectinomycin), site-specific recombinase target sites (rox and/or loxP), I-SceI meganuclease target sites, and an R6Kγ origin of replication for transposon rescue. We identified transposon insertion loci by random sequencing of more than 100 rescue plasmids. The majority of insertions were mapped to putative open-reading frames on the S. coelicolor M145 and S. albus chromosomes. These insertions included several new regulatory genes affecting S. coelicolor M145 growth and actinorhodin biosynthesis.
Collapse
|
30
|
Actinomycetes genome engineering approaches. Antonie van Leeuwenhoek 2012; 102:503-16. [DOI: 10.1007/s10482-012-9795-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/09/2012] [Indexed: 10/28/2022]
|
31
|
Abstract
Buried within the genomes of many microorganisms are genetic elements that encode rare-cutting homing endonucleases that assist in the mobility of the elements that encode them, such as the self-splicing group I and II introns and in some cases inteins. There are several different families of homing endonucleases and their ability to initiate and target specific sequences for lateral transfers makes them attractive reagents for gene targeting. Homing endonucleases have been applied in promoting DNA modification or genome editing such as gene repair or "gene knockouts". This review examines the categories of homing endonucleases that have been described so far and their possible applications to biotechnology. Strategies to engineer homing endonucleases to alter target site specificities will also be addressed. Alternatives to homing endonucleases such as zinc finger nucleases, transcription activator-like effector nucleases, triplex forming oligonucleotide nucleases, and targetrons are also briefly discussed.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
32
|
Zhou M, Jing X, Xie P, Chen W, Wang T, Xia H, Qin Z. Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor. FEMS Microbiol Lett 2012; 333:169-79. [DOI: 10.1111/j.1574-6968.2012.02609.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/20/2012] [Accepted: 05/31/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Min Zhou
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Xinyun Jing
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Pengfei Xie
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Weihua Chen
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Tao Wang
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Haiyang Xia
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| |
Collapse
|
33
|
Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 2012; 78:1804-12. [PMID: 22247163 DOI: 10.1128/aem.06054-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The feasibility of using technologies based on site-specific recombination in actinomycetes was shown several years ago. Despite their huge potential, these technologies mostly have been used for simple marker removal from a chromosome. In this paper, we present different site-specific recombination strategies for genome engineering in several actinomycetes belonging to the genera Streptomyces, Micromonospora, and Saccharothrix. Two different systems based on Cre/loxP and Dre/rox have been utilized for numerous applications. The activity of the Cre recombinase on the heterospecific loxLE and loxRE sites was similar to its activity on wild-type loxP sites. Moreover, an apramycin resistance marker flanked by the loxLERE sites was eliminated from the Streptomyces coelicolor M145 genome at a surprisingly high frequency (80%) compared to other bacteria. A synthetic gene encoding the Dre recombinase was constructed and successfully expressed in actinomycetes. We developed a marker-free expression method based on the combination of phage integration systems and site-specific recombinases. The Cre recombinase has been used in the deletion of huge genomic regions, including the phenalinolactone, monensin, and lipomycin biosynthetic gene clusters from Streptomyces sp. strain Tü6071, Streptomyces cinnamonensis A519, and Streptomyces aureofaciens Tü117, respectively. Finally, we also demonstrated the site-specific integration of plasmid and cosmid DNA into the chromosome of actinomycetes catalyzed by the Cre recombinase. We anticipate that the strategies presented here will be used extensively to study the genetics of actinomycetes.
Collapse
|
34
|
Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl Environ Microbiol 2011; 77:5370-83. [PMID: 21685164 DOI: 10.1128/aem.00434-11] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we describe a versatile and sensitive reporter system for actinomycetes that is based on gusA, which encodes the β-glucuronidase enzyme. A series of gusA-containing transcriptional and translational fusion vectors were constructed and utilized to study the regulatory cascade of the phenalinolactone biosynthetic gene cluster. Furthermore, these vectors were used to study the efficiency of translation initiation at the ATG, GTG, TTG, and CTG start codons. Surprisingly, constructs using a TTG start codon showed the best activity, whereas those using ATG or GTG were approximately one-half or one-third as active, respectively. The CTG fusion showed only 5% of the activity of the TTG fusion. A suicide vector, pKGLP2, carrying gusA in its backbone was used to visually detect merodiploid formation and resolution, making gene targeting in actinomycetes much faster and easier. Three regulatory genes, plaR1, plaR2, and plaR3, involved in phenalinolactone biosynthesis were efficiently replaced with an apramycin resistance marker using this system. Finally, we expanded the genetic code of actinomycetes by introducing the nonproteinogenic amino acid N-epsilon-cyclopentyloxycarbonyl-l-lysine with the GusA protein as a reporter.
Collapse
|