1
|
Li W, Zhen Y, Yang Y, Wang D, He H. Environmental Adaptability and Roles in Ammonia Oxidation of Aerobic Ammonia-Oxidizing Microorganisms in the Surface Sediments of East China Sea. J Microbiol 2024; 62:845-858. [PMID: 39212864 DOI: 10.1007/s12275-024-00166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
This study investigated the community characteristics and environmental influencing factors of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the surface sediments of the East China Sea. The research found no consistent pattern in the richness and diversity of AOA and AOB with respect to the distance from the shore, indicating a complex interplay of factors. The expression levels of AOA amoA gene and AOB amoA gene in the surface sediments of the East China Sea ranged from 4.49 × 102 to 2.17 × 106 copies per gram of sediment and from 6.6 × 101 to 7.65 × 104 copies per gram of sediment, respectively. Salinity (31.77 to 34.53 PSU) and nitrate concentration (1.51 to 10.12 μmol/L) were identified as key environmental factors significantly affecting the AOA community, while salinity and temperature (13.71 to 19.50 °C) were crucial for the AOB community. The study also found that AOA, dominated by the Nitrosopumilaceae family, exhibited higher gene expression levels than AOB, suggesting a more significant role in ammonia oxidation. The expression of AOB was sensitive to multiple environmental factors, indicating a responsive role in nitrogen cycles and ecosystem health. The findings contribute to a better understanding of the biogeochemical processes and ecological roles of ammonia-oxidizing microorganisms in marine sediments.
Collapse
Affiliation(s)
- Wenhui Li
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Yu Zhen
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, People's Republic of China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, People's Republic of China.
| | - Yuhong Yang
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Daling Wang
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Hui He
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| |
Collapse
|
2
|
Li Q, Cheng X, Liu X, Gao P, Wang H, Su C, Huang Q. Ammonia-oxidizing archaea adapted better to the dark, alkaline oligotrophic karst cave than their bacterial counterparts. Front Microbiol 2024; 15:1377721. [PMID: 38659982 PMCID: PMC11041041 DOI: 10.3389/fmicb.2024.1377721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Subsurface karst caves provide unique opportunities to study the deep biosphere, shedding light on microbial contribution to elemental cycling. Although ammonia oxidation driven by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) is well explored in soil and marine environments, our understanding in the subsurface biosphere still remained limited to date. To address this gap, weathered rock and sediment samples were collected from the Xincuntun Cave in Guilin City, an alkaline karst cave, and subjected to high-throughput sequencing and quantification of bacterial and archaeal amoA, along with determination of the potential nitrification rates (PNR). Results revealed that AOA dominated in ammonia oxidation, contributing 48-100% to the PNR, and AOA amoA gene copies outnumbered AOB by 2 to 6 orders. Nitrososphaera dominated in AOA communities, while Nitrosopira dominated AOB communities. AOA demonstrated significantly larger niche breadth than AOB. The development of AOA communities was influenced by deterministic processes (50.71%), while AOB communities were predominantly influenced by stochastic processes. TOC, NH4+, and Cl- played crucial roles in shaping the compositions of ammonia oxidizers at the OTU level. Cross-domain co-occurrence networks highlighted the dominance of AOA nodes in the networks and positive associations between AOA and AOB, especially in the inner zone, suggesting collaborative effort to thrive in extreme environments. Their high gene copies, dominance in the interaction with ammonia oxidizing bacteria, expansive niche breadth and substantial contribution to PNR collectively confirmed that AOA better adapted to alkaline, oligotrophic karst caves environments, and thus play a fundamental role in nitrogen cycling in subsurface biosphere.
Collapse
Affiliation(s)
- Qing Li
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xiaoyan Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Pengfei Gao
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Chuntian Su
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR, Guilin, China
- Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, Guangxi, China
| | - Qibo Huang
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR, Guilin, China
- Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, Guangxi, China
| |
Collapse
|
3
|
Ye J, Wu J, Deng W, Li Y, Jiang C, Wang Y, Hong Y. Novel database and cut-off value for bacterial amoA gene revealed a spatial variability pattern of the ammonia-oxidizing bacteria community from river to sea. MARINE POLLUTION BULLETIN 2022; 185:114351. [PMID: 36401947 DOI: 10.1016/j.marpolbul.2022.114351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Ammonia-oxidizing bacteria (AOB) catalyze the first step of nitrification, oxidizing ammonia to nitrite, and are characterized by amoA gene encoding ammonia monooxygenase. To analyze the AOB community effectively, an integral taxonomy database containing 14,058 amoA sequences and the optimal cut-off value at 95 % for OTU clustering were determined. This method was evaluated to be efficient by the analysis of environmental samples from the river, estuary, and sea. Using this method, a significant spatial variance of the AOB community was found. The diversity of AOB was highest in the estuary and lowest in the ocean. Nitrosomonas were the predominant AOB in the sediments of the freshwater river and estuary. Nearly all the AOB-amoA sequences belonged to uncultured bacterium in the sediments of deep sea. In general, an integral AOB taxonomic database and a suitable cut-off value were constructed for the comprehensive exploration of the diversity of AOB from river to sea.
Collapse
Affiliation(s)
- Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenfang Deng
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yiben Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Cuihong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Effects of aquatic nitrogen pollution on particle-attached ammonia-oxidizing bacteria in urban freshwater mesocosms. World J Microbiol Biotechnol 2022; 38:64. [DOI: 10.1007/s11274-022-03251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
|
5
|
Bernhard AE, Beltz J, Giblin AE, Roberts BJ. Biogeography of ammonia oxidizers in New England and Gulf of Mexico salt marshes and the potential importance of comammox. ISME COMMUNICATIONS 2021; 1:9. [PMID: 36717686 PMCID: PMC9723745 DOI: 10.1038/s43705-021-00008-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 02/03/2023]
Abstract
Few studies have focused on broad scale biogeographic patterns of ammonia oxidizers in coastal systems, yet understanding the processes that govern them is paramount to understanding the mechanisms that drive biodiversity, and ultimately impact ecosystem processes. Here we present a meta-analysis of 16 years of data of ammonia oxidizer abundance, diversity, and activity in New England (NE) salt marshes and 5 years of data from marshes in the Gulf of Mexico (GoM). Potential nitrification rates were more than 80x higher in GoM compared to NE marshes. However, nitrifier abundances varied between regions, with ammonia-oxidizing archaea (AOA) and comammox bacteria significantly greater in GoM, while ammonia-oxidizing bacteria (AOB) were more than 20x higher in NE than GoM. Total bacterial 16S rRNA genes were also significantly greater in GoM marshes. Correlation analyses of rates and abundance suggest that AOA and comammox are more important in GoM marshes, whereas AOB are more important in NE marshes. Furthermore, ratios of nitrifiers to total bacteria in NE were as much as 80x higher than in the GoM, suggesting differences in the relative importance of nitrifiers between these systems. Communities of AOA and AOB were also significantly different between the two regions, based on amoA sequences and DNA fingerprints (terminal restriction fragment length polymorphism). Differences in rates and abundances may be due to differences in salinity, temperature, and N loading between the regions, and suggest significantly different N cycling dynamics in GoM and NE marshes that are likely driven by strong environmental differences between the regions.
Collapse
Affiliation(s)
- A E Bernhard
- Department of Biology, Connecticut College, New London, CT, USA.
| | - J Beltz
- Department of Biology, Connecticut College, New London, CT, USA
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - A E Giblin
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - B J Roberts
- Louisiana Universities Marine Consortium, Chauvin, LA, USA
| |
Collapse
|
6
|
Li R, Hu C, Wang J, Sun J, Wang Y, Jiao N, Xu D. Biogeographical Distribution and Community Assembly of Active Protistan Assemblages Along an Estuary to a Basin Transect of the Northern South China Sea. Microorganisms 2021; 9:microorganisms9020351. [PMID: 33578968 PMCID: PMC7916720 DOI: 10.3390/microorganisms9020351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/21/2022] Open
Abstract
Marine protists are essential for globally critical biological processes, including the biogeochemical cycles of matter and energy. However, compared with their prokaryotic counterpart, it remains largely unclear how environmental factors determine the diversity and distribution of the active protistan communities on the regional scale. In the present study, the biodiversity, community composition, and potential drivers of the total, abundant, and rare protistan groups were studied using high throughput sequencing on the V9 hyper-variable regions of the small subunit ribosomal RNA (SSU rRNA) along an estuary to basin transect in the northern South China Sea. Overall, Bacillariophyta and Cercozoa were abundant in the surface water; heterotrophic protists including Spirotrichea and marine stramenopiles 3 (MAST-3) were more abundant in the subsurface waters near the heavily urbanized Pearl River estuary; Chlorophyta and Pelagophyceae were abundant at the deep chlorophyll maximum depth, while Hacrobia, Radiolaria, and Excavata were the abundant groups in the deep water. Salinity, followed by water depth, temperature, and other biological factors, were the primary factors controlling the distinct vertical and horizontal distribution of the total and abundant protists. Rare taxa were driven by water depth, followed by temperature, salinity, and the concentrations of PO43−. The active protistan communities were mainly driven by dispersal limitation, followed by drift and other ecological processes.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Chen Hu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Jianning Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430000, China;
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
- Correspondence: (N.J.); (D.X.)
