1
|
Nyári J, Kakuk B, Bagi Z, Rákhely G, Kovács KL. Use of ensiled green willow biomass in biogas fermentation. Biol Futur 2021; 72:263-271. [PMID: 34554482 DOI: 10.1007/s42977-021-00067-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/12/2021] [Indexed: 11/29/2022]
Abstract
The biggest challenges of our era include climate change and the global fossil energy problem. Extensive utilization of renewable energy sources should be a part of the solution for both these problems. Biogas is a versatile renewable energy carrier that has the potential to substitute fossil fuels. The most frequently utilized substrates for the anaerobic digestion (AD) process include maize silage today, but there is an increasing demand for second-generation biomass sources, which are cheaper and do not interfere with the cultivation of food production. Green biomass from short rotation coppice willow (GWB) may be a promising alternative. However, to ensure feedstock quantity and quality all year round, a preservation method has to be developed. We attempted to ensilage the biomass and subsequently utilized the resulting willow-silage in batch fermenters. Various mixtures of lactic acid bacteria were employed to facilitate ensiling by inoculation of the substrate in anaerobic jars for 60 days. During the ensiling analytical investigations, (HPLC, pH, oTS/TS%) were carried out in order to follow the build-up of fermentation products. AD fermentations were assembled from the ensilaged biomass and the methane production was measured for 56 days. The total methane yields of the ensilaged biomass were 8-15% higher than that of the fresh biomass and methane production rates were also improved. Our findings suggest that ensiling is not only an excellent preservation method for willow biomass, but also stimulates its AD.
Collapse
Affiliation(s)
- József Nyári
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Balázs Kakuk
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Biological Research Center, Hungarian Academy of Sciences, Institute of Biophysics, Szeged, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary. .,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary.
| |
Collapse
|
2
|
Giongo A, Granada CE, Borges LGA, Pereira LM, Trindade FJ, Mattiello SP, Oliveira RR, Shubeita FM, Lovato A, Marcon C, Medina-Silva R. Microbial communities in anaerobic digesters change over time and sampling depth. Braz J Microbiol 2020; 51:1177-1190. [PMID: 32394239 DOI: 10.1007/s42770-020-00272-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/09/2020] [Indexed: 10/24/2022] Open
Abstract
Anaerobic digestion (AD) is a process resulting from the anaerobic metabolism of specific microorganisms that produce an eco-friendly type of energy and a stabilized soil fertilizer. We described the microbial communities and their changes in three depths of BioKöhler® biodigester, fed with cattle manure for 18 days, under anaerobic incubation at the psychrophilic temperature range (~ 20 °C). During the experiment, the maximum methane content in the raw biogas was 79.9%. Non-metric multidimensional scaling (MDS) showed significant differences among microbial communities in the bottom, medium, and upper depths. Considering all the periods of incubation, the microbial communities changed until the eighth day, and they remained stable from eighth to seventeenth days. Bacteroidetes, Firmicutes, and Synergistetes were the most abundant phyla in samples, representing approximately 41% of the total OTUs. The relative abundance of the phyla Euryarchaeota, Actinobacteria, Firmicutes, and Verrucomicrobia changed from bottom to medium sampling points. Moreover, Crenarchaeota differed in frequencies from medium to upper, and Acidobacteria from bottom to upper samples. Lentisphaerae, Chloroflexi, and LD1 were different solely at the bottom, whereas OP9 and Tenericutes only in the medium. Psychrophilic AD performed in this work removed pathogens like Salmonella and Escherichia, as observed at the digestate analyzed. This type of treatment of raw manure besides producing eco-friendly energy efficiently also generates a stabilized and safe biomass that can be used as fertilizer in soils.
