1
|
Pashikanti G, Chavan LN, Liebeskind LS, Goodman MM. Synthetic Efforts toward the Synthesis of a Fluorinated Analog of 5-Aminolevulinic Acid: Practical Synthesis of Racemic and Enantiomerically Defined 3-Fluoro-5-aminolevulinic Acid. J Org Chem 2024; 89:12176-12186. [PMID: 39189689 PMCID: PMC11382157 DOI: 10.1021/acs.joc.4c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
In 2017, the FDA authorized 5-aminolevulinic acid (5-ALA) for intraoperative optical imaging of suspected high-grade gliomas. This was the first authorized optical imaging agent for brain tumor surgery to enhance the visualization of malignant tissue. Herein we report the synthesis of a racemic and enantiopure fluorinated analog of 5-ALA, i.e., 3-fluoro-5-aminolevulinic acid (3F-5-ALA). We anticipate that these studies will provide the foundation for the future construction of a fluorine-18-labeled 5-ALA PET tracer to be used for functional and metabolic imaging of gliomas.
Collapse
Affiliation(s)
- Gouthami Pashikanti
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Lahu N. Chavan
- Department
of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States
- Center
for Systems Imaging, Emory University, 1841 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - Lanny S. Liebeskind
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Mark M. Goodman
- Department
of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States
- Center
for Systems Imaging, Emory University, 1841 Clifton Rd NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Choi S, Kronstad JW, Jung WH. Siderophore Biosynthesis and Transport Systems in Model and Pathogenic Fungi. J Microbiol Biotechnol 2024; 34:1551-1562. [PMID: 38881181 PMCID: PMC11380514 DOI: 10.4014/jmb.2405.05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Fungi employ diverse mechanisms for iron uptake to ensure proliferation and survival in iron-limited environments. Siderophores are secondary metabolite small molecules with a high affinity specifically for ferric iron; these molecules play an essential role in iron acquisition in fungi and significantly influence fungal physiology and virulence. Fungal siderophores, which are primarily hydroxamate types, are synthesized via non-ribosomal peptide synthetases (NRPS) or NRPS-independent pathways. Following synthesis, siderophores are excreted, chelate iron, and are transported into the cell by specific cell membrane transporters. In several human pathogenic fungi, siderophores are pivotal for virulence, as inhibition of their synthesis or transport significantly reduces disease in murine models of infection. This review briefly highlights siderophore biosynthesis and transport mechanisms in fungal pathogens as well the model fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe. Understanding siderophore biosynthesis and transport in pathogenic fungi provides valuable insights into fungal biology and illuminates potential therapeutic targets for combating fungal infections.
Collapse
Affiliation(s)
- Sohyeong Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
3
|
Maini Rekdal V, van der Luijt CRB, Chen Y, Kakumanu R, Baidoo EEK, Petzold CJ, Cruz-Morales P, Keasling JD. Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit. Nat Commun 2024; 15:2099. [PMID: 38485948 PMCID: PMC10940619 DOI: 10.1038/s41467-024-46314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Filamentous fungi are critical in the transition to a more sustainable food system. While genetic modification of these organisms has promise for enhancing the nutritional value, sensory appeal, and scalability of fungal foods, genetic tools and demonstrated use cases for bioengineered food production by edible strains are lacking. Here, we develop a modular synthetic biology toolkit for Aspergillus oryzae, an edible fungus used in fermented foods, protein production, and meat alternatives. Our toolkit includes a CRISPR-Cas9 method for gene integration, neutral loci, and tunable promoters. We use these tools to elevate intracellular levels of the nutraceutical ergothioneine and the flavor-and color molecule heme in the edible biomass. The strain overproducing heme is red in color and is readily formulated into imitation meat patties with minimal processing. These findings highlight the promise of synthetic biology to enhance fungal foods and provide useful genetic tools for applications in food production and beyond.
Collapse
Affiliation(s)
- Vayu Maini Rekdal
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
| | - Casper R B van der Luijt
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Department of Food Science, University of Copenhagen, 1958, Frederiksberg, Denmark
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Ramu Kakumanu
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA.