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
- Correspondence: (N.J.); (D.X.)
| |
Collapse
|
7
|
Monthly distribution of ammonia-oxidizing microbes in a tropical bay. J Microbiol 2020; 59:10-19. [PMID: 33201437 DOI: 10.1007/s12275-021-0287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Ammonia oxidation, performed by ammonia-oxidizing archaea (AOA) and bacteria (AOB), plays a critical role in the cycle of nitrogen in the ocean. For now, environmental variables controlling distribution of ammonia-oxidizing microbes are still largely unknown in oceanic environments. In this study, we used real-time quantitative PCR and high-throughput sequencing methods to investigate the abundance and diversity of AOA and AOB from sediment and water in Zhanjiang Bay. Phylogenic analysis revealed that the majority of AOA amoA sequences in water and sediment were affiliated with the genus Nitrosopumilus, whereas the Nitrosotalea cluster was only detected with low abundance in water. Nitrosomonas and Nitrosospira dominated AOB amoA sequences in water and sediment, respectively. The amoA copy numbers of both AOA and AOB varied significantly with month for both sediment and water. When water and sediment temperature dropped to 17-20°C in December and February, respectively, the copy number of AOB amoA genes increased markedly and was much higher than for AOA amoA genes. Also, AOA abundance in water peaked in December when water temperature was lowest (17-20°C). Stepwise multiple regression analyses revealed that temperature was the most key factor driving monthly changes of AOA or AOB abundance. It is inferred that low water temperature may inhibit growth of phytoplankton and other microbes and so reduce competition for a common substrate, ammonium.
Collapse
|
8
|
Vilela CLS, Peixoto RS, Rachid CTCDC, Bassin JP. Assessing the impact of synthetic estrogen on the microbiome of aerated submerged fixed-film reactors simulating tertiary sewage treatment and isolation of estrogen-degrading consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140428. [PMID: 32763724 DOI: 10.1016/j.scitotenv.2020.140428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
17α-ethinylestradiol (EE2) is a synthetic estrogen that can cause harmful effects on animals, such as male feminization and infertility. However, the impact of the EE2 contamination on microbial communities and the potential role of bacterial strains as bioremediation agents are underexplored. The aim of this work was to evaluate the impact of EE2 on the microbial community dynamics of aerated submerged fixed-film reactors (ASFFR) simulating a polishing step downstream of a secondary sewage treatment. For this purpose, the reactors were fed with a synthetic medium with low COD content (around 50 mg l-1), supplemented (reactor H) or not (reactor C) with 1 μg l-1 of EE2. Sludge samples were periodically collected during the bioreactors operation to assess the bacterial profile over time by 16S rRNA gene amplicon sequencing or by bacterial isolation using culture-dependent approach. The results revealed that the most abundant phyla in both reactors were Proteobacteria and Bacteroidetes. At genus level, Chitinophagaceae, Nitrosomonas and Bdellovibrio predominated. Significant effects caused by EE2 treatment and bioreactors operating time were observed by non-metric multidimensional scaling. Therefore, even at low concentrations as 1 μg l-1, EE2 is capable of influencing the bioreactor microbiome. Culture-dependent methods showed that six bacterial isolates, closely related to Pseudomonas and Acinetobacter genera, could grow on EE2 as the sole carbon source under aerobic conditions. These organisms may potentially be used for the assembly of an EE2-degrading bacterial consortium and further exploited for bioremediation applications, including tertiary sewage treatment to remove hormone-related compounds not metabolized in secondary depuration stages.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio Tavora Coelho da Costa Rachid
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Paulo Bassin
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Gasa NP, Nnadozie CF, Kosgey K, Bux F, Kumari S. Effect of ammonium to nitrite ratio on reactor performance and microbial population structure in anammox reactors. ENVIRONMENTAL TECHNOLOGY 2020; 41:3396-3411. [PMID: 31162991 DOI: 10.1080/09593330.2019.1610076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic ammonium oxidation (anammox) presents an efficient alternative for conventional nitrogen removal process. In this study, the effect of varying Substrate (ammonium to nitrite) ratios on reactor performance and microbial community structures within three anaerobic sequencing batch reactors (ASBRs) was investigated. Three 1 L ASBRs (Reactors 1, 2 and 3) were operated under similar operational conditions. By varying the ammonium to nitrite ratios, a significant variation in nitrogen removal was observed after 170 days of operation: nitrogen removal efficiencies of 67.17 ± 7.29%, 57.13 ± 11.18% and 56.26 ± 17.05% in Reactors 3, 2 and 1 respectively were achieved. Similarly, using quantitative PCR, an overall variation in the population of anammox bacteria, ammonia oxidizing bacteria (AOB), Nitrospira and copy numbers of nirS, hzo and hzs genes were observed with varying degrees of expression. High throughput sequencing analysis further showed a shift in microbial community structure with an overall increase in population of Planctomycetia from 0.76% to (3%, 25% and 26%) and Betaproteobacteria from 5.38% to (19%, 21% and 43%) within Reactors 1, 2 and 3, respectively. In conclusion, different substrates ratio showed a significant influence on the overall nitrogen removal rate as well as the abundances of the different microbial groups.
Collapse
Affiliation(s)
- Nomalanga P Gasa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Chika F Nnadozie
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
- Institute for Water Research, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Kiprotich Kosgey
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
10
|
Sun D, Tang X, Zhao M, Zhang Z, Hou L, Liu M, Wang B, Klümper U, Han P. Distribution and Diversity of Comammox Nitrospira in Coastal Wetlands of China. Front Microbiol 2020; 11:589268. [PMID: 33123118 PMCID: PMC7573150 DOI: 10.3389/fmicb.2020.589268] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Complete ammonia oxidizers (comammox), able to individually oxidize ammonia to nitrate, are considered to play a significant role in the global nitrogen cycle. However, the distribution of comammox Nitrospira in estuarine tidal flat wetland and the environmental drivers affecting their abundance and diversity remain unknown. Here, we present a large-scale investigation on the geographical distribution of comammox Nitrospira along the estuarine tidal flat wetlands of China, where comammox Nitrospira were successfully detected in 9 of the 16 sampling sites. The abundance of comammox Nitrospira ranged from 4.15 × 105 to 6.67 × 106 copies/g, 2.21- to 5.44-folds lower than canonical ammonia oxidizers: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Phylogenetic analysis based on the alpha subunit of the ammonia monooxygenase encoding gene (amoA) revealed that comammox Nitrospira Clade A, mainly originating from upstream river inputs, accounts for more than 80% of the detected comammox Nitrospira, whereas comammox Nitrospira clade B were rarely detected. Comammox Nitrospira abundance and dominant comammox Nitrospira OTUs varied within the estuarine samples, showing a geographical pattern. Salinity and pH were the most important environmental drivers affecting the distribution of comammox Nitrospira in estuarine tidal flat wetlands. The abundance of comammox Nitrospira was further negatively correlated with high ammonia and nitrite concentrations. Altogether, this study revealed the existence, abundance and distribution of comammox Nitrospira and the driving environmental factors in estuarine ecosystems, thus providing insights into the ecological niches of this recently discovered nitrifying consortium and their contributions to nitrification in global estuarine environments.
Collapse
Affiliation(s)
- Dongyao Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Mengyue Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Zongxiao Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China.,Institute of Eco-Chongming, East China Normal University, Shanghai, China
| | - Baozhan Wang
- Key Laboratory of Microbiology for Agricultural Environment (Ministry of Agriculture), College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China.,State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.,Institute of Eco-Chongming, East China Normal University, Shanghai, China
| |
Collapse
|
11
|
Zou D, Liu H, Li M. Community, Distribution, and Ecological Roles of Estuarine Archaea. Front Microbiol 2020; 11:2060. [PMID: 32983044 PMCID: PMC7484942 DOI: 10.3389/fmicb.2020.02060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/04/2022] Open
Abstract
Archaea are diverse and ubiquitous prokaryotes present in both extreme and moderate environments. Estuaries, serving as links between the land and ocean, harbor numerous microbes that are relatively highly active because of massive terrigenous input of nutrients. Archaea account for a considerable portion of the estuarine microbial community. They are diverse and play key roles in the estuarine biogeochemical cycles. Ammonia-oxidizing archaea (AOA) are an abundant aquatic archaeal group in estuaries, greatly contributing estuarine ammonia oxidation. Bathyarchaeota are abundant in sediments, and they may involve in sedimentary organic matter degradation, acetogenesis, and, potentially, methane metabolism, based on genomics. Other archaeal groups are also commonly detected in estuaries worldwide. They include Euryarchaeota, and members of the DPANN and Asgard archaea. Based on biodiversity surveys of the 16S rRNA gene and some functional genes, the distribution and abundance of estuarine archaea are driven by physicochemical factors, such as salinity and oxygen concentration. Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota, leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota. We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.
