1
|
Fu J, Xie X, Zhang S, Kang N, Zong G, Zhang P, Cao G. Rich Organic Nitrogen Impacts Clavulanic Acid Biosynthesis through the Arginine Metabolic Pathway in Streptomyces clavuligerus F613-1. Microbiol Spectr 2023; 11:e0201722. [PMID: 36515504 PMCID: PMC9927107 DOI: 10.1128/spectrum.02017-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clavulanic acid (CA) is the preferred clinical drug for the treatment of infections by β-lactam antibiotic-resistant bacteria. CA is produced by Streptomyces clavuligerus, and although there have been many reports on the effects of carbon and nitrogen sources on CA production, the mechanisms involved remain unclear. In this study, we found that CA accumulation in S. clavuligerus F613-1 was increased significantly in MH medium, which is rich in organic nitrogen, compared with that in ML medium, which contains half the amount of organic nitrogen present in MH medium. Transcriptome analysis revealed that genes involved in CA biosynthesis, such as ceas1, ceas2, bls1, bls2, cas2, pah2, gcaS, and cad, and arginine biosynthesis, such as argB, argC, argD, argG, argH, argJ, and argR, were upregulated under rich organic nitrogen. Metabolome data revealed notable differences between cultures of F613-1 grown in MH and ML media with regard to levels of key intracellular metabolites, most of which are involved in arginine metabolic pathways, including arginine, glutamine, and glutamic acid. Additionally, supplementation of ML medium with arginine, glutamine, or glutamic acid resulted in increased CA production by S. clavuligerus F613-1. Our results indicate that rich organic nitrogen mainly affects CA biosynthesis by increasing the levels of amino acids associated with the arginine metabolic pathway and activating the expression of the CA biosynthetic gene cluster. These findings provide important insights for improving medium optimization and engineering of S. clavuligerus F613-1 for high-yield production of CA. IMPORTANCE The bacterium Streptomyces clavuligerus is used for the industrial production of the broad-spectrum β-lactamase inhibitor clavulanic acid (CA). However, much remains unknown about the factors which affect CA yields. We investigated the effects of different levels of organic nitrogen on CA production. Our analyses indicate that higher organic nitrogen levels were associated with increased CA yields and increased levels of arginine biosynthesis. Further analyses supported the relationship between arginine metabolism and CA production and demonstrated that increasing the levels of arginine or associated amino acids could boost CA yields. These findings suggest approaches for improving the production of this clinically important antibiotic.
Collapse
Affiliation(s)
- Jiafang Fu
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Xinru Xie
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Shaowei Zhang
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Ni Kang
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Gongli Zong
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Peipei Zhang
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Guangxiang Cao
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
An integrative-omics analysis of an industrial clavulanic acid-overproducing Streptomyces clavuligerus. Appl Microbiol Biotechnol 2022; 106:6139-6156. [PMID: 35945361 DOI: 10.1007/s00253-022-12098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
Clavulanic acid (CA) is a clinically important secondary metabolite used to treat infectious diseases. We aimed to decipher complex regulatory mechanisms acting in CA biosynthesis by analyzing transcriptome- and proteome-wide alterations in an industrial CA overproducer Streptomyces clavuligerus strain, namely DEPA and its wild-type counterpart NRRL3585. A total of 924 differentially expressed genes (DEGs) and 271 differentially produced proteins (DPPs) were obtained by RNA-seq and nanoLC-MS/MS analyses, respectively. In particular, CA biosynthetic genes, namely, car (cad), cas2, oat2, pah, bls, ceas2, orf12, and claR, a cluster situated regulatory (CSR) gene, were significantly upregulated as shown by RNA-seq. Enzymes of clavam biosynthesis were downregulated considerably in the DEPA strain, while the genes involved in the arginine biosynthesis, one of the precursors of CA pathway, were overexpressed. However, the biosynthesis of the other CA precursor, glyceraldehyde-3-phosphate (G3P), was not affected. CA overproduction in the DEPA strain was correlated with BldD, BldG, BldM, and BldN (AdsA) overrepresentation. In addition, TetR, WhiB, and Xre family transcriptional regulators were shown to be significantly overrepresented. Several uncharacterized/unknown proteins differentially expressed in the DEPA strain await further studies for functional characterization. Correlation analysis indicated an acceptable degree of consistency between the transcriptome and proteome data. The study represents the first integrative-omics analysis in a CA overproducer S. clavuligerus strain, providing insights into the critical control points and potential rational engineering targets for a purposeful increase of CA yields in strain improvement. KEY POINTS: ∙ Transcriptome and proteome-wide alterations in industrial CA overproducer strain DEPA ∙ An acceptable degree of consistency between the transcriptome and proteome data ∙ New targets to be exploited for rational engineering.