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Kurebayashi K, Nakazawa T, Shivani, Higashitarumizu Y, Kawauchi M, Sakamoto M, Honda Y. Visualizing organelles with recombinant fluorescent proteins in the white-rot fungus Pleurotus ostreatus. Fungal Biol 2023; 127:1336-1344. [PMID: 37993245 DOI: 10.1016/j.funbio.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 11/24/2023]
Abstract
White-rot fungi secrete numerous enzymes involved in lignocellulose degradation. However, the secretory mechanisms or pathways, including protein synthesis, folding, modification, and traffic, have not been well studied. In the first place, few experimental tools for molecular cell biological studies have been developed. As the first step toward investigating the mechanisms underlying protein secretion, this study visualized organelles and transport vesicles involved in secretory mechanisms with fluorescent proteins in living cells of the white-rot fungus Pleurotus ostreatus (agaricomycete). To this end, each plasmid containing the expression cassette for fluorescent protein [enhanced green fluorescent protein (EGFP) or mCherry] fused with each protein that may be localized in the endoplasmic reticulum (ER), Golgi, or secretory vesicles (SVs) was introduced into P. ostreatus strain PC9. Fluorescent microscopic analyses of the obtained hygromycin-resistant transformants suggested that Sec13-EGFP and Sec24-EGFP visualize the ER; Sec24-EGFP, mCherry-Sed5, and mCherry-Rer1 visualize the compartment likely corresponding to early Golgi and/or the ER-Golgi intermediate compartment; EGFP/mCherry-pleckstrin homology (PH) visualizes possible late Golgi; and EGFP-Seg1 and mCherry-Rab11 visualize SVs. This study successfully visualized mitochondria and nuclei, thus providing useful tools for future molecular cell biological studies on lignocellulose degradation by P. ostreatus. Furthermore, some differences in the Golgi compartment or apparatus and the ER-Golgi intermediate of P. ostreatus compared to other fungi were also suggested.
Collapse
Affiliation(s)
- Kazuhiro Kurebayashi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shivani
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuta Higashitarumizu
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
5
|
Park J, Lee HH, Moon H, Lee N, Kim S, Kim JE, Lee Y, Min K, Kim H, Choi GJ, Lee YW, Seo YS, Son H. A combined transcriptomic and physiological approach to understanding the adaptive mechanisms to cope with oxidative stress in Fusarium graminearum. Microbiol Spectr 2023; 11:e0148523. [PMID: 37671872 PMCID: PMC10581207 DOI: 10.1128/spectrum.01485-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 09/07/2023] Open
Abstract
In plant-pathogen interactions, oxidative bursts are crucial for plants to defend themselves against pathogen infections. Rapid production and accumulation of reactive oxygen species kill pathogens directly and cause local cell death, preventing pathogens from spreading to adjacent cells. Meanwhile, the pathogens have developed several mechanisms to tolerate oxidative stress and successfully colonize plant tissues. In this study, we investigated the mechanisms responsible for resistance to oxidative stress by analyzing the transcriptomes of six oxidative stress-sensitive strains of the plant pathogenic fungus Fusarium graminearum. Weighted gene co-expression network analysis identified several pathways related to oxidative stress responses, including the DNA repair system, autophagy, and ubiquitin-mediated proteolysis. We also identified hub genes with high intramodular connectivity in key modules and generated deletion or conditional suppression mutants. Phenotypic characterization of those mutants showed that the deletion of FgHGG4, FgHGG10, and FgHGG13 caused sensitivity to oxidative stress, and further investigation on those genes revealed that transcriptional elongation and DNA damage responses play roles in oxidative stress response and pathogenicity. The suppression of FgHGL7 also led to hypersensitivity to oxidative stress, and we demonstrated that FgHGL7 plays a crucial role in heme biosynthesis and is essential for peroxidase activity. This study increases the understanding of the adaptive mechanisms to cope with oxidative stress in plant pathogenic fungi. IMPORTANCE Fungal pathogens have evolved various mechanisms to overcome host-derived stresses for successful infection. Oxidative stress is a representative defense system induced by the host plant, and fungi have complex response systems to cope with it. Fusarium graminearum is one of the devastating plant pathogenic fungi, and understanding its pathosystem is crucial for disease control. In this study, we investigated adaptive mechanisms for coping with oxidative stress at the transcriptome level using oxidative stress-sensitive strains. In addition, by introducing genetic modification technique such as CRISPR-Cas9 and the conditional gene expression system, we identified pathways/genes required for resistance to oxidative stress and also for virulence. Overall, this study advances the understanding of the oxidative stress response and related mechanisms in plant pathogenic fungi.