Collapse
Affiliation(s)
- Dayu Zou
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meng Li
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Taylor HB, Kurtz HD. Composition, diversity, and activity of aerobic ammonia-oxidizing Bacteria and Archaea in the intertidal sands of a grand strand South Carolina beach. Microbiologyopen 2020; 9:e1011. [PMID: 32126588 PMCID: PMC7221436 DOI: 10.1002/mbo3.1011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/22/2023] Open
Abstract
Aerobic ammonia oxidation to nitrite has been established as an important ecosystem process in regulating the level of nitrogen in marine ecosystems. This process is carried out by ammonia-oxidizing bacteria (AOB) within the classes Betaproteobacteria and Gammaproteobacteria and ammonia-oxidizing Archaea (AOA) from the phylum Thaumarchaeota, and the latter of which has been established as more prevalent in marine systems. This study investigated the presence, abundance, and activity of these groups of microbes at a beach near Springmaid Pier in Myrtle Beach, South Carolina, through the implementation of next generation sequencing, quantitative PCR (qPCR), and microcosm experiments to monitor activity. Sequencing analysis revealed a diverse community of ammonia-oxidizing microbes dominated by AOA classified within the family Nitrosopumilaceae, and qPCR revealed the abundance of AOA amoA genes over AOB by at least an order of magnitude in most samples. Microcosm studies indicate that the rates of potential ammonia oxidation in these communities satisfy Michaelis-Menten substrate kinetics and this process is more active at temperatures corresponding to summer months than winter. Potential rates in AOA medium were higher than that of AOB medium, indicating a potentially greater contribution of AOA to this process in this environment. In conclusion, this study provides further evidence of the dominance of AOA in these environments compared with AOB and highlights the overall efficiency of this process at turning over excess ammonium that may be present in these environments.
Collapse
Affiliation(s)
- Harrison B Taylor
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States
| | - Harry D Kurtz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States
| |
Collapse
|
13
|
Zhao MM, Chen YP, Xue LG, Fan TT. Three kinds of ammonia oxidizing microorganisms play an important role in ammonia nitrogen self-purification in the Yellow River. CHEMOSPHERE 2020; 243:125405. [PMID: 31995872 DOI: 10.1016/j.chemosphere.2019.125405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
To develop the microbial resources of the Yellow River, seven water samples were collected along the Lanzhou region of the river from upstream to downstream for testing. Analysis of various physico-chemical indexes was conducted, and key parameters influencing the water quality were selected through principal component analysis, after which the decisive factors impacting water quality were determined by correlation and regression analysis. The results indicated that (1) DO, NH3-N, NO2--N, TN, TC, As, Cr6+ and Pb were the main physico-chemical factors influencing water quality in the Lanzhou region, with NH3-N having the greatest effect. (2) Ammonia-oxidizing microorganisms [ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and anaerobic ammonia-oxidizing bacteria (AMX)] were found to mediate the transformation of NH3-N in the studied section. AOA was the primary microbe community among the two aerobic ammonia-oxidizing microorganisms (AOA and AOB) in the Yellow River. (3) Phylogenetic analysis showed that there were some known groups, and there were still many unknown species in the water of the studied section, especially within the AMX population. (4) Correlation analysis revealed that AOA has strong adaptability to unhealthy environments, and that some environmental factors (higher concentrations of carbon, nitrogen and some heavy metals) could increase the AOA gene abundance. Overall, these results suggested there are rich ammonia-oxidizing microbial resources, especially AOA, in the Lanzhou section of the Yellow River, which have the potential for application in nitrogen sewage treatment.
Collapse
Affiliation(s)
- Meng M Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yi-Ping Chen
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
| | - Lin-Gui Xue
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tao T Fan
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
14
|
Response of ammonia-oxidizing Bacteria and Archaea to long-term saline water irrigation in alluvial grey desert soils. Sci Rep 2020; 10:489. [PMID: 31949227 PMCID: PMC6965641 DOI: 10.1038/s41598-019-57402-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/30/2019] [Indexed: 11/16/2022] Open
Abstract
Soil nitrification via ammonia oxidation is a key ecosystem process in terrestrial environments, but little is known of how increasing irrigation of farmland soils with saline waters effects these processes. We investigated the effects of long-term irrigation with saline water on the abundances and community structures of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Irrigation with brackish or saline water increased soil salinity (EC1:5) and NH4-N compared to irrigation with freshwater, while NO3-N, potential nitrification rates (PNR) and amoA gene copy numbers of AOA and AOB decreased markedly under irrigation regimes with saline waters. Moreover, irrigation with brackish water lowered AOA/AOB ratios. PNR was positively correlated with AOA and AOB amoA gene copy numbers across treatments. Saline and brackish water irrigation significantly increased the diversity of AOA, as noted by Shannon index values, while saline water irrigation markedly reduced AOB diversity. In addition, irrigation with brackish or fresh waters resulted in higher proportions of unclassified taxa in the AOB communities. However, irrigation with saline water led to higher proportions of unclassified taxa in the AOA communities along with the Candidatus Nitrosocaldus genus, as compared to soils irrigated with freshwater. AOA community structures were closely associated with soil salinity, NO3−N, and pH, while AOB communities were only significantly associated with NO3−N and pH. These results suggest that salinity was the dominant factor affecting the growth of ammonia-oxidizing microorganisms and community structure. These results can provide a scientific basis for further exploring the response mechanism of ammonia-oxidizing microorganisms and their roles in nitrogen transformation in alluvial grey desert soils of arid areas.
Collapse
|
15
|
Ginawi A, Wang L, Wang H, Yu B, Yunjun Y. Effects of environmental variables on abundance of ammonia-oxidizing communities in sediments of Luotian River, China. PeerJ 2020; 8:e8256. [PMID: 31934502 PMCID: PMC6951284 DOI: 10.7717/peerj.8256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ammonia-oxidizing communities play important functional roles in the nitrification. However, environmental stresses can significantly affect this process by controlling the abundant communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities. In this study, we examined the abundance variations of ammonia-oxidizing communities using quantitative polymerase chain reaction (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP) in a typical subtropical river, Luotian County, South Dabie Mountains, China. Clone libraries were conducted to evaluate the community structure and abundance of AOA and AOB in sediments. Results showed that Nitrososphaera sp and Nitrosopumilus sp were the most dominant AOA. The abundance of the AOA and AOB amoA gene ranged from 5.28 × 108 gene copies (g-soil−1) to 2.23 × 108 gene copies (g-soil−1) and 5.45 × 108 gene copies (g-soil−1) to 3.30 × 107 gene copies (g-soil−1), respectively. Five environmental variables, namely, ORP, DO, NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{3}^{-}$\end{document}3−, Temp, and NH\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{4}^{+}$\end{document}4+ were played a major function in microbial communities of AOA and AOB in sediments. The T-RFLP profiles of AOA showed that 488 and 116 bp T-RFs were dominated. Overall, the results of this study showed that anthropogenic activities andenvironmental stress in rivers can alter the structure and function of microbes in their variable environment.
Collapse
Affiliation(s)
- Amjed Ginawi
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Faculty of Marine Science and Fisheries, Red Sea University, Port Sudan, Red Sea State, Sudan
| | - Lixiao Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huading Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingbing Yu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yunjun
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Chen S, Wang P, Liu H, Xie W, Wan XS, Kao SJ, Phelps TJ, Zhang C. Population dynamics of methanogens and methanotrophs along the salinity gradient in Pearl River Estuary: implications for methane metabolism. Appl Microbiol Biotechnol 2019; 104:1331-1346. [DOI: 10.1007/s00253-019-10221-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/11/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
|
17
|
Spatial and Seasonal Variations in the Abundance of Nitrogen-Transforming Genes and the Microbial Community Structure in Freshwater Lakes with Different Trophic Statuses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16132298. [PMID: 31261730 PMCID: PMC6651097 DOI: 10.3390/ijerph16132298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022]
Abstract
Identifying nitrogen-transforming genes and the microbial community in the lacustrine sedimentary environment is critical for revealing nitrogen cycle processes in eutrophic lakes. In this study, we examined the diversity and abundance of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), denitrifying bacteria (DNB), and anammox bacteria (AAOB) in different trophic status regions of Lake Taihu using the amoA, Arch-amoA, nirS, and hzo genes as functional markers. Quantitative Polymerase Chain Reaction (qPCR) results indicated that the abundance of the nirS gene was the highest, while the amoA gene had the lowest abundance in all regions. Except for the primary inflow area of Lake Taihu, Arch-amoA gene abundance was higher than the hzo gene in three lake bays, and the abundance of the nirS gene increased with decreasing trophic status. The opposite pattern was observed for the amoA, Arch-amoA, and hzo genes. Phylogenetic analyses showed that the predominant AOB and AOA were Nitrosomonas and Nitrosopumilus maritimus, respectively, and the proportion of Nitrosomonas in the eutrophic region (87.9%) was higher than that in the mesotrophic region (71.1%). Brocadia and Anammoxoglobus were the two predominant AAOB in Lake Taihu. Five novel unknown phylotypes of AAOB were observed, and Cluster AAOB-B was only observed in the inflow area with a proportion of 32%. In the DNB community, Flavobacterium occurred at a higher proportion (22.6–38.2%) in all regions, the proportion of Arthrobacter in the mesotrophic region (3.6%) was significantly lower than that in the eutrophic region (15.6%), and the proportions of Cluster DNB-E in the inflow area (24.5%) was significantly higher than that in the lake bay (7.3%). The canonical correspondence analysis demonstrated that the substrate concentration in sedimentary environments, such as NOx--N in the sediment, NH4+-N in the pore water, and the total organic matter, were the key factors that determined the nitrogen-transforming microbial community. However, the temperature was also a predominant factor affecting the AOA and AAOB communities.