Collapse
Affiliation(s)
- Adriana Giongo
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Instituto do Petróleo e dos Recursos Naturais, Porto Alegre, RS, Brazil
| | - Camille E Granada
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (UNIVATES), Rua Avelino Tallini, 171, Lajeado, RS, Brazil.
| | - Luiz G A Borges
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Instituto do Petróleo e dos Recursos Naturais, Porto Alegre, RS, Brazil
| | - Leandro M Pereira
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências da Saúde da Vida, Porto Alegre, RS, Brazil
| | - Fernanda J Trindade
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências da Saúde da Vida, Porto Alegre, RS, Brazil
| | - Shaiana P Mattiello
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Instituto do Petróleo e dos Recursos Naturais, Porto Alegre, RS, Brazil.,Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências da Saúde da Vida, Porto Alegre, RS, Brazil
| | - Rafael R Oliveira
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Instituto do Petróleo e dos Recursos Naturais, Porto Alegre, RS, Brazil
| | - Fauzi M Shubeita
- Sociedade Educacional Três de Maio (SETREM), Três de Maio, RS, Brazil.,Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola Politécnica, Porto Alegre, RS, Brazil
| | | | - César Marcon
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola Politécnica, Porto Alegre, RS, Brazil
| | - Renata Medina-Silva
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Instituto do Petróleo e dos Recursos Naturais, Porto Alegre, RS, Brazil.,Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências da Saúde da Vida, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses. Appl Environ Microbiol 2018; 84:AEM.02632-17. [PMID: 29330191 DOI: 10.1128/aem.02632-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/07/2018] [Indexed: 11/20/2022] Open
Abstract
Thermophilic alkaline fermentation followed by mesophilic anaerobic digestion (TM) for hydrogen and methane production from waste-activated sludge (WAS) was investigated. The TM process was also compared to a process with mesophilic alkaline fermentation followed by a mesophilic anaerobic digestion (MM) and one-stage mesophilic anaerobic digestion (M) process. The results showed that both hydrogen yield (74.5 ml H2/g volatile solids [VS]) and methane yield (150.7 ml CH4/g VS) in the TM process were higher than those (6.7 ml H2/g VS and 127.8 ml CH4/g VS, respectively) in the MM process. The lowest methane yield (101.2 ml CH4/g VS) was obtained with the M process. Taxonomic results obtained from metagenomic analysis showed that different microbial community compositions were established in the hydrogen reactors of the TM and MM processes, which also significantly changed the microbial community compositions in the following methane reactors compared to that with the M process. The dynamics of bacterial pathogens were also evaluated. For the TM process, the reduced diversity and total abundance of bacterial pathogens in WAS were observed in the hydrogen reactor and were further reduced in the methane reactor, as revealed by metagenomic analysis. The results also showed not all bacterial pathogens were reduced in the reactors. For example, Collinsella aerofaciens was enriched in the hydrogen reactor, which was also confirmed by quantitative PCR (qPCR) analysis. The study further showed that qPCR was more sensitive for detecting bacterial pathogens than metagenomic analysis. Although there were some differences in the relative abundances of bacterial pathogens calculated by metagenomic and qPCR approaches, both approaches demonstrated that the TM process was more efficient for the removal of bacterial pathogens than the MM and M processes.IMPORTANCE This study developed an efficient process for bioenergy (H2 and CH4) production from WAS and elucidates the dynamics of bacterial pathogens in the process, which is important for the utilization and safe application of WAS. The study also made an attempt to combine metagenomic and qPCR analyses to reveal the dynamics of bacterial pathogens in anaerobic processes, which could overcome the limitations of each method and provide new insights regarding bacterial pathogens in environmental samples.