Collapse
Affiliation(s)
- Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Heeji Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Nahyun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sieun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jung-Eun Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Republic of Korea
| | - Yoonji Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Cai W, Chen Y, Zhang L, Fang X, Wang W. A three-gene cluster in Trichoderma reesei reveals a potential role of dmm2 in DNA repair and cellulase production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:34. [PMID: 35351200 PMCID: PMC8966179 DOI: 10.1186/s13068-022-02132-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/19/2022] [Indexed: 12/03/2022]
Abstract
Background The ascomycete Trichoderma reesei is one of the most efficient industrial producers of cellulase. Gene targeting by homologous recombination is a key technique for improving strains and constructing mutants. In T. reesei, tku70 (homologous to human KU70) was deleted to block non-homologous end-joining, which led to 95% of transformants exhibiting homologous recombination. Results Two genes located in close proximity to tku70 were identified: the ferrochelatase gene hem8 (tre78582, homologous to Aspergillus niger hemH and Cryptococcus neoformans HEM15) and a putative DNA methylation modulator-2 gene dmm2 (tre108087, homologous to Neurospora crassa dmm-2). Genome-wide surveys of 324 sequenced fungal genomes revealed that the homologues of the three genes of interest are encoded in tandem in most Sordariomycetes. The expression of this three-gene cluster is regulated by blue light. The roles of these three genes were analyzed via deletion and complementation tests. The gene hem8 was originally described as a novel and highly distinct auxotrophic marker in T. reesei and we found that the product protein, HEM8, catalyzes the final step in heme biosynthesis from highly photoreactive porphyrins. The lethal phenotype of the hem8 deletion could be overcome by hematin supplementation. We also studied the functions of tku70 and dmm2 in DNA repair using mutagen sensitivity experiments. We found that the Δtku70 strain showed increased sensitivity to bleomycin, which induces DNA double-strand breaks, and that the Δdmm2 strain was sensitive to bleomycin, camptothecin (an inhibitor of type I topoisomerases), and hydroxyurea (a deoxynucleotide synthesis inhibitor). The double-mutant Δtku70&dmm2 showed higher sensitivity to hydroxyurea, camptothecin, and bleomycin than either of the single mutants. Knockout of dmm2 significantly increased cellulase production. Conclusions Our data show, for the first time, that ferrochelatase encoded by hem8 catalyzes the final step in heme biosynthesis from highly photoreactive porphyrins and that dmm2 encodes a putative DNA methylation modulator-2 protein related to DNA repair and cellulase expression in T. reesei. Our data provide important insights into the roles of this three-gene cluster in T. reesei and other Sordariomycetes and show that the DNA methylation modulator DMM2 affects cellulase gene expression in T. reesei. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02132-y.