Collapse
|
18
|
Nsenga Kumwimba M, Meng F. Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:419-441. [PMID: 31096373 DOI: 10.1016/j.scitotenv.2018.12.236] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/15/2018] [Indexed: 05/27/2023]
Abstract
While there has been a significant recent improvement in the removal of pollutants in natural and engineered systems, trace organic chemicals (TrOCs) are posing a major threat to aquatic environments and human health. There is a critical need for developing potential strategies that aim at enhancing metabolism and/or cometabolism of these compounds. Recently, knowledge regarding biodegradation of TrOCs by ammonia-oxidizing bacteria (AOB) has been widely developed. This review aims to delineate an up-to-date version of the ecophysiology of AOB and outline current knowledge related to biodegradation efficiencies of the frequently reported TrOCs by AOB. The paper also provides an insight into biodegradation pathways by AOB and transformation products of these compounds and makes recommendations for future research of AOB. In brief, nitrifying WWTFs (wastewater treatment facilities) were superior in degrading most TrOCs than non-nitrifying WWTFs due to cometabolic biodegradation by the AOB. To fully understand and/or enhance the cometabolic biodegradation of TrOCs by AOB, recent molecular research has focused on numerous crucial factors including availability of the compounds to AOB, presence of growth substrate (NH4-N), redox potentials, microorganism diversity (AOB and heterotrophs), physicochemical properties and operational parameters of the WWTFs, molecular structure of target TrOCs and membrane-based technologies, may all significantly impact the cometabolic biodegradation of TrOCs. Still, further exploration is required to elucidate the mechanisms involved in biodegradation of TrOCs by AOB and the toxicity levels of formed products.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Democratic Republic of the Congo
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
19
|
Zhou X, Li B, Guo Z, Wang Z, Luo J, Lu C. Niche Separation of Ammonia Oxidizers in Mudflat and Agricultural Soils Along the Yangtze River, China. Front Microbiol 2018; 9:3122. [PMID: 30619196 PMCID: PMC6305492 DOI: 10.3389/fmicb.2018.03122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/03/2018] [Indexed: 12/30/2022] Open
Abstract
Nitrification driven by ammonia oxidizers is a key step of nitrogen removal in estuarine environments. Spatial distribution characteristics of ammonia-oxidizers have been well understood in mudflats, but less studied in the agricultural soils next to mudflats, which also play an important role in nitrogen cycling of the estuarine ecosystem. In the present research, we investigated ammonia oxidizers' distributions along the Yangtze River estuary in Jiangsu Province, China, sampling soils right next to the estuary (mudflats) and the agricultural soils 100 m away. We determined the relationship between the abundance of amoA genes of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) and the potential nitrification rates of the mudflats and agricultural soils. We also identified the environmental variables that correlated with the composition of the ammonia oxidizers' communities by 16S rRNA gene pyrosequencing. Results indicated that agricultural soils have significantly higher potential nitrification rates as well as the AOA abundance, and resulted in strong phylogenetic clustering only in AOA communities. The ammonia oxidizers' community compositions differed dramatically among the mudflat and agricultural sites, and stochasticity played a dominant role. The AOA communities were dominated by the Group 1.1a cluster at the mudflat, whereas the 54D9 and 29i4 clusters were dominant in agriculture soils. The dominant AOB communities in the mudflat were closely related to the Nitrosospira lineage, whereas the agricultural soils were dominated by the Nitrosomonas lineage. Soil organic matter and salinity were correlated with the ammonia oxidizers' community compositions.
Collapse
Affiliation(s)
- Xue Zhou
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| | - Bolun Li
- School of Geographic Sciences, Nanjing University of Information Science and Technology, Nanjing, China
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chunhui Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| |
Collapse
|
20
|
Liu Y, Liu J, Yao P, Ge T, Qiao Y, Zhao M, Zhang XH. Distribution patterns of ammonia-oxidizing archaea and bacteria in sediments of the eastern China marginal seas. Syst Appl Microbiol 2018; 41:658-668. [PMID: 30172418 DOI: 10.1016/j.syapm.2018.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 01/19/2023]
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) vary in their contribution to nitrification in different environments. The eastern China marginal seas (ECMS) are featured by complex river runoffs and ocean currents, forming different sediment patches. Here, via quantitative PCR and clone library analysis of the amoA genes, we showed that AOB were more abundant than AOA in ECMS sediments. The abundance, diversity and richness of AOA, but not AOB, were higher in the East China Sea (ECS) than in the Yellow Sea (YS) and Bohai Sea (BS). Nitrosopumilus (AOA) and Nitrosospira (AOB) were predominant lineages, but their abundances varied significantly between ECS, and BS and YS. This was mainly attributed to salinity and dissolved oxygen of the bottom water. The discovery of a high abundance of Nitrosophaera at estuarine sites suggested strong terrigenous influence exerted on the AOA community. In contrast, variations in ocean conditions played more important roles in structuring the AOB community, which was separated by bottom water dissolved oxygen into two groups: the south YS, and the north YS and BS. This study provides a comprehensive insight into the spatial distribution pattern of ammonia-oxidizing prokaryotes in ECMS sediments, laying a foundation for understanding their relative roles in nitrification.
Collapse
Affiliation(s)
- Yuyang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiwen Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tiantian Ge
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanlu Qiao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Meixun Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Wang L, Zhang J, Li H, Yang H, Peng C, Peng Z, Lu L. Shift in the microbial community composition of surface water and sediment along an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:600-612. [PMID: 29426184 DOI: 10.1016/j.scitotenv.2018.01.203] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/04/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P < 0.05). The bacterial diversity in sediments was significantly higher than their corresponding water samples. Additionally, archaeal communities showed obvious spatial variability in the surface water. The construction of the hydropower station resulted in increased Cyanobacteria abundance in the upstream (32.2%) compared to its downstream (10.3%). Several taxonomic groups of potential fecal indicator bacteria, like Flavobacteria and Bacteroidia, showed an increasing trend in the urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P < 0.01) and NO3- (P < 0.05), and metals (Zn, Fe) (P < 0.05) were the most significant drivers determining the microbial community composition in the urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations.
Collapse
Affiliation(s)
- Lan Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Jing Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Huilin Li
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Hong Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Chao Peng
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Zhengsong Peng
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China; College of Agriculture Science, Xichang College, Xichang 615000, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China.
| |
Collapse
|
22
|
He H, Zhen Y, Mi T, Fu L, Yu Z. Ammonia-Oxidizing Archaea and Bacteria Differentially Contribute to Ammonia Oxidation in Sediments from Adjacent Waters of Rushan Bay, China. Front Microbiol 2018; 9:116. [PMID: 29456526 PMCID: PMC5801408 DOI: 10.3389/fmicb.2018.00116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/18/2018] [Indexed: 11/20/2022] Open
Abstract
Ammonia oxidation plays a significant role in the nitrogen cycle in marine sediments. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) are the key contributors to ammonia oxidation, and their relative contribution to this process is one of the most important issues related to the nitrogen cycle in the ocean. In this study, the differential contributions of AOA and AOB to ammonia oxidation in surface sediments from adjacent waters of Rushan Bay were studied based on the ammonia monooxygenase (amoA) gene. Molecular biology techniques were used to analyze ammonia oxidizers’ community characteristics, and potential nitrification incubation was applied to understand the ammonia oxidizers’ community activity. The objective was to determine the community structure and activity of AOA and AOB in surface sediments from adjacent waters of Rushan Bay and to discuss the different contributions of AOA and AOB to ammonia oxidation during summer and winter seasons in the studied area. Pyrosequencing analysis revealed that the diversity of AOA was higher than that of AOB. The majority of AOA and AOB clustered into Nitrosopumilus and Nitrosospira, respectively, indicating that the Nitrosopumilus group and Nitrosospira groups may be more adaptable in studied sediments. The AOA community was closely correlated to temperature, salinity and ammonium concentration, whereas the AOB community showed a stronger correlation with temperature, chlorophyll-a content (chla) and nitrite concentration. qPCR results showed that both the abundance and the transcript abundance of AOA was consistently greater than that of AOB. AOA and AOB differentially contributed to ammonia oxidation in different seasons. AOB occupied the dominant position in mediating ammonia oxidation during summer, while AOA might play a dominant role in ammonia oxidation during winter.
Collapse
Affiliation(s)
- Hui He
- College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China
| | - Yu Zhen
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Tiezhu Mi
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Lulu Fu
- College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao, China
| |
Collapse
|
23
|
Distinct distribution patterns of ammonia-oxidizing archaea and bacteria in sediment and water column of the Yellow River estuary. Sci Rep 2018; 8:1584. [PMID: 29371667 PMCID: PMC5785527 DOI: 10.1038/s41598-018-20044-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
Ammonia oxidation is a critical process of estuarine nitrogen cycling involving ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the distribution patterns of ammonia-oxidizing microorganisms (AOMs) between different habitats in the same area remain unclear. The present study investigated the AOMs’ abundance and community compositions in both sediment and water habitats of the Yellow River estuary. Quantitative PCR (qPCR) revealed that AOA showed significant higher abundance than AOB both in sediment and water samples. AOA and AOB abundance distribution trends were consistent in sediment but distinct in water along the sampling sites. Clone library-based analyses showed that AOA sequences were affiliated with Nitrososphaera, Nitrosopumilus and Nitrosotalea clusters. Generally, Nitrososphaera was predominant in sediment, while Nitrosopumilus and Nitrosotalea dominated in water column. AOB sequences were classified into genera Nitrosospira and Nitrosomonas, and Nitrosospira dominated in both habitats. Principal coordinate analysis (PCoA) also indicated AOA community structures exhibited significant differences between two habitats, while AOB were not. Ammonium and carbon contents were the potential key factors to influence AOMs’ abundance and compositions in sediment, while no measured variables were determined to have major influences on communities in water habitat. These findings increase the understanding of the AOMs’ distribution patterns in estuarine ecosystems.