Collapse
|
3
|
Recommendations to Synthetize Old and New β-Lactamases Inhibitors: A Review to Encourage Further Production. Pharmaceuticals (Basel) 2022; 15:ph15030384. [PMID: 35337181 PMCID: PMC8954882 DOI: 10.3390/ph15030384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 01/06/2023] Open
Abstract
The increasing emergence of bacteria producing β-lactamases enzymes (BLEs), able to inactivate the available β-lactam antibiotics (BLAs), causing the hydrolytic opening of their β-lactam ring, is one of the global major warnings. According to Ambler classification, BLEs are grouped in serine-BLEs (SBLEs) of class A, C, and D, and metal-BLEs (MBLEs) of class B. A current strategy to restore no longer functioning BLAs consists of associating them to β-lactamase enzymes inhibitors (BLEsIs), which, interacting with BLEs, prevent them hydrolyzing to the associated antibiotic. Worryingly, the inhibitors that are clinically approved are very few and inhibit only most of class A and C SBLEs, leaving several class D and all MBLEs of class B untouched. Numerous non-clinically approved new molecules are in development, which have shown broad and ultra-broad spectrum of action, some of them also being active on the New Delhi metal-β-lactamase-1 (NDM-1), which can hydrolyze all available BLAs except for aztreonam. To not duplicate the existing review concerning this topic, we have herein examined BLEsIs by a chemistry approach. To this end, we have reviewed both the long-established synthesis adopted to prepare the old BLEsIs, those proposed to achieve the BLEsIs that are newly approved, and those recently reported to prepare the most relevant molecules yet in development, which have shown high potency, providing for each synthesis the related reaction scheme.
Collapse
|
4
|
Feng T, Zhao J, Bai YF, Chu J, Wang YH, Zhuang YP. Effect of temperature on synthesis of clavulanic acid and impurity substance G during fermentation by Streptomyces clavuligerus. Prep Biochem Biotechnol 2021; 52:937-941. [PMID: 34871519 DOI: 10.1080/10826068.2021.2009860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Effect of temperature on synthesis of Clavulanic acid (CA) and impurity substance G during fermentation by Streptomyces clavuligerus were investigated. Results show that fermentation at 24 °C is the most favorable for CA synthesis though the fermentation duration was 20-30 hours longer than fermentation at 26 and 28 °C. Meanwhile, the impurity substance G was only 110 mg/L in the end broth of fermentation at 24 °C, which was significantly lower than 148 and 180 mg/L of fermentation at 26 and 28 °C, respectively. Correlation of specific growth rate and CA synthesis was statistically analyzed based on data of 10 batches of industrial fermentation. Two temperature-shift strategies were investigated in 50 L fermenter. Fermentation with 26-24 °C temperature strategy achieved 5097 mg/L CA titer, meanwhile the fermentation duration was shortened 24 hours comparing with fermentation at constant 24 °C. Fermentation with 26-24 °C control strategy was validated in a 60 m3 industrial fermenter, in which 4960 mg/L of CA was achieved while impurity G substance was decreased to titer 65 mg/L from 200 to 300 mg/L of normal production.