Collapse
|
7
|
5-Aminolevulinic acid fluorescence in brain non-neoplastic lesions: a systematic review and case series. Neurosurg Rev 2022; 45:3139-3148. [PMID: 35972631 DOI: 10.1007/s10143-022-01843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) is used to assist brain tumor resection, especially for high-grade gliomas but also for low-grade gliomas, metastasis, and meningiomas. With the increasing use of this technique, even to assist biopsies, high-grade glioma-mimicking lesions had misled diagnosis by showing 5-ALA fluorescence in non-neoplastic lesions such as radiation necrosis and inflammatory or infectious disease. Since only isolated reports have been published, we systematically review papers reporting non-neoplastic lesion cases with 5-ALA according with the PRISMA guidelines, present our series, and discuss its pathophysiology. In total, 245 articles were identified and 12 were extracted according to our inclusion criteria. Analyzing 27 patients, high-grade glioma was postulated as preoperative diagnosis in 48% of the cases. Microsurgical resection was performed in 19 cases (70%), while 8 patients were submitted to biopsy (30%). We found 4 positive cases in demyelinating disease (50%), 4 in brain abscess (80%), 1 in neurocysticercosis (33%), 1 in neurotoxoplasmosis, infarction, and hematoma (100%), 4 in inflammatory disease (80%), and 3 in cortical dysplasia (100%). New indications are being considered especially in benign lesion biopsies with assistance of 5-ALA. Using fluorescence as an aid in biopsies may improve procedure time, number of samples, and necessity of intraoperative pathology. Further studies should include this technology to encourage more beneficial uses.
Collapse
|
8
|
Ning Y, Roberts NJ, Qi J, Peng Z, Long Z, Zhou S, Gu J, Hou Z, Yang E, Ren Y, Lang J, Liang Z, Zhang M, Ma J, Jiang G. Inbreeding status and implications for Amur tigers. Anim Conserv 2021. [DOI: 10.1111/acv.12761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Y. Ning
- College of Life Science Jilin Agricultural University Changchun China
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - N. J. Roberts
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - J. Qi
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
- School of Forestry Northeast Forestry University Harbin China
| | - Z. Peng
- School of Basic Medical Sciences Nanchang University Nanchang China
| | - Z. Long
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - S. Zhou
- Heilongjiang Research Institute of Wildlife Harbin China
| | - J. Gu
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - Z. Hou
- College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - E. Yang
- Wildlife Conservation Society Hunchun China
| | - Y. Ren
- Wildlife Conservation Society Hunchun China
| | - J. Lang
- Jilin Hunchun Amur Tiger National Nature Reserve Hunchun China
| | - Z. Liang
- Heilongjiang Laoyeling Amur Tiger National Nature Reserve Dongning China
| | - M. Zhang
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - J. Ma
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - G. Jiang
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| |
Collapse
|
9
|
Cui Z, Zhu Z, Zhang J, Jiang Z, Liu Y, Wang Q, Hou J, Qi Q. Efficient 5-aminolevulinic acid production through reconstructing the metabolic pathway in SDH-deficient Yarrowia lipolytica. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Smith RL, Goddard A, Boddapati A, Brooks S, Schoeman JP, Lack J, Leisewitz A, Ackerman H. Experimental Babesia rossi infection induces hemolytic, metabolic, and viral response pathways in the canine host. BMC Genomics 2021; 22:619. [PMID: 34399690 PMCID: PMC8369750 DOI: 10.1186/s12864-021-07889-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Babesia rossi is a leading cause of morbidity and mortality among the canine population of sub-Saharan Africa, but pathogenesis remains poorly understood. Previous studies of B. rossi infection were derived from clinical cases, in which neither the onset of infection nor the infectious inoculum was known. Here, we performed controlled B. rossi inoculations in canines and evaluated disease progression through clinical tests and whole blood transcriptomic profiling. Results Two subjects were administered a low inoculum (104 parasites) while three received a high (108 parasites). Subjects were monitored for 8 consecutive days; anti-parasite treatment with diminazene aceturate was administered on day 4. Blood was drawn prior to inoculation as well as every experimental day for assessment of clinical parameters and transcriptomic profiles. The model recapitulated natural disease manifestations including anemia, acidosis, inflammation and behavioral changes. Rate of disease onset and clinical severity were proportional to the inoculum. To analyze the temporal dynamics of the transcriptomic host response, we sequenced mRNA extracted from whole blood drawn on days 0, 1, 3, 4, 6, and 8. Differential gene expression, hierarchical clustering, and pathway enrichment analyses identified genes and pathways involved in response to hemolysis, metabolic changes, and several arms of the immune response including innate immunity, adaptive immunity, and response to viral infection. Conclusions This work comprehensively characterizes the clinical and transcriptomic progression of B. rossi infection in canines, thus establishing a large mammalian model of severe hemoprotozoal disease to facilitate the study of host-parasite biology and in which to test novel anti-disease therapeutics. The knowledge gained from the study of B. rossi in canines will not only improve our understanding of this emerging infectious disease threat in domestic dogs, but also provide insight into the pathobiology of human diseases caused by Babesia and Plasmodium species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07889-4.