Collapse
|
4
|
Riede S, Toboldt A, Breves G, Metzner M, Köhler B, Bräunig J, Schafft H, Lahrssen-Wiederholt M, Niemann L. Investigations on the possible impact of a glyphosate-containing herbicide on ruminal metabolism and bacteria in vitro by means of the 'Rumen Simulation Technique'. J Appl Microbiol 2016; 121:644-56. [PMID: 27230806 DOI: 10.1111/jam.13190] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 11/30/2022]
Abstract
AIMS This study was performed in a well-established in vitro model to investigate whether the application of a glyphosate-containing herbicide might affect the bacterial communities and some biochemical parameters in a cow's rumen. METHODS AND RESULTS The test item was applied in two concentrations (high and low) for 5 days. In a second trial, fermentation vessels were inoculated with Clostridium sporogenes before the high dose was applied. Effluents were analysed by biochemical, microbiological and genetic methods. A marginal increase in short-chain fatty acid production and a reduction in NH3 -N were observed. There were minor and rather equivocal changes in the composition of ruminal bacteria but no indications of a shift towards a more frequent abundance of pathogenic Clostridia species. Clostridium sporogenes counts declined consistently. CONCLUSIONS No adverse effects of the herbicide on ruminal metabolism or composition of the bacterial communities could be detected. In particular, there was no evidence of a suspected stimulation of Clostridia growth. SIGNIFICANCE AND IMPACT OF THE STUDY Antibiotic activity of glyphosate resulting in microbial imbalances has been postulated. In this exploratory study, however, intraruminal application of concentrations reflecting potential exposure of dairy cows or beef cattle did not exhibit significant effects on bacterial communities in a complex in vitro system. The low number of replicates (n = 3/dose) may leave some uncertainty.
Collapse
Affiliation(s)
- S Riede
- Department of Physiology, University of Veterinary Medicine, Hannover, Germany
| | - A Toboldt
- Federal Institute for Risk Assessment, Berlin, Germany
| | - G Breves
- Department of Physiology, University of Veterinary Medicine, Hannover, Germany
| | | | - B Köhler
- RIPAC-LABOR GmbH, Potsdam, Germany
| | - J Bräunig
- Federal Institute for Risk Assessment, Berlin, Germany
| | - H Schafft
- Federal Institute for Risk Assessment, Berlin, Germany
| | | | - L Niemann
- Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
5
|
Gómez-Brandón M, Juárez MFD, Zangerle M, Insam H. Effects of digestate on soil chemical and microbiological properties: A comparative study with compost and vermicompost. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:267-274. [PMID: 26476314 DOI: 10.1016/j.jhazmat.2015.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Anaerobic digestion has become increasingly popular as an alternative for recycling wastes from different origins. Consequently, biogas residues, most of them with unknown chemical and biological composition, accrue in large quantities and their application into soil has become a widespread agricultural practise. The aim of this study was to evaluate the effects of digestate application on the chemical and microbiological properties of an arable soil in comparison with untreated manure, compost and vermicompost. Once in the soil matrix either the addition of compost or digestate led to an increased nitrification rate, relative to unamended and manure-treated soil, after 15 and 60 days of incubation. Faecal coliform and E. coli colony forming units (CFUs) were not detected in any of the amended soils after 60 days. The highest number of Clostridium perfringens CFUs was recorded in manure-amended soil at the beginning of the experiment and after 15 days; whilst after 60 days the lowest CFU number was registered in digestate-treated soil. Denaturing gradient gel electrophoresis patterns also showed that besides the treatment the date of sampling could have contributed to modifications in the soil ammonia-oxidising bacteria community, thereby indicating that the soil itself may influence the community diversity more strongly than the treatments.
Collapse
Affiliation(s)
- María Gómez-Brandón
- University of Innsbruck, Institute of Microbiology, Technikerstrasse 25d, 6020 Innsbruck, Austria.
| | | | - Matthias Zangerle
- University of Innsbruck, Institute of Microbiology, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Heribert Insam
- University of Innsbruck, Institute of Microbiology, Technikerstrasse 25d, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Duda RM, da Silva Vantini J, Martins LS, de Mello Varani A, Lemos MVF, Ferro MIT, de Oliveira RA. A balanced microbiota efficiently produces methane in a novel high-rate horizontal anaerobic reactor for the treatment of swine wastewater. BIORESOURCE TECHNOLOGY 2015; 197:152-60. [PMID: 26340024 DOI: 10.1016/j.biortech.2015.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 05/23/2023]
Abstract
A novel combination of structurally simple, high-rate horizontal anaerobic reactors installed in series was used to treat swine wastewater. The reactors maintained stable pH, alkalinity, and volatile acid levels. Removed chemical oxygen demand (COD) represented 68% of the total, and the average specific methane production was 0.30L CH4 (g removed CODtot)(-1). In addition, next-generation sequencing and quantitative real-time PCR analyses were used to explore the methane-producing Archaea and microbial diversity. At least 94% of the sludge diversity belong to the Bacteria and Archaea, indicating a good balance of microorganisms. Among the Bacteria the Proteobacteria, Bacteroidetes and Firmicutes were the most prevalent phyla. Interestingly, up to 12% of the sludge diversity belongs to methane-producing orders, such as Methanosarcinales, Methanobacteriales and Methanomicrobiales. In summary, this system can efficiently produce methane and this is the first time that horizontal anaerobic reactors have been evaluated for the treatment of swine wastewater.
Collapse
Affiliation(s)
- Rose Maria Duda
- Faculty of Agricultural and Veterinary Sciences, Univ Estadual Paulista, Campus of Jaboticabal, Department of Rural Engineering, Laboratory of Environmental Sanitation, 14884-900, Jaboticabal, SP, Brazil; Faculty of Technology Jaboticabal, 14883-130, Jaboticabal, SP, Brazil.
| | - Juliana da Silva Vantini
- Faculty of Agricultural and Veterinary Sciences, Univ Estadual Paulista, Campus of Jaboticabal, Department of Rural Engineering, Laboratory of Environmental Sanitation, 14884-900, Jaboticabal, SP, Brazil
| | - Larissa Scattolin Martins
- Faculty of Agricultural and Veterinary Sciences, Univ Estadual Paulista, Campus of Jaboticabal, Department of Rural Engineering, Laboratory of Environmental Sanitation, 14884-900, Jaboticabal, SP, Brazil
| | - Alessandro de Mello Varani
- Faculty of Agricultural and Veterinary Sciences, Univ Estadual Paulista, Campus of Jaboticabal, Department of Technology, Laboratory of Biochemistry and Molecular Biology, 14884-900, Jaboticabal, SP, Brazil
| | - Manoel Victor Franco Lemos
- Faculty of Agricultural and Veterinary Sciences, Campus of Jaboticabal, Department of Applied Biology, Bacterial Genetics Laboratory, 14884-900, Jaboticabal, SP, Brazil
| | - Maria Inês Tiraboschi Ferro
- Faculty of Agricultural and Veterinary Sciences, Univ Estadual Paulista, Campus of Jaboticabal, Department of Technology, Laboratory of Biochemistry and Molecular Biology, 14884-900, Jaboticabal, SP, Brazil
| | - Roberto Alves de Oliveira
- Faculty of Agricultural and Veterinary Sciences, Univ Estadual Paulista, Campus of Jaboticabal, Department of Rural Engineering, Laboratory of Environmental Sanitation, 14884-900, Jaboticabal, SP, Brazil
| |
Collapse
|
7
|
Fröschle B, Messelhäusser U, Höller C, Lebuhn M. Fate of Clostridium botulinum
and incidence of pathogenic clostridia in biogas processes. J Appl Microbiol 2015. [DOI: 10.1111/jam.12909] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- B. Fröschle
- Department for Quality Assurance and Analytics; Bavarian State Research Center for Agriculture (LfL); Freising Germany
| | - U. Messelhäusser
- Bavarian Health and Food Safety Authority (LGL); Oberschleißheim Germany
| | - C. Höller
- Bavarian Health and Food Safety Authority (LGL); Oberschleißheim Germany
| | - M. Lebuhn
- Department for Quality Assurance and Analytics; Bavarian State Research Center for Agriculture (LfL); Freising Germany
| |
Collapse
|
8
|
Fröschle B, Heiermann M, Lebuhn M, Messelhäusser U, Plöchl M. Hygiene and Sanitation in Biogas Plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:63-99. [PMID: 26337844 DOI: 10.1007/978-3-319-21993-6_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The increasing number of agricultural biogas plants and higher amounts of digestate spread on agricultural land arouse a considerable interest in the hygiene situation of digested products. This chapter reviews the current knowledge on sanitation during anaerobic digestion and the hygienic status of digestate concerning a multitude of pathogens potentially compromising the health of humans, animals and plants. Physical, chemical and biological parameters influencing the efficiency of sanitation in anaerobic digestion are considered. The degree of germ reduction depends particularly on the resistance of the pathogen of concern, the processing conditions, the feedstock composition and the diligence of the operation management. Most scientific studies facing sanitation in biogas plants have provided data ascertaining reduction of pathogens by the biogas process. Some pathogens, however, are able to persist virtually unaffected due to the ability to build resistant permanent forms. As compared to the feedstock, the sanitary status of the digestate is thus improved or in the worst case, the sanitary quality remains almost unchanged. According to this, the spreading of digestate on agricultural area in accordance to current rules and best practice recommendations is considered to impose no additional risk for the health of humans, animals and plants.
Collapse
Affiliation(s)
- Bianca Fröschle
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, Lange Point 6, 85354, Freising, Germany,
| | | | | | | | | |
Collapse
|
9
|
Dohrmann AB, Walz M, Löwen A, Tebbe CC. Clostridium cluster I and their pathogenic members in a full-scale operating biogas plant. Appl Microbiol Biotechnol 2014; 99:3585-98. [DOI: 10.1007/s00253-014-6261-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 11/24/2022]
|
10
|
Yu D, Kurola JM, Lähde K, Kymäläinen M, Sinkkonen A, Romantschuk M. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 143:54-60. [PMID: 24837280 DOI: 10.1016/j.jenvman.2014.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 05/28/2023]
Abstract
Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production.
Collapse
Affiliation(s)
- D Yu
- University of Helsinki, Department of Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland
| | - J M Kurola
- University of Helsinki, Department of Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland
| | - K Lähde
- HAMK University of Applied Sciences, P.O. Box 230, 13101 Hämeenlinna, Finland
| | - M Kymäläinen
- HAMK University of Applied Sciences, P.O. Box 230, 13101 Hämeenlinna, Finland
| | - A Sinkkonen
- University of Helsinki, Department of Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland
| | - M Romantschuk
- University of Helsinki, Department of Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland.
| |
Collapse
|
11
|
Lu XM, Lu PZ, Zhang H. Bacterial communities in manures of piglets and adult pigs bred with different feeds revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechnol 2013; 98:2657-65. [PMID: 24068333 DOI: 10.1007/s00253-013-5211-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 08/18/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022]
Abstract
Pyrosequencing-based analysis was used to characterize and compare bacterial communities in manure samples of piglets (GSPM) and adult pigs (GBPM) bred with green feeds without additives, and piglets (ASPM) and adult pigs (ABPM) bred with synthetic feeds containing additives. For each sample, 5,010 effective sequences were selected and utilized to do the bacterial composition analysis, respectively. In total, 1,489, 1,327, 941, and 883 operational taxonomic units were obtained at 5 % distance cutoff in GBPM, GSPM, ABPM, and ASPM, respectively. Bacterial phylotype richness in GBPM was higher than the other samples, and ASPM had the least richness. The most dominant class in the four samples is Bacteroidia. Approximately 41 % sequences in GBPM were affiliated with the Clostridiales order. Campylobacter, Clostridium and Streptococcus genera containing pathogenic bacteria were detected in the four samples. Bacterial diversity and abundance in swine manures varied with piglets, adult pigs, and feeds. In the four samples, higher bacterial diversity but less potentially pathogenic bacterial genera in manures of adult pigs bred with green feeds were found, which indicated that those manures were more suitable for resource utilization. This study also provides evidence for the reasonableness of pig farming with green feeds.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- Institute for Eco-environmental Sciences, Wenzhou Vocational College of Science & Technology, Wenzhou, 325006, China,
| | | | | |
Collapse
|
12
|
Eikmeyer FG, Rademacher A, Hanreich A, Hennig M, Jaenicke S, Maus I, Wibberg D, Zakrzewski M, Pühler A, Klocke M, Schlüter A. Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:49. [PMID: 23557021 PMCID: PMC3639179 DOI: 10.1186/1754-6834-6-49] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/12/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND In recent years biogas plants in Germany have been supposed to be involved in amplification and dissemination of pathogenic bacteria causing severe infections in humans and animals. In particular, biogas plants are discussed to contribute to the spreading of Escherichia coli infections in humans or chronic botulism in cattle caused by Clostridium botulinum. Metagenome datasets of microbial communities from an agricultural biogas plant as well as from anaerobic lab-scale digesters operating at different temperatures and conditions were analyzed for the presence of putative pathogenic bacteria and virulence determinants by various bioinformatic approaches. RESULTS All datasets featured a low abundance of reads that were taxonomically assigned to the genus Escherichia or further selected genera comprising pathogenic species. Higher numbers of reads were taxonomically assigned to the genus Clostridium. However, only very few sequences were predicted to originate from pathogenic clostridial species. Moreover, mapping of metagenome reads to complete genome sequences of selected pathogenic bacteria revealed that not the pathogenic species itself, but only species that are more or less related to pathogenic ones are present in the fermentation samples analyzed. Likewise, known virulence determinants could hardly be detected. Only a marginal number of reads showed similarity to sequences described in the Microbial Virulence Database MvirDB such as those encoding protein toxins, virulence proteins or antibiotic resistance determinants. CONCLUSIONS Findings of this first study of metagenomic sequence reads of biogas producing microbial communities suggest that the risk of dissemination of pathogenic bacteria by application of digestates from biogas fermentations as fertilizers is low, because obtained results do not indicate the presence of putative pathogenic microorganisms in the samples analyzed.
Collapse
Affiliation(s)
- Felix G Eikmeyer
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, Bielefeld D-33594, Germany
| | - Antje Rademacher
- Department Bioengineering, Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Potsdam, D-14469, Germany
| | - Angelika Hanreich
- Department Bioengineering, Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Potsdam, D-14469, Germany
| | - Magdalena Hennig
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, Bielefeld D-33594, Germany
| | - Sebastian Jaenicke
- Computational Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, D-33594, Germany
| | - Irena Maus
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, Bielefeld D-33594, Germany
| | - Daniel Wibberg
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, Bielefeld D-33594, Germany
| | - Martha Zakrzewski
- Computational Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, D-33594, Germany
| | - Alfred Pühler
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, Bielefeld D-33594, Germany
| | - Michael Klocke
- Department Bioengineering, Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Potsdam, D-14469, Germany
| | - Andreas Schlüter
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, Bielefeld D-33594, Germany
| |
Collapse
|
13
|
Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol 2012; 78:2106-19. [PMID: 22247168 DOI: 10.1128/aem.06394-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the present study, bacterial communities in 200-liter biogas reactors containing liquid manure consecutively fed with casein, starch, and cream were investigated over a period of up to 33 days. A 16S rRNA gene clone library identified Bacteroidetes and Firmicutes as the most abundant bacterial groups in the starting material, at 58.9% and 30.1% of sequences, respectively. The community development of both groups was monitored by real-time PCR and single-strand conformation polymorphism (SSCP) analysis. The Firmicutes and Bacteroidetes communities were unexpectedly stable and hardly influenced by batch-feeding events. The continuous feeding of starch led to community shifts that nevertheless contributed to a stable reactor performance. A longer starving period and a change in the pH value resulted in further community shifts within the Bacteroidetes but did not influence the Firmicutes. Predominant DNA bands from SSCP gels were cloned and sequenced. Sequences related to Peptococcaceae, Cytophagales, and Petrimonas sulfuriphila were found in all samples from all experiments. Real-time PCR demonstrated the abundance of members of the phylum Bacteroidetes and also reflected changes in gene copy numbers in conjunction with a changing pH value and acetate accumulation.
Collapse
|