Collapse
|
24
|
Zhu W, Wang C, Sun F, Zhao L, Dou W, Mao Z, Wu W. Overall bacterial community composition and abundance of nitrifiers and denitrifiers in a typical macrotidal estuary. MARINE POLLUTION BULLETIN 2018; 126:540-548. [PMID: 28978406 DOI: 10.1016/j.marpolbul.2017.09.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Coupled nitrogen cycling processes can alleviate the negative effects of eutrophication caused by excessive nitrogen load in estuarine ecosystems. The abundance and diversity of nitrifiers and denitrifiers across different environmental gradients were examined in the sediment of Hangzhou Bay. Quantitative PCR and Pearson's correlation analyses suggested that the bacterial ammonia-oxidizers (AOB) were the dominant phylotypes capable of ammonia oxidation, while the nirS-encoding denitrifiers predominated in the denitrification process. Simultaneously, nitrite and pH were found to be the two major factors influencing amoA and nir gene abundances, and the distribution of bacterial communities. Moreover, the ratio of nirS/AOB amoA gene abundance showed negative correlation with nitrite concentration. Fluorescence in situ hybridization further demonstrated that AOB and acetate-denitrifying cells were closely connected and formed obvious aggregates in the sediment. Together, all these results provided us a preliminary insight for coupled nitrification-denitrification processes in the sediment of Hangzhou Bay.
Collapse
Affiliation(s)
- Weijing Zhu
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Cheng Wang
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Faqian Sun
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Liancheng Zhao
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, 36 Baochu North Road, Hangzhou 310012, China
| | - Wenjie Dou
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, 36 Baochu North Road, Hangzhou 310012, China
| | - Zhihua Mao
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, 36 Baochu North Road, Hangzhou 310012, China
| | - Weixiang Wu
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
25
|
Yu T, Li M, Niu M, Fan X, Liang W, Wang F. Difference of nitrogen-cycling microbes between shallow bay and deep-sea sediments in the South China Sea. Appl Microbiol Biotechnol 2017; 102:447-459. [DOI: 10.1007/s00253-017-8594-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022]
|
26
|
He Y, Hu W, Ma D, Lan H, Yang Y, Gao Y. Abundance and diversity of ammonia-oxidizing archaea and bacteria in the rhizosphere soil of three plants in the Ebinur Lake wetland. Can J Microbiol 2017; 63:573-582. [DOI: 10.1139/cjm-2016-0492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ammonia oxidation is carried out by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). The Ebinur Lake wetland is the best example of a temperate arid zone wetland ecosystem in China. Soil samples were collected from rhizosphere and non-rhizosphere soil containing Halocnemum strobilaceum (samples H and H′), Phragmites australis (samples R and R′), and Karelinia caspia (samples K and K′) to study the relationship between environmental factors and the community structure of AOB and AOA. Phylogenetic analysis showed that the AOA sequences belonged to the Nitrosopumilus and Nitrososphaera clusters. AOB were grouped into Nitrosospira sp. and Nitrosomonas sp. Quantitative polymerase chain reaction results showed that the AOA abundance ranged from 2.09 × 104 to 2.94 × 105 gene copies/g soil. The highest number of AOA was detected in sample K, followed by samples R and H. AOB abundance varied between 2.91 × 105 and 1.05 × 106 gene copies/g soil, which was higher than that of AOA. Redundancy analysis indicated that electrical conductivity, pH, and NH4+-N might influence the community structure of AOA and AOB. AOB might play a more crucial role than AOA in ammonia oxidation based on AOB’s higher diversity and abundance in the Ebinur Lake wetland in Xinjiang.
Collapse
Affiliation(s)
- Yuan He
- College of Life Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China, 832000
- College of Life Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China, 832000
| | - Wenge Hu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China, 832000
- College of Life Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China, 832000
| | - Decao Ma
- College of Life Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China, 832000
- College of Life Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China, 832000
| | - Hongzhu Lan
- College of Life Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China, 832000
- College of Life Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China, 832000
| | - Yang Yang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China, 832000
- College of Life Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China, 832000
| | - Yan Gao
- College of Life Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China, 832000
- College of Life Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China, 832000
| |
Collapse
|
27
|
Spatial Abundance, Diversity, and Activity of Ammonia-Oxidizing Bacteria in Coastal Sediments of the Liaohe Estuary. Curr Microbiol 2017; 74:632-640. [PMID: 28293807 DOI: 10.1007/s00284-017-1226-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022]
Abstract
Ammonia-oxidizing bacteria (AOB) play an important role in nitrification in estuaries. The aim of this study was to examine the spatial abundance, diversity, and activity of AOB in coastal sediments of the Liaohe Estuary using quantitative PCR, high-throughput sequencing of the amoA gene coding the ammonia monooxygenase enzyme active subunit, and sediment slurry incubation experiments. AOB abundance ranged from 8.54 × 104 to 5.85 × 106 copies g-1 of wet sediment weight and exhibited an increasing trend from the Liaohe Estuary to the open coastal zone. Potential nitrification rates (PNRs) ranged from 0.1 to 336.8 nmol N g-1 day-1 along the estuary to the coastal zone. Log AOB abundance and PNRs were significantly positively correlated. AOB richness decreased from the estuary to the coastal zone. High-throughput sequencing analysis indicated that the majority of amoA gene sequences fell within the Nitrosomonas and Nitrosomonas-like clade, and only a few sequences were clustered within the Nitrosospira clade. This finding indicates that the Nitrosomonas-related lineage may be more adaptable to the specific conditions in this estuary than the Nitrosospira lineage. Sites with high nitrification rates were located in the southern open region and were dominated by the Nitrosomonas-like lineage, whereas the Nitrosospira lineage was found primarily in the northern estuary mouth sites with low nitrification rates. Thus, nitrification potentials in Liaohe estuarine sediments in the southern open region were greater than those in the northern estuary mouth, and the Nitrosomonas-related lineage might play a more important role than the Nitrosospira lineage in nitrification in this estuary.
Collapse
|
28
|
Wang J, Kan J, Zhang X, Xia Z, Zhang X, Qian G, Miao Y, Leng X, Sun J. Archaea Dominate the Ammonia-Oxidizing Community in Deep-Sea Sediments of the Eastern Indian Ocean-from the Equator to the Bay of Bengal. Front Microbiol 2017; 8:415. [PMID: 28360898 PMCID: PMC5352681 DOI: 10.3389/fmicb.2017.00415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
Ammonia-oxidizing Archaea (AOA) and ammonia-oxidizing Bacteria (AOB) oxidize ammonia to nitrite, and therefore play essential roles in nitrification and global nitrogen cycling. To better understand the population structure and the distribution of AOA and AOB in the deep Eastern Indian Ocean (EIO), nine surface sediment samples (>3,300 m depth) were collected during the inter-monsoon Spring 2013. One sediment sample from the South China Sea (SCS; 2,510 m) was also included for comparison. The community composition, species richness, and diversity were characterized by clone libraries (total 1,238 clones), and higher diversity of archaeal amoA genes than bacterial amoA genes was observed in all analyzed samples. Real time qPCR analysis also demonstrated higher abundances (gene copy numbers) of archaeal amoA genes than bacterial amoA genes, and the ratios of AOA/AOB ranged from 1.42 to 8.49 among sites. In addition, unique and distinct clades were found in both reconstructed AOA and AOB phylogeny, suggesting the presence of niche-specific ammonia-oxidizing microorganisms in the EIO. The distribution pattern of both archaeal and bacterial amoA genes revealed by NMDS (non-metric multidimensional scaling) showed a distinct geographic separation of the sample from the SCS and most of the samples from the EIO following nitrogen gradients. Higher abundance and diversity of archaeal amoA genes indicated that AOA may play a more important role than AOB in the deep Indian Ocean. Environmental parameters shaping the distribution pattern of AOA were different from that of AOB, indicating distinct metabolic characteristics and/or adaptation mechanisms between AOA and AOB in the EIO, especially in deep-sea environments.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| | - Jinjun Kan
- Stroud Water Research Center Avondale, PA, USA
| | - Xiaodong Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| | - Zhiqiang Xia
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology Tianjin, China
| | - Xuecheng Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology Tianjin, China
| | - Gang Qian
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| | - Yanyi Miao
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology Tianjin, China
| | - Xiaoyun Leng
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| | - Jun Sun
- College of Marine and Environmental Sciences, Tianjin University of Science and TechnologyTianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and TechnologyTianjin, China
| |
Collapse
|
29
|
Zhang Y, Chen L, Sun R, Dai T, Tian J, Zheng W, Wen D. Population and diversity of ammonia-oxidizing archaea and bacteria in a pollutants' receiving area in Hangzhou Bay. Appl Microbiol Biotechnol 2016; 100:6035-45. [PMID: 26960319 DOI: 10.1007/s00253-016-7421-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 12/19/2022]
Abstract
The community structure of ammonia-oxidizing microorganisms is sensitive to various environmental factors, including pollutions. In this study, real-time PCR and 454 pyrosequencing were adopted to investigate the population and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) temporally and spatially in the sediments of an industrial effluent receiving area in the Qiantang River's estuary, Hangzhou Bay. The abundances of AOA and AOB amoA genes fluctuated in 10(5)-10(7) gene copies per gram of sediment; the ratio of AOA amoA/AOB amoA ranged in 0.39-5.52. The AOA amoA/archaeal 16S rRNA, AOB amoA/bacterial 16S rRNA, and AOA amoA/AOB amoA were found to positively correlate with NH4 (+)-N concentration of the seawater. Nitrosopumilus cluster and Nitrosomonas-like cluster were the dominant AOA and AOB, respectively. The community structures of both AOA and AOB in the sediments exhibited significant seasonal differences rather than spatial changes in the effluent receiving area. The phylogenetic distribution of AOB in this area was consistent with the wastewater treatment plants (WWTPs) discharging the effluent but differed from the Qiantang River and other estuaries, which might be an outcome of long-term effluent discharge.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing, 100084, China.,Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, 314050, China
| | - Renhua Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.,Rural Energy & Environment Agency, Ministry of Agriculture, Beijing, 100125, China
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jinping Tian
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wei Zheng
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, 314050, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Yu S, Yao P, Liu J, Zhao B, Zhang G, Zhao M, Yu Z, Zhang XH. Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas. Front Microbiol 2016; 7:137. [PMID: 26904010 PMCID: PMC4751261 DOI: 10.3389/fmicb.2016.00137] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/25/2016] [Indexed: 11/13/2022] Open
Abstract
The eastern China marginal seas (ECMS) are prominent examples of river-dominated ocean margins, whose most characteristic feature is the existence of isolated mud patches on sandy sediments. Ammonia-oxidizing prokaryotes play a crucial role in the nitrogen cycles of many marine environments, including marginal seas. However, few studies have attempted to address the distribution patterns of ammonia-oxidizing prokaryotes in mud deposits of these seas. The horizontal and vertical community composition and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were investigated in mud deposits of the South Yellow Sea (SYS) and the East China Sea (ECS) by using amoA clone libraries and quantitative PCR. The diversity of AOB was comparable or higher in the mud zone of SYS and lower in ECS when compared with AOA. Vertically, surface sediments had generally higher diversity of AOA and AOB than middle and bottom layers. Diversity of AOA and AOB showed significant correlation with latitude. Nitrosopumilus and Nitrosospira lineages dominated AOA and AOB communities, respectively. Both AOA and AOB assemblages exhibited greater variations across different sites than those among various depths at one site. The abundance of bacterial amoA was generally higher than that of archaeal amoA, and both of them decreased with depth. Niche differentiation, which was affected by dissolved oxygen, salinity, ammonia, and silicate (SiO[Formula: see text]), was observed between AOA and AOB and among different groups of them. The spatial distribution of AOA and AOB was significantly correlated with δ(15)NTN and SiO[Formula: see text], and nitrate and δ(13)C, respectively. Both archaeal and bacterial amoA abundance correlated strongly with SiO[Formula: see text]. This study improves our understanding of spatial distribution of AOA and AOB in ecosystems featuring oceanic mud deposits.