Collapse
Affiliation(s)
- Rachel L Smith
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Amelia Goddard
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Arun Boddapati
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20894, USA.,Advanced Biomedical Computational Science (ABCS), Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Steven Brooks
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Johan P Schoeman
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20894, USA.,Advanced Biomedical Computational Science (ABCS), Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Andrew Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
11
|
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia. Int J Mol Sci 2021; 22:ijms22126495. [PMID: 34204357 PMCID: PMC8233740 DOI: 10.3390/ijms22126495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022] Open
Abstract
Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway’s enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.
Collapse
|
12
|
Yadav V, Mai Y, McCoubrey LE, Wada Y, Tomioka M, Kawata S, Charde S, Basit AW. 5-Aminolevulinic Acid as a Novel Therapeutic for Inflammatory Bowel Disease. Biomedicines 2021; 9:biomedicines9050578. [PMID: 34065300 PMCID: PMC8160866 DOI: 10.3390/biomedicines9050578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/22/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a naturally occurring nonprotein amino acid licensed as an optical imaging agent for the treatment of gliomas. In recent years, 5-ALA has been shown to possess anti-inflammatory and immunoregulatory properties through upregulation of heme oxygenase-1 via enhancement of porphyrin, indicating that it may be beneficial for the treatment of inflammatory conditions. This study systematically examines 5-ALA for use in inflammatory bowel disease (IBD). Firstly, the ex vivo colonic stability and permeability of 5-ALA was assessed using human and mouse fluid and tissue. Secondly, the in vivo efficacy of 5-ALA, in the presence of sodium ferrous citrate, was investigated via the oral and intracolonic route in an acute DSS colitis mouse model of IBD. Results showed that 5-ALA was stable in mouse and human colon fluid, as well as in colon tissue. 5-ALA showed more tissue restricted pharmacokinetics when exposed to human colonic tissue. In vivo dosing demonstrated significantly improved colonic inflammation, increased local heme oxygenase-1 levels, and decreased concentrations of proinflammatory cytokines TNF-α, IL-6, and IL-1β in both plasma and colonic tissue. These effects were superior to that measured concurrently with established anti-inflammatory treatments, ciclosporin and 5-aminosalicylic acid (mesalazine). As such, 5-ALA represents a promising addition to the IBD armamentarium, with potential for targeted colonic delivery.
Collapse
Affiliation(s)
- Vipul Yadav
- Intract Pharma Limited, London Bioscience Innovation Centre, London NW1 0NH, UK
- Correspondence: (V.Y.); (A.W.B.)
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzen), Sun Yat-sen University, Guangzhou 510275, China;
| | - Laura E. McCoubrey
- Department of Pharmaceutics, UCL School of Pharmacy, University College, London WC1N 1AX, UK;
| | - Yasufumi Wada
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Motoyasu Tomioka
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Satofumi Kawata
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Shrikant Charde
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Abdul W. Basit
- Intract Pharma Limited, London Bioscience Innovation Centre, London NW1 0NH, UK
- Department of Pharmaceutics, UCL School of Pharmacy, University College, London WC1N 1AX, UK;
- Correspondence: (V.Y.); (A.W.B.)
| |
Collapse
|
13
|
Davy AM, Kildegaard HF, Andersen MR. Cell Factory Engineering. Cell Syst 2019; 4:262-275. [PMID: 28334575 DOI: 10.1016/j.cels.2017.02.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 11/30/2022]
Abstract
Rational approaches to modifying cells to make molecules of interest are of substantial economic and scientific interest. Most of these efforts aim at the production of native metabolites, expression of heterologous biosynthetic pathways, or protein expression. Reviews of these topics have largely focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering. Here we condense >130 reviews and key studies in the art into a meta-review of cell factory engineering. We identified 33 generic strategies in the field, all applicable to multiple types of cells and products, and proven successful in multiple major cell types. These apply to three major categories: production of native metabolites and/or bioactives, heterologous expression of biosynthetic pathways, and protein expression. This meta-review provides general strategy guides for the broad range of applications of rational engineering of cell factories.