Collapse
Affiliation(s)
- Tao Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic China.,Sinopharm Weiqida Pharmaceutical Co., Ltd., DaTong, Shanxi Province, People's Republic China
| | - Jie Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic China
| | - Yan-Feng Bai
- Sinopharm Weiqida Pharmaceutical Co., Ltd., DaTong, Shanxi Province, People's Republic China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic China
| | - Yong-Hong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic China
| | - Ying-Ping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic China
| |
Collapse
|
5
|
Feng T, Zhao J, Chu J, Wang YH, Zhuang YP. Statistical Optimizing of Medium for Clavulanic Acid Production by Streptomyces clavuligerus Using Response Surface Methodology. Appl Biochem Biotechnol 2021; 193:3936-3948. [PMID: 34436750 DOI: 10.1007/s12010-021-03627-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Clavulanic acid (CA) is a naturally occurring antibiotic produced by Streptomyces clavuligerus. Statistical optimization of the fermentation medium for CA production by Streptomyces clavuligerus was carried out. Multiple carbon sources, glycerol, dextrin, and triolein, were considered simultaneously. A two-level fractional factorial design experiment was conducted to identify the significant components of medium on CA production. Statistical analysis of the results showed that soybean meal, dextrin, and triolein were the most significant medium ingredients on CA production. The optimal level of these screened components was obtained by RSM based on the result of a Box-Behnken design, in which the values of dextrin, soybean meal, and triolein in CA fermentation medium were 12.37 g/L, 39.75 g/L, and 26.98 ml/L, respectively. Using the proposed optimized medium, the model predicted 938 mg/L of CA level and via experimental rechecking the model, 946 mg/L of CA level was attained in shake flask fermentation, significantly high than 630 mg/L of original medium. The optimized medium was further verified in 50-L stirred fermenter, and compared with performance of original medium in parallel, CA titer was increased from 889 to 1310 mg/L; a 47% increase was achieved through medium optimization by statistical approaches.
Collapse
Affiliation(s)
- Tao Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China.,Sinopharm Weiqida Pharmaceutical Co., Ltd, No.1 Medical Park, Datong Economic Development Zone, Datong, Shanxi Province, 037300, People's Republic of China
| | - Jie Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China.
| | - Yong-Hong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China
| | - Ying-Ping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Hernández VM, Arteaga A, Dunn MF. Diversity, properties and functions of bacterial arginases. FEMS Microbiol Rev 2021; 45:6308370. [PMID: 34160574 DOI: 10.1093/femsre/fuab034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
The metalloenzyme arginase hydrolyzes L-arginine to produce L-ornithine and urea. In bacteria, arginase has important functions in basic nitrogen metabolism and redistribution, production of the key metabolic precursor L-ornithine, stress resistance and pathogenesis. We describe the regulation and specific functions of the arginase pathway as well as summarize key characteristics of related arginine catabolic pathways. The use of arginase-derived ornithine as a precursor molecule is reviewed. We discuss the biochemical and transcriptional regulation of arginine metabolism, including arginase, with the latter topic focusing on the RocR and AhrC transcriptional regulators in the model organism Bacillus subtilis. Finally, we consider similarities and contrasts in the structure and catalytic mechanism of the arginases from Bacillus caldovelox and Helicobacter pylori. The overall aim of this review is to provide a panorama of the diversity of physiological functions, regulation, and biochemical features of arginases in a variety of bacterial species.
Collapse
Affiliation(s)
- Victor M Hernández
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autonoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Alejandra Arteaga
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autonoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autonoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| |
Collapse
|
7
|
AbuSara NF, Piercey BM, Moore MA, Shaikh AA, Nothias LF, Srivastava SK, Cruz-Morales P, Dorrestein PC, Barona-Gómez F, Tahlan K. Comparative Genomics and Metabolomics Analyses of Clavulanic Acid-Producing Streptomyces Species Provides Insight Into Specialized Metabolism. Front Microbiol 2019; 10:2550. [PMID: 31787949 PMCID: PMC6856088 DOI: 10.3389/fmicb.2019.02550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/22/2019] [Indexed: 01/13/2023] Open
Abstract
Clavulanic acid is a bacterial specialized metabolite, which inhibits certain serine β-lactamases, enzymes that inactivate β-lactam antibiotics to confer resistance. Due to this activity, clavulanic acid is widely used in combination with penicillin and cephalosporin (β-lactam) antibiotics to treat infections caused by β-lactamase-producing bacteria. Clavulanic acid is industrially produced by fermenting Streptomyces clavuligerus, as large-scale chemical synthesis is not commercially feasible. Other than S. clavuligerus, Streptomyces jumonjinensis and Streptomyces katsurahamanus also produce clavulanic acid along with cephamycin C, but information regarding their genome sequences is not available. In addition, the Streptomyces contain many biosynthetic gene clusters thought to be "cryptic," as the specialized metabolites produced by them are not known. Therefore, we sequenced the genomes of S. jumonjinensis and S. katsurahamanus, and examined their metabolomes using untargeted mass spectrometry along with S. clavuligerus for comparison. We analyzed the biosynthetic gene cluster content of the three species to correlate their biosynthetic capacities, by matching them with the specialized metabolites detected in the current study. It was recently reported that S. clavuligerus can produce the plant-associated metabolite naringenin, and we describe more examples of such specialized metabolites in extracts from the three Streptomyces species. Detailed comparisons of the biosynthetic gene clusters involved in clavulanic acid (and cephamycin C) production were also performed, and based on our analyses, we propose the core set of genes responsible for producing this medicinally important metabolite.
Collapse
Affiliation(s)
- Nader F. AbuSara
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Brandon M. Piercey
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Marcus A. Moore
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Arshad Ali Shaikh
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | | | - Pablo Cruz-Morales
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
8
|
Fu J, Qin R, Zong G, Liu C, Kang N, Zhong C, Cao G. The CagRS Two-Component System Regulates Clavulanic Acid Metabolism via Multiple Pathways in Streptomyces clavuligerus F613-1. Front Microbiol 2019; 10:244. [PMID: 30837970 PMCID: PMC6382702 DOI: 10.3389/fmicb.2019.00244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/29/2019] [Indexed: 11/21/2022] Open
Abstract
Streptomyces clavuligerus F613-1 produces a clinically important β-lactamase inhibitor, clavulanic acid (CA). Although the biosynthesis pathway of CA has essentially been elucidated, the global regulatory mechanisms of CA biosynthesis remain unclear. The paired genes cagS and cagR, which are annotated, respectively, as orf22 and orf23 in S. clavuligerus ATCC 27064, encode a bacterial two-component regulatory system (TCS) and were found next to the CA biosynthetic gene cluster of S. clavuligerus F613-1. To further elucidate the regulatory mechanism of CA biosynthesis, the CagRS TCS was deleted from S. clavuligerus F613-1. Deletion of cagRS resulted in decreased production of CA, but the strain phenotype was not otherwise affected. Both transcriptome and ChIP-seq data revealed that, in addition to CA biosynthesis, the CagRS TCS mainly regulates genes involved in primary metabolism, such as glyceraldehyde 3-phosphate (G3P) metabolism and arginine biosynthesis. Notably, both G3P and arginine are precursors of CA. Electrophoretic mobility shift assays demonstrated that the response regulator CagR could bind to the intergenic regions of argG, argC, oat1, oat2, ceaS1, and claR in vitro, suggesting that CagR can directly regulate genes involved in arginine and CA biosynthesis. This study indicated that CagRS is a pleiotropic regulator that can directly affect the biosynthesis of CA and indirectly affect CA production by regulating the metabolism of arginine and G3P. Our findings provide new insights into the regulation of CA biosynthetic pathways and provide an innovative approach for future metabolic engineering efforts for CA production in S. clavuligerus.
Collapse
Affiliation(s)
- Jiafang Fu
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Ronghuo Qin
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Gongli Zong
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Cheng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Ni Kang
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
9
|
Li Z, Li L, Zheng Y, Chen C, Sun T. Diagnostic absolute configuration determination of clavulanate potassium: A comprehensive investigation of chiroptical spectroscopies and theoretical calculations. J Pharm Biomed Anal 2018; 160:351-359. [DOI: 10.1016/j.jpba.2018.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/12/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
|
10
|
Viana Marques DDA, Machado SEF, Ebinuma VCS, Duarte CDAL, Converti A, Porto ALF. Production of β-Lactamase Inhibitors by Streptomyces Species. Antibiotics (Basel) 2018; 7:E61. [PMID: 30018235 PMCID: PMC6163296 DOI: 10.3390/antibiotics7030061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
β-Lactamase inhibitors have emerged as an effective alternative to reduce the effects of resistance against β-lactam antibiotics. The Streptomyces genus is known for being an exceptional natural source of antimicrobials and β-lactamase inhibitors such as clavulanic acid, which is largely applied in clinical practice. To protect against the increasing prevalence of multidrug-resistant bacterial strains, new antibiotics and β-lactamase inhibitors need to be discovered and developed. This review will cover an update about the main β-lactamase inhibitors producers belonging to the Streptomyces genus; advanced methods, such as genetic and metabolic engineering, to enhance inhibitor production compared with wild-type strains; and fermentation and purification processes. Moreover, clinical practice and commercial issues are discussed. The commitment of companies and governments to develop innovative strategies and methods to improve the access to new, efficient, and potentially cost-effective microbial products to combat the antimicrobial resistance is also highlighted.
Collapse
Affiliation(s)
- Daniela de Araújo Viana Marques
- Campus Serra Talhada, University of Pernambuco, Avenida Custódio Conrado, 600, AABB, Serra Talhada, Pernambuco 56912-550, Brazil.
| | - Suellen Emilliany Feitosa Machado
- Department of Antibiotics, Federal University of Pernambuco, Avenida da Engenharia, 2° andar, Cidade Universitária, Recife, Pernambuco 50740-600, Brazil.
| | - Valéria Carvalho Santos Ebinuma
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Araraquara 14800-903, Brazil.
| | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Chemical Pole, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy.
| | - Ana Lúcia Figueiredo Porto
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, Recife, Pernambuco 52171-900, Brazil.
| |
Collapse
|
11
|
An enhanced genome-scale metabolic reconstruction of Streptomyces clavuligerus identifies novel strain improvement strategies. Bioprocess Biosyst Eng 2018; 41:657-669. [DOI: 10.1007/s00449-018-1900-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022]
|
12
|
Qin R, Zhong C, Zong G, Fu J, Pang X, Cao G. Improvement of clavulanic acid production in Streptomyces clavuligerus F613-1 by using a claR - neo reporter strategy. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
13
|
Abstract
Oxidative cyclizations are important transformations that occur widely during natural product biosynthesis. The transformations from acyclic precursors to cyclized products can afford morphed scaffolds, structural rigidity, and biological activities. Some of the most dramatic structural alterations in natural product biosynthesis occur through oxidative cyclization. In this Review, we examine the different strategies used by nature to create new intra(inter)molecular bonds via redox chemistry. This Review will cover both oxidation- and reduction-enabled cyclization mechanisms, with an emphasis on the former. Radical cyclizations catalyzed by P450, nonheme iron, α-KG-dependent oxygenases, and radical SAM enzymes are discussed to illustrate the use of molecular oxygen and S-adenosylmethionine to forge new bonds at unactivated sites via one-electron manifolds. Nonradical cyclizations catalyzed by flavin-dependent monooxygenases and NAD(P)H-dependent reductases are covered to show the use of two-electron manifolds in initiating cyclization reactions. The oxidative installations of epoxides and halogens into acyclic scaffolds to drive subsequent cyclizations are separately discussed as examples of "disappearing" reactive handles. Last, oxidative rearrangement of rings systems, including contractions and expansions, will be covered.
Collapse
Affiliation(s)
- Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Complete Genome Sequence of Streptomyces clavuligerus F613-1, an Industrial Producer of Clavulanic Acid. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01020-16. [PMID: 27660792 PMCID: PMC5034143 DOI: 10.1128/genomea.01020-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Streptomyces clavuligerus strain F613-1 is an industrial strain with high-yield clavulanic acid production. In this study, the complete genome sequence of S. clavuligerus strain F613-1 was determined, including one linear chromosome and one linear plasmid, carrying numerous sets of genes involving in the biosynthesis of clavulanic acid.
Collapse
|
15
|
Ferguson NL, Peña-Castillo L, Moore MA, Bignell DRD, Tahlan K. Proteomics analysis of global regulatory cascades involved in clavulanic acid production and morphological development in Streptomyces clavuligerus. ACTA ACUST UNITED AC 2016; 43:537-55. [DOI: 10.1007/s10295-016-1733-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/02/2016] [Indexed: 12/11/2022]
Abstract
Abstract
The genus Streptomyces comprises bacteria that undergo a complex developmental life cycle and produce many metabolites of importance to industry and medicine. Streptomyces clavuligerus produces the β-lactamase inhibitor clavulanic acid, which is used in combination with β-lactam antibiotics to treat certain β-lactam resistant bacterial infections. Many aspects of how clavulanic acid production is globally regulated in S. clavuligerus still remains unknown. We conducted comparative proteomics analysis using the wild type strain of S. clavuligerus and two mutants (ΔbldA and ΔbldG), which are defective in global regulators and vary in their ability to produce clavulanic acid. Approximately 33.5 % of the predicted S. clavuligerus proteome was detected and 192 known or putative regulatory proteins showed statistically differential expression levels in pairwise comparisons. Interestingly, the expression of many proteins whose corresponding genes contain TTA codons (predicted to require the bldA tRNA for translation) was unaffected in the bldA mutant.
Collapse
Affiliation(s)
- Nicole L Ferguson
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Lourdes Peña-Castillo
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
- grid.25055.37 0000000091306822 Department of Computer Science Memorial University of Newfoundland A1B 3X5 St. John’s NL Canada
| | - Marcus A Moore
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Dawn R D Bignell
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Kapil Tahlan
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| |
Collapse
|
16
|
Leite CA, Cavallieri AP, Baptista AS, Araujo MLGC. Dissociation of cephamycin C and clavulanic acid biosynthesis by 1,3-diaminopropane in Streptomyces clavuligerus. FEMS Microbiol Lett 2015; 363:fnv215. [PMID: 26564965 DOI: 10.1093/femsle/fnv215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 11/12/2022] Open
Abstract
Streptomyces clavuligerus produces simultaneously cephamycin C (CephC) and clavulanic acid (CA). Adding 1,3-diaminopropane to culture medium stimulates production of beta-lactam antibiotics. However, there are no studies on the influence of this diamine on coordinated production of CephC and CA. This study indicates that 1,3-diaminopropane can dissociate CephC and CA productions. Results indicated that low diamine concentrations (below 1.25 g l(-1)) in culture medium increased CA production by 200%, but not that of CephC. Conversely, CephC production increased by 300% when 10 g l(-1) 1,3-diaminopropane was added to culture medium. Addition of just L-lysine (18.3 g l(-1)) to culture medium increased both biocompounds. On the other hand, while L-lysine plus 7.5 g l(-1) 1,3-diaminopropane increased volumetric production of CephC by 1100%, its impact on CA production was insignificant. The combined results suggest that extracellular concentration of 1,3-diaminopropane may trigger the dissociation of CephC and CA biosynthesis in S. clavuligerus.
Collapse
Affiliation(s)
- Carla A Leite
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, UNESP-São Paulo State University, 14800-900 Araraquara, SP, Brazil
| | - André P Cavallieri
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, UNESP-São Paulo State University, 14800-900 Araraquara, SP, Brazil
| | - Amanda S Baptista
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, UNESP-São Paulo State University, 14800-900 Araraquara, SP, Brazil
| | - Maria L G C Araujo
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, UNESP-São Paulo State University, 14800-900 Araraquara, SP, Brazil
| |
Collapse
|
17
|
Li B, Wever WJ, Walsh CT, Bowers AA. Dithiolopyrrolones: biosynthesis, synthesis, and activity of a unique class of disulfide-containing antibiotics. Nat Prod Rep 2014; 31:905-23. [PMID: 24835149 PMCID: PMC4132845 DOI: 10.1039/c3np70106a] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Covering: up to 2014. Dithiolopyrrolone (DTP) group antibiotics were first isolated in the early half of the 20th century, but only recently has research been reawakened by insights gained from the synthesis and biosynthesis of this structurally intriguing class of molecules. DTPs are characterized by an electronically unique bicyclic structure, which contains a compact disulfide bridge between two ene-thiols. Points of diversity within the compound class occur outside of the bicyclic core, at the two amide nitrogens. Such modifications distinguish three of the most well studied members of the class, holomycin, thiolutin, and aureothricin; the DTP core has also more recently been identified in the marine antibiotic thiomarinol, in which it is linked to a marinolic acid moiety, analog of the FDA-approved topical antibiotic Bactroban® (GlaxoSmithKline). Dithiolopyrrolones exhibit relatively broad-spectrum antibiotic activity against many Gram-positive and Gram-negative bacteria, as well as strains of Mycobacterium tuberculosis. Additionally, they have been shown to exhibit potent and selective anti-cancer activity. Despite this promising profile, there is still much unknown about the mechanisms of action for DTPs. Early reports suggested that they inhibit yeast growth at the level of transcription and that this effect is largely responsible for their distinctive microbial static properties; a similar mechanism is supported in bacteria. Elucidation of biosynthetic pathways for holomycin in Streptomyces clavuligerus and Yersinia ruckeri and thiomarinol in Alteromonas rava sp. nov. SANK 73390, have contributed evidence suggesting that multiple mechanisms may be operative in the activity of these compounds. This review will comprehensively cover the history and development of dithiolopyrrolones with particular emphasis on the biosynthesis, synthesis, biological activity and mechanism of action.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Walter J. Wever
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher T. Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 200 Longwood Ave., Boston, MA, 02115
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
18
|
Abstract
Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.
Collapse
Affiliation(s)
- Bijan Zakeri
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| | - Timothy K. Lu
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| |
Collapse
|
19
|
Guo D, Zhao Y, Yang K. Coordination of glycerol utilization and clavulanic acid biosynthesis to improve clavulanic acid production in Streptomyces clavuligerus. SCIENCE CHINA-LIFE SCIENCES 2013; 56:591-600. [PMID: 23832248 DOI: 10.1007/s11427-013-4507-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/28/2013] [Indexed: 11/26/2022]
Abstract
The glycerol utilization (gyl) operon is involved in clavulanic acid (CA) production by Streptomyces clavuligerus, and possibly supplies the glyceraldehyde-3-phosphate (G3P) precursor for CA biosynthesis. The gyl operon is regulated by GylR and is induced by glycerol. To enhance CA production in S. clavuligerus, an extra copy of ccaR expressed from Pgyl (the gyl promoter) was integrated into the chromosome of S. clavuligerus NRRL 3585. This construct coordinated the transcription of CA biosynthetic pathway genes with expression of the gyl operon. In the transformants carrying the Pgyl-controlled regulatory gene ccaR, CA production was enhanced 3.19-fold in glycerol-enriched batch cultures, relative to the control strain carrying an extra copy of ccaR controlled by its own promoter (PccaR). Consistent with enhanced CA production, the transcription levels of ccaR, ceas2 and claR were significantly up-regulated in the transformants containing Pgyl-controlled ccaR.
Collapse
Affiliation(s)
- Dekun Guo
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | |
Collapse
|
20
|
Paradkar A. Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement. J Antibiot (Tokyo) 2013; 66:411-20. [DOI: 10.1038/ja.2013.26] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/25/2013] [Accepted: 03/11/2013] [Indexed: 11/09/2022]
|
21
|
Song E, Rajesh T, Lee BR, Kim EJ, Jeon JM, Park SH, Park HY, Choi KY, Kim YG, Yang YH, Kim BG. Deletion of an architectural unit, leucyl aminopeptidase (SCO2179), in Streptomyces coelicolor increases actinorhodin production and sporulation. Appl Microbiol Biotechnol 2013; 97:6823-33. [PMID: 23525887 DOI: 10.1007/s00253-013-4847-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/25/2013] [Accepted: 03/08/2013] [Indexed: 12/01/2022]
Abstract
Several reports state that three architectural units, including integration host factor, leucyl aminopeptidase (PepA), and purine regulator, are involved in transcriptional process with RNA polymerase in Escherichia coli. Similarly, Streptomyces species possess the same structural units. We previously identified a protein, Streptomyces integration host factor (sIHF), involved in antibiotic production and sporulation. Subsequently, the function of PepA (SCO2179) was examined in detail. PepA is highly conserved among various Streptomyces spp., but it has not yet been characterized in Streptomyces coelicolor. While it is annotated as a putative leucyl aminopeptidase because it contains a peptidase M17 superfamily domain, this protein did not exhibit leucyl aminopeptidase activity. SCO2179 deletion mutant showed increased actinorhodin production and sporulation, as well as more distinct physiological differences, particularly when cultured on N-acetylglucosamine (GlcNAc) minimal media. The results of two-dimensional gel analysis and reverse transcription PCR showed that the SCO2179 deletion increased protein and mRNA levels of ftsZ, ssgA, and actinorhodin (ACT)-related genes such as actII-ORF4, resulting in increased actinorhodin production and spore formation in minimal media containing GlcNAc.
Collapse
Affiliation(s)
- Eunjung Song
- School of Chemical and Biological Engineering, Institute of Bioengineering, and Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-gu, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Müller M, Sprenger GA, Pohl M. CC bond formation using ThDP-dependent lyases. Curr Opin Chem Biol 2013; 17:261-70. [PMID: 23523314 DOI: 10.1016/j.cbpa.2013.02.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/02/2013] [Accepted: 02/14/2013] [Indexed: 01/17/2023]
Abstract
The present review summarizes recent achievements in enzymatic thiamine catalysis during the past three years. With well-established enzymes such as BAL, PDC and TK new reactions have been identified and respective variants were prepared, which enable access to stereoisomeric products. Further we highlight recent progress with 'new' ThDP-dependent enzymes like MenD and PigD, which catalyze the Stetter-like 1,4 addition of aldehydes and YerE, which is the first known ThDP-dependent enzyme accepting ketones as acceptors.
Collapse
Affiliation(s)
- Michael Müller
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
23
|
Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 2013; 31:287-311. [DOI: 10.1016/j.biotechadv.2012.12.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/23/2022]
|
24
|
Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. The enzymes of β-lactam biosynthesis. Nat Prod Rep 2013; 30:21-107. [DOI: 10.1039/c2np20065a] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Biosynthesis of clavam metabolites. ACTA ACUST UNITED AC 2012; 39:1407-19. [DOI: 10.1007/s10295-012-1191-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/22/2012] [Indexed: 01/06/2023]
Abstract
Abstract
Naturally occurring clavam metabolites include the valuable β-lactamase inhibitor, clavulanic acid, as well as stereochemical variants with side-chain modifications, called the 5S clavams. Because of the clinical importance of clavulanic acid, most studies of clavam biosynthesis are based on the industrial producer species Streptomyces clavuligerus. Well-characterized early steps in clavam biosynthesis are outlined, and less well understood late steps in 5S clavam biosynthesis are proposed. The complex genetic organization of the clavam biosynthetic genes in S. clavuligerus is described and, where possible, comparisons with other producer species are presented.
Collapse
|
26
|
Yin H, Xiang S, Zheng J, Fan K, Yu T, Yang X, Peng Y, Wang H, Feng D, Luo Y, Bai H, Yang K. Induction of holomycin production and complex metabolic changes by the argR mutation in Streptomyces clavuligerus NP1. Appl Environ Microbiol 2012; 78:3431-41. [PMID: 22344669 PMCID: PMC3346449 DOI: 10.1128/aem.07699-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 02/11/2012] [Indexed: 02/06/2023] Open
Abstract
In bacteria, arginine biosynthesis is tightly regulated by a universally conserved regulator, ArgR, which regulates the expression of arginine biosynthetic genes, as well as other important genes. Disruption of argR in Streptomyces clavuligerus NP1 resulted in complex phenotypic changes in growth and antibiotic production levels. To understand the metabolic changes underlying the phenotypes, comparative proteomic studies were carried out between NP1 and its argR disruption mutant (designated CZR). In CZR, enzymes involved in holomycin biosynthesis were overexpressed; this is consistent with its holomycin overproduction phenotype. The effects on clavulanic acid (CA) biosynthesis are more complex. Several proteins from the CA cluster were moderately overexpressed, whereas several proteins from the 5S clavam biosynthetic cluster and from the paralog cluster of CA and 5S clavam biosynthesis were severely downregulated. Obvious changes were also detected in primary metabolism, which are mainly reflected in the altered expression levels of proteins involved in acetyl-coenzyme A (CoA) and cysteine biosynthesis. Since acetyl-CoA and cysteine are precursors for holomycin synthesis, overexpression of these proteins is consistent with the holomycin overproduction phenotype. The complex interplay between primary and secondary metabolism and between secondary metabolic pathways were revealed by these analyses, and the insights will guide further efforts to improve production levels of CA and holomycin in S. clavuligerus.
Collapse
Affiliation(s)
- Hua Yin
- Address correspondence to Keqian Yang,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sydor PK, Challis GL. Oxidative tailoring reactions catalyzed by nonheme iron-dependent enzymes: streptorubin B biosynthesis as an example. Methods Enzymol 2012; 516:195-218. [PMID: 23034230 DOI: 10.1016/b978-0-12-394291-3.00002-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Tailoring enzymes catalyze reactions that modify natural product backbone structures before, during, or after their biosynthesis to create a final product with specific biological activities. Such reactions can be catalyzed by a myriad of different enzyme families and are responsible for a wide variety of transformations including regio- and/or stereospecific acylation, alkylation, glycosylation, halogenation, and oxidation. Within a broad group of oxidative tailoring enzymes, there is a rapidly growing family of nonheme iron- and oxygen-dependent enzymes that catalyze a variety of remarkable hydroxylation, desaturation, halogenation, and oxidative cyclization reaction in the biosynthesis of several important metabolites, including carbapenems, penicillins, cephalosporins, clavams, prodiginines, fosfomycin, syringomycin, and coronatine. In this chapter, we report an expedient method for analyzing tailoring enzymes that catalyze oxidative cyclization reactions in prodiginine biosynthesis via expression of the corresponding genes in a heterologous host, feeding of putative biosynthetic intermediates to the resulting strains, and liquid chromatography-mass spectrometry analyses of the metabolites produced.
Collapse
Affiliation(s)
- Paulina K Sydor
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|