Collapse
Affiliation(s)
- Shaolan Yu
- Laboratory of Marine Microbiology, College of Marine Life Sciences, Ocean University of China Qingdao, China
| | - Peng Yao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of ChinaQingdao, China; Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of ChinaQingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Jiwen Liu
- Laboratory of Marine Microbiology, College of Marine Life Sciences, Ocean University of China Qingdao, China
| | - Bin Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China Qingdao, China
| | - Guiling Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China Qingdao, China
| | - Meixun Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of ChinaQingdao, China; Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of ChinaQingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Zhigang Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China Qingdao, China
| | - Xiao-Hua Zhang
- Laboratory of Marine Microbiology, College of Marine Life Sciences, Ocean University of China Qingdao, China
| |
Collapse
|
31
|
Hu W, He Y, Chen D, Mo C, Guo Y, Ma D. Diversity of ammonia-oxidizing bacteria in relation to soil environment in Ebinur Lake Wetland. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2015.1124738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Lu S, Liu X, Ma Z, Liu Q, Wu Z, Zeng X, Shi X, Gu Z. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond. Front Microbiol 2016; 6:1539. [PMID: 26834709 PMCID: PMC4718984 DOI: 10.3389/fmicb.2015.01539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022] Open
Abstract
Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0–50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0–10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths) were grouped into the Nitrosopumilus cluster.
Collapse
Affiliation(s)
- Shimin Lu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery SciencesShanghai, China; College of Fisheries and Life, Shanghai Ocean UniversityShanghai, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences Shanghai, China
| | - Zhuojun Ma
- Chinese Academy of Fishery Sciences Beijing, China
| | - Qigen Liu
- College of Fisheries and Life, Shanghai Ocean University Shanghai, China
| | - Zongfan Wu
- Tongren Municipal Agricultural Commission (Government, Public) Tongren, China
| | - Xianlei Zeng
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery SciencesShanghai, China; College of Fisheries and Life, Shanghai Ocean UniversityShanghai, China
| | - Xu Shi
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences Shanghai, China
| | - Zhaojun Gu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences Shanghai, China
| |
Collapse
|
33
|
Lima-Perim JE, Romagnoli EM, Dini-Andreote F, Durrer A, Dias ACF, Andreote FD. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest. PLoS One 2016; 11:e0146566. [PMID: 26752633 PMCID: PMC4713446 DOI: 10.1371/journal.pone.0146566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022] Open
Abstract
The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.
Collapse
Affiliation(s)
| | | | - Francisco Dini-Andreote
- Microbial Ecology Group, Genomic Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Ademir Durrer
- Department of Soil Science, ESALQ/USP, University of São Paulo, Piracicaba, Brazil
| | | | | |
Collapse
|
34
|
Zhang Q, Tang F, Zhou Y, Xu J, Chen H, Wang M, Laanbroek HJ. Shifts in the pelagic ammonia-oxidizing microbial communities along the eutrophic estuary of Yong River in Ningbo City, China. Front Microbiol 2015; 6:1180. [PMID: 26579089 PMCID: PMC4621301 DOI: 10.3389/fmicb.2015.01180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
Aerobic ammonia oxidation plays a key role in the nitrogen cycle, and the diversity of the responsible microorganisms is regulated by environmental factors. Abundance and composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated in the surface waters along an environmental gradient of the Yong River in Ningbo, East China. Water samples were collected from three pelagic zones: (1) freshwaters in the urban canals of Ningbo, (2) brackish waters in the downstream Yong River, and (3) coastal marine water of Hangzhou Bay. Shifts in activity and diversity of the ammonia-oxidizing microorganisms occurred simultaneously with changes in environmental factors, among which salinity and the availabilities of ammonium and oxygen. The AOA abundance was always higher than that of AOB and was related to the ammonia oxidation activity. The ratios of AOA/AOB in the brackish and marine waters were significantly higher than those found in freshwaters. Both AOA and AOB showed similar community compositions in brackish and marine waters, but only 31 and 35% similarity, respectively, between these waters and the urban inland freshwaters. Most of AOA-amoA sequences from freshwater were affiliated with sequences obtained from terrestrial environments and those collected from brackish and coastal areas were ubiquitous in marine, coastal, and terrestrial ecosystems. All AOB from freshwaters belonged to Nitrosomonas, and the AOB from brackish and marine waters mainly belonged to Nitrosospira.
Collapse
Affiliation(s)
- Qiufang Zhang
- Faculty of Architectural Civil Engineering and Environment, Ningbo University Ningbo, China
| | - Fangyuan Tang
- Faculty of Architectural Civil Engineering and Environment, Ningbo University Ningbo, China
| | - Yangjing Zhou
- Faculty of Architectural Civil Engineering and Environment, Ningbo University Ningbo, China
| | - Jirong Xu
- Faculty of Architectural Civil Engineering and Environment, Ningbo University Ningbo, China
| | - Heping Chen
- Faculty of Architectural Civil Engineering and Environment, Ningbo University Ningbo, China
| | - Mingkuang Wang
- Faculty of Architectural Civil Engineering and Environment, Ningbo University Ningbo, China
| | - Hendrikus J Laanbroek
- Department of Microbial Wetland Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands ; Institute of Environmental Biology, Utrecht University Utrecht, Netherlands
| |
Collapse
|
35
|
Luo ZH, Xu W, Li M, Gu JD, Zhong TH. Spatial distribution and abundance of ammonia-oxidizing microorganisms in deep-sea sediments of the Pacific Ocean. Antonie van Leeuwenhoek 2015; 108:329-42. [PMID: 26014493 DOI: 10.1007/s10482-015-0485-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/18/2015] [Indexed: 12/23/2022]
Abstract
Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is performed by nitrifying microbes including ammonia-oxidizing bacteria (AOB) and archaea (AOA). In the current study, the phylogenetic diversity and abundance of AOB and AOA in deep-sea sediments of the Pacific Ocean were investigated using ammonia monooxygenase subunit A (amoA) coding genes as molecular markers. The study uncovered 3 AOB unique operational taxonomic units (OTUs, defined at sequence groups that differ by ≤5 %), which indicates lower diversity than AOA (13 OTUs obtained). All AOB amoA gene sequences were phylogenetically related to amoA sequences similar to those found in marine Nitrosospira species, and all AOA amoA gene sequences were affiliated with the marine sediment clade. Quantitative PCR revealed similar archaeal amoA gene abundances [1.68 × 10(5)-1.89 × 10(6) copies/g sediment (wet weight)] among different sites. Bacterial amoA gene abundances ranged from 5.28 × 10(3) to 2.29 × 10(6) copies/g sediment (wet weight). The AOA/AOB amoA gene abundance ratios ranged from 0.012 to 162 and were negatively correlated with total C and C/N ratio. These results suggest that organic loading may be a key factor regulating the relative abundance of AOA and AOB in deep-sea environments of the Pacific Ocean.
Collapse
Affiliation(s)
- Zhu-Hua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, 178 Daxue Road, Xiamen, 361005, People's Republic of China,
| | | | | | | | | |
Collapse
|
36
|
Puthiya Veettil V, Abdulaziz A, Chekidhenkuzhiyil J, Kalanthingal Ramkollath L, Karayadi Hamza F, Kizhakkepat Kalam B, Kallungal Ravunnikutty M, Nair S. Bacterial domination over archaea in ammonia oxidation in a monsoon-driven tropical estuary. MICROBIAL ECOLOGY 2015; 69:544-553. [PMID: 25344857 DOI: 10.1007/s00248-014-0519-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
Autotrophic ammonia oxidizing microorganisms, which are responsible for the rate-limiting step of nitrification in most aquatic systems, have not been studied in tropical estuaries. Cochin estuary (CE) is one of the largest, productive, and monsoon-driven estuary in India opening into the southeast Arabian Sea. CE receives surplus quantities of ammonia through industrial and domestic discharges. The distribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and anaerobic ammonia-oxidizing bacteria (anammox) were studied using fluorescence in situ hybridization (FISH) and their relative contribution to the process as well as the governing factors were examined and reported for the first time from CE. The order of occurrence of these assemblages was β-proteobacteria (0.79 to 2 × 10(5) cells ml(-1)) > γ-proteobacteria (0.9 to 4.6 × 10(4) cells ml(-1)) > anammox (0.49 to 1.9 × 10(4) cells ml(-1)) > AOA (0.56 to 6.3 × 10(3) cells ml(-1)). Phylogenetic analysis of DGGE bands showed major affiliation of AOB to β-proteobacteria, while AOA was affiliated to Crenarchaeota. The abundance of AOB was mostly influenced by ammonia concentrations. The recovered ammonia oxidation rate of AOB was in the range of 45-65%, whereas for AOA, it was 15-45%, indicating that AOB were mostly responsible for the ammonia oxidation in CE during the study period. Overall, the present study provides an insight into the relevance and contribution of different groups of ammonia oxidizing bacteria in CE and emphasizes the need for further in depth studies across space and on season scale.
Collapse
|
37
|
Li H, Weng BS, Huang FY, Su JQ, Yang XR. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China. Appl Microbiol Biotechnol 2015; 99:6113-23. [PMID: 25744648 DOI: 10.1007/s00253-015-6488-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/11/2022]
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning. The results showed that PNA was highly variable between paddy soils, ranging from 4.05 ± 0.21 to 9.81 ± 1.09 mg NOx-N kg(-1) dry soil day(-1), and no significant correlation with soil parameters was found. The abundance of AOA was predominant over AOB, indicating that AOA may be the major members in aerobic ammonia oxidation in these paddy soils. Community compositions of AOA and AOB were highly variable among samples, but the variations were best explained by pH. AOA sequences were affiliated to the Nitrosopumilus cluster and Nitrososphaera cluster, and AOB were classified into the lineages of Nitrosospira and Nitrosomonas, with Nitrosospira being predominant over Nitrosomonas, accounting for 83.6 % of the AOB community. Moreover, the majority of Nitrosomonas was determined in neutral soils. Canonical correspondence analysis (CCA) analysis further demonstrated that AOA and AOB community structures were significantly affected by pH, soil total organic carbon, total nitrogen, and C/N ratio, suggesting that these factors exert strong effects on the distribution of AOB and AOA in paddy soils in Southern China. In conclusion, our results imply that soil pH was a key explanatory variable for both AOA and AOB community structure and nitrification activity.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | | | | | | | | |
Collapse
|
38
|
Zhang Y, Chen L, Sun R, Dai T, Tian J, Wen D. Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China. Appl Microbiol Biotechnol 2015; 99:4495-507. [DOI: 10.1007/s00253-014-6352-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 12/11/2022]
|
39
|
Community structure and distribution of planktonic ammonia-oxidizing archaea and bacteria in the Dongjiang River, China. Res Microbiol 2014; 165:657-70. [DOI: 10.1016/j.resmic.2014.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 11/22/2022]
|
40
|
Li XK, Ma KL, Meng LW, Zhang J, Wang K. Performance and microbial community profiles in an anaerobic reactor treating with simulated PTA wastewater: from mesophilic to thermophilic temperature. WATER RESEARCH 2014; 61:57-66. [PMID: 24952270 DOI: 10.1016/j.watres.2014.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 06/03/2023]
Abstract
Performance and microbial community profiles in a hybrid anaerobic reactor treating synthetic PTA wastewater (contained the major pollutants terephthalate and benzoate) were studied over 220 days from 33 °C to 52 °C. Results indicated that PTA treatment process was highly sensitive to temperature variations in terms of COD removal. Operation at 37 °C showed the best performance as well as the most diverse microbial community revealed by 16S rRNA gene clone library and T-RFLP (terminal restriction fragment length polymorphism). Finally, the anaerobic process achieved a total COD removal of 77.4%, 91.9%, 87.4% and 66.1% at 33, 37, 43 and 52 °C. While the corresponding TA removal were 77.6%, 94.0%, 89.1% and 60.8%, respectively. Sequence analyses revealed acetoclastic Methanosaeta was preponderant at 37 °C, while hydrogenotrophic genera including Methanobrevibacter and Methanofollis were more abundant at other temperatures. For bacterial community, 16 classes were identified. The largely existent Syntrophorhabdus members (belonging to δ-Proteobacteria) at 37 °C was likely to play an important role in mesophilic anaerobic wastewater treatment system contained terephthalate. Meanwhile, β-Proteobacteria seemed to be favored in an anaerobic system higher than 43 °C.
Collapse
Affiliation(s)
- Xiang-kun Li
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Kai-li Ma
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Ling-wei Meng
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jie Zhang
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Ke Wang
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| |
Collapse
|
41
|
Hu Z, Meng H, Shi JH, Bu NS, Fang CM, Quan ZX. Community size and composition of ammonia oxidizers and denitrifiers in an alluvial intertidal wetland ecosystem. Front Microbiol 2014; 5:371. [PMID: 25101072 PMCID: PMC4107847 DOI: 10.3389/fmicb.2014.00371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/02/2014] [Indexed: 11/30/2022] Open
Abstract
Global nitrogen cycling is mainly mediated by the activity of microorganisms. Nitrogen cycle processes are mediated by functional groups of microorganisms that are affected by constantly changing environmental conditions and substrate availability. In this study, we investigated the temporal and spatial patterns of nitrifier and denitrifier communities in an intertidal wetland. Soil samples were collected over four distinct seasons from three locations with different vegetative cover. Multiple environmental factors and process rates were measured and analyzed together with the community size and composition profiles. We observed that the community size and composition of the nitrifiers and denitrifiers are affected significantly by seasonal factors, while vegetative cover affected the community composition. The seasonal impacts on the community size of ammonia oxidizing archaea (AOA) are much higher than that of ammonia oxidizing bacteria (AOB). The seasonal change was a more important indicator for AOA community composition patterns, while vegetation was more important for the AOB community patterns. The microbial process rates were correlated with both the community size and composition.
Collapse
Affiliation(s)
- Ziye Hu
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan UniversityShanghai, China
| | - Han Meng
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan UniversityShanghai, China
| | - Jin-Huan Shi
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan UniversityShanghai, China
| | - Nai-Shun Bu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan UniversityShanghai, China
| | - Chang-Ming Fang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan UniversityShanghai, China
| | - Zhe-Xue Quan
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan UniversityShanghai, China
| |
Collapse
|
42
|
Liu B, Li Y, Zhang J, Zhou X, Wu C. Abundance and diversity of ammonia-oxidizing microorganisms in the sediments of Jinshan Lake. Curr Microbiol 2014; 69:751-7. [PMID: 25008777 DOI: 10.1007/s00284-014-0646-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
Abstract
Community structures of ammonia-oxidizing microorganisms were investigated using PCR primers designed to specifically target the ammonia monooxygenase α-subunit (amoA) gene in the sediment of Jinshan Lake. Relationships between the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), and physicochemical parameters were also explored. The AOA abundance decreased sharply from west to east; however, the AOB abundance changed slightly with AOB outnumbering AOA in two of the four sediment samples (JS), JS3 and JS4. The AOA abundance was significantly correlated with the NH4-N, NO3-N, and TP. No significant correlations were observed between the AOB abundance and environmental variables. AOB had a higher diversity and richness of amoA genes than AOA. Among the 76 archaeal amoA sequences retrieved, 57.89, 38.16, and 3.95 % fell within the Nitrosopumilus, Nitrososphaera, and Nitrososphaera sister clusters, respectively. The 130 bacterial amoA gene sequences obtained in this study were grouped with known AOB sequences in the Nitrosomonas and Nitrosospira genera, which occupied 72.31 % and 27.69 % of the AOB group, respectively. Compared to the other three sample sites, the AOA and AOB community compositions at JS4 showed a large difference. This work could enhance our understanding of the roles of ammonia-oxidizing microorganisms in freshwater lake environment.
Collapse
Affiliation(s)
- Biao Liu
- Department of Environment Engineering, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China,
| | | | | | | | | |
Collapse
|
43
|
Yang A, Zhang X, Agogué H, Dupuy C, Gong J. Contrasting spatiotemporal patterns and environmental drivers of diversity and community structure of ammonia oxidizers, denitrifiers, and anammox bacteria in sediments of estuarine tidal flats. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0929-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
44
|
Xu W, Li M, Ding JF, Gu JD, Luo ZH. Bacteria dominate the ammonia-oxidizing community in a hydrothermal vent site at the Mid-Atlantic Ridge of the South Atlantic Ocean. Appl Microbiol Biotechnol 2014; 98:7993-8004. [DOI: 10.1007/s00253-014-5833-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/29/2023]
|
45
|
Salinity-dominated change in community structure and ecological function of Archaea from the lower Pearl River to coastal South China Sea. Appl Microbiol Biotechnol 2014; 98:7971-82. [DOI: 10.1007/s00253-014-5838-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
|
46
|
Chen Y, Zhen Y, He H, Lu X, Mi T, Yu Z. Diversity, abundance, and spatial distribution of ammonia-oxidizing β-proteobacteria in sediments from Changjiang Estuary and its adjacent area in East China Sea. MICROBIAL ECOLOGY 2014; 67:788-803. [PMID: 24362769 DOI: 10.1007/s00248-013-0341-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/02/2013] [Indexed: 06/03/2023]
Abstract
Changjiang Estuary, the largest estuary in China, encompasses a wide range of nutrient loading and trophic levels from the rivers to the sea, providing an ideal natural environment to explore relationships between functional diversity, physical/chemical complexity, and ecosystem function. In this study, molecular biological techniques were used to analyze the community structure and diversity of ammonia-oxidizing bacteria (AOB) in the sediments of Changjiang Estuary and its adjacent waters in East China Sea. The amoA gene (encoding ammonia monooxygenase subunit A) libraries analysis revealed extensive diversity within the β-Proteobacteria group of AOB, which were grouped into Nitrosospira-like and Nitrosomonas-like lineages. The majority of amoA gene sequences fell within Nitrosospira-like clade, and only a few sequences were clustered with the Nitrosomonas-like clade, indicating that Nitrosospira-like lineage may be more adaptable than Nitrosomonas-like lineage in this area. Multivariate statistical analysis indicated that the spatial distribution of the sedimentary β-Proteobacterial amoA genotype assemblages correlated significantly with nitrate, nitrite, and salinity. The vertical profile of amoA gene copies in gravity cores showed that intense sediment resuspension led to a deeper mixing layer. The horizontal distribution pattern of amoA gene copies was nearly correlated with the clayey mud belt in Changjiang Estuary and its adjacent area in East China Sea, where higher β-Proteobacteria phylogenetic diversity was observed. Meanwhile, those areas with high amoA copies in the surface sediments nearly matched those with low concentrations of dissolved oxygen and ammonium in the bottom water.
Collapse
Affiliation(s)
- Yangyang Chen
- College of Environmental Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Hernández M, Dumont MG, Calabi M, Basualto D, Conrad R. Ammonia oxidizers are pioneer microorganisms in the colonization of new acidic volcanic soils from South of Chile. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:70-79. [PMID: 24596264 DOI: 10.1111/1758-2229.12109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/14/2013] [Indexed: 06/03/2023]
Abstract
Ammonia oxidation, performed by specialized microorganisms belonging to the Bacteria and Archaea, is the first and most limiting step of soil nitrification. Nitrification has not yet been examined in young volcanic soils. The aim of the present work was to evaluate the abundance and diversity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in acidic volcanic soils (andisols) of different defined ages to determine their relative contribution to nitrification and soil colonization. Soil was collected from three vegetated sites on Llaima Volcano (Chile) recolonized after lava eruptions in 1640, 1751 and 1957. Quantitative polymerase chain reaction, terminal restriction fragment length polymorphism and clone sequence analyses of the amoA gene were performed for the AOA and AOB communities. All soils showed high nitrification potentials, but they were highest in the younger soils. Archaeal amoA genes outnumbered bacterial amoA genes at all sites, and AOA abundances were found to be proportional to the nitrification potentials. Sequencing indicated the presence of AOA related to Nitrososphaera and Nitrosotalea, and AOB related primarily to Nitrosospira and sporadically to Nitrosomonas. The study showed that both AOA and AOB are early colonizers of andisols, but that AOA outnumber AOB and play an important role in nitrification.
Collapse
Affiliation(s)
- Marcela Hernández
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str.10, 35043, Marburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Laanbroek HJ, Keijzer RM, Verhoeven JTA, Whigham DF. Changes in community composition of ammonia-oxidizing betaproteobacteria from stands of Black mangrove (Avicennia germinans) in response to ammonia enrichment and more oxic conditions. Front Microbiol 2013; 4:343. [PMID: 24312088 PMCID: PMC3834342 DOI: 10.3389/fmicb.2013.00343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/30/2013] [Indexed: 11/13/2022] Open
Abstract
In flooded and non-flooded impounded forests of Black mangrove (Avicennia germinans), the community structure of the ammonia-oxidizing betaproteobacteria (β-AOB) differed among distinct mangrove vegetation cover types and hydrological regimes. This had been explained by a differential response of lineages of β-AOB to the prevailing soil conditions that included increased levels of moisture and ammonium. To test this hypothesis, slurries of soils collected from a flooded and a non-flooded impoundment were subjected to enhanced levels of ammonium in the absence and presence of additional shaking. After a period of 6 days, the community composition of the β-AOB based on the 16S rRNA gene was determined and compared with the original community structures. Regardless of the incubation conditions and the origin of the samples, sequences belonging to the Nitrosomonas aestuarii lineage became increasingly dominant, whereas the number of sequences of the lineages of Nitrosospira (i.e., Cluster 1) and Nitrosomonas sp. Nm143 declined. Changes in community structure were related to changes in community sizes determined by quantitative PCR based on the amoA gene. The amoA gene copy numbers of β-AOB were compared to those of the ammonia-oxidizing archaea (AOA). Gene copy numbers of the bacteria increased irrespective of incubation conditions, but the numbers of archaea declined in the continuously shaken cultures. This observation is discussed in relation to the distribution of the β-AOB lineages in the impounded Black mangrove forests.
Collapse
Affiliation(s)
- Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands ; Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University Utrecht, Netherlands ; Smithsonian Environmental Research Center Edgewater, MD, USA
| | | | | | | |
Collapse
|
49
|
Sun W, Xia C, Xu M, Guo J, Wang A, Sun G. Distribution and abundance of archaeal and bacterial ammonia oxidizers in the sediments of the Dongjiang River, a drinking water supply for Hong Kong. Microbes Environ 2013; 28:457-65. [PMID: 24256973 PMCID: PMC4070707 DOI: 10.1264/jsme2.me13066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrification. However, limited information about the characteristics of AOA and AOB in the river ecosystem is available. The distribution and abundance of AOA and AOB in the sediments of the Dongjiang River, a drinking water source for Hong Kong, were investigated by clone library analysis and quantitative real-time PCR. Phylogenetic analysis showed that Group 1.1b-and Group 1.1b-associated sequences of AOA predominated in sediments with comparatively high carbon and nitrogen contents (e.g. total carbon (TC) >13 g kg−1 sediment, NH4+-N >144 mg kg−1 sediment), while Group 1.1a- and Group 1.1a-associated sequences were dominant in sediments with opposite conditions (e.g. TC <4 g kg−1 sediment, NH4+-N <93 mg kg−1 sediment). Although Nitrosomonas- and Nitrosospira-related sequences of AOB were detected in the sediments, nearly 70% of the sequences fell into the Nitrosomonas-like B cluster, suggesting similar sediment AOB communities along the river. Higher abundance of AOB than AOA was observed in almost all of the sediments in the Dongjiang River, while significant correlations were only detected between the distribution of AOA and the sediment pH and TC, which suggested that AOA responded more sensitively than AOB to variations of environmental factors. These results extend our knowledge about the environmental responses of ammonia oxidizers in the river ecosystem.
Collapse
Affiliation(s)
- Wei Sun
- School of Bioscience and Bioengineering, South China University of Technology
| | | | | | | | | | | |
Collapse
|
50
|
Community dynamics and activity of ammonia-oxidizing prokaryotes in intertidal sediments of the Yangtze estuary. Appl Environ Microbiol 2013; 80:408-19. [PMID: 24185847 DOI: 10.1128/aem.03035-13] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diversity, abundance, and activity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated using the ammonia monooxygenase α subunit (amoA) in the intertidal sediments of the Yangtze Estuary. Generally, AOB had a lower diversity of amoA genes than did AOA in this study. Clone library analysis revealed great spatial variations in both AOB and AOA communities along the estuary. The UniFrac distance matrix showed that all the AOB communities and 6 out of 7 AOA communities in the Yangtze Estuary were statistically indistinguishable between summer and winter. The studied AOB and AOA community structures were observed to correlate with environmental parameters, of which salinity, pH, ammonium, total phosphorus, and organic carbon had significant correlations with the composition and distribution of both communities. Also, the AOA communities were significantly correlated with sediment clay content. Quantitative PCR (qPCR) results indicated that the abundance of AOB amoA genes was greater than that of AOA amoA genes in 10 of the 14 samples analyzed in this study. Potential nitrification rates were significantly greater in summer than in winter and had a significant negative correlation with salinity. In addition, potential nitrification rates were correlated strongly only with archaeal amoA gene abundance and not with bacterial amoA gene abundance. However, no significant differences were observed between rates measured with and without ampicillin (AOB inhibitor). These results implied that archaea might play a more important role in mediating the oxidation of ammonia to nitrite in the Yangtze estuarine sediments.
Collapse
|