Collapse
Affiliation(s)
- Anne Mathilde Davy
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
de Laurentis C, Del Bene M, Fociani P, Tonello C, Pollo B, DiMeco F. 5-ALA Fluorescence in Case of Brain Abscess by Aggregatibacter Mimicking Glioblastoma. World Neurosurg 2019; 125:175-178. [DOI: 10.1016/j.wneu.2019.01.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
|
15
|
Suparmin A, Kato T, Takemoto H, Park EY. Metabolic comparison of aerial and submerged mycelia formed in the liquid surface culture of Cordyceps militaris. Microbiologyopen 2019; 8:e00836. [PMID: 30924317 PMCID: PMC6741141 DOI: 10.1002/mbo3.836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
An entomopathogenic fungus, Cordyceps sp. has been known to produce cordycepin which is a purine nucleoside antimetabolite and antibiotic with potential anticancer, antioxidant and anti-inflammatory activities. Interestingly, Cordyceps militaris produces significantly higher amount in a liquid surface culture than in a submerged culture. The liquid surface culture consists of mycelia growing into the air (aerial mycelia) and mycelia growing toward the bottom into the medium (submerged mycelia). In this study, to clarify roles of aerial and submerged mycelia of C. militaris in the cordycepin production the difference in metabolism between these mycelia was investigated. From transcriptomic analyses of the aerial and submerged mycelia at the culture of 5, 12 and 19 days, the metabolism of the submerged mycelia switched from the oxidative phosphorylation to the fermentation pathway. This activated the pentose phosphate pathway to provide building block materials for the nucleotide biosynthetic pathway. Under hypoxic conditions, the 5-aminolevulinic acid synthase (CCM_01504), delta-aminolevulinic acid dehydratase (CCM_00935), coproporphyrinogen III oxidase (CCM_07483) and cytochrome c oxidase 15 (CCM_05057) genes of heme biosynthesis were significantly upregulated. In addition, the liquid surface culture revealed that metabolite coproporhyrinogen III and glycine, the product and precursor of heme, were increased at 12th day and decreased at 19th day, respectively. These results indicate that the submerged mycelia induce the activation of iron acquisition, the ergosterol biosynthetic pathway, and the iron cluster genes of cordycepin biosynthesis in a hypoxic condition. Even though, the expression of the cluster genes of cordycepin biosynthesis was not significantly different in both types of mycelia.
Collapse
Affiliation(s)
- Ahmad Suparmin
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Tatsuya Kato
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Hiroyuki Takemoto
- Instrumental Research Support Office, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan.,Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
16
|
Donegan RK, Moore CM, Hanna DA, Reddi AR. Handling heme: The mechanisms underlying the movement of heme within and between cells. Free Radic Biol Med 2019; 133:88-100. [PMID: 30092350 PMCID: PMC6363905 DOI: 10.1016/j.freeradbiomed.2018.08.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/02/2023]
Abstract
Heme is an essential cofactor and signaling molecule required for virtually all aerobic life. However, excess heme is cytotoxic. Therefore, heme must be safely transported and trafficked from the site of synthesis in the mitochondria or uptake at the cell surface, to hemoproteins in most subcellular compartments. While heme synthesis and degradation are relatively well characterized, little is known about how heme is trafficked and transported throughout the cell. Herein, we review eukaryotic heme transport, trafficking, and mobilization, with a focus on factors that regulate bioavailable heme. We also highlight the role of gasotransmitters and small molecules in heme mobilization and bioavailability, and heme trafficking at the host-pathogen interface.
Collapse
Affiliation(s)
- Rebecca K Donegan
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Courtney M Moore
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - David A Hanna
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Amit R Reddi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Parker Petit Institute for Bioengineering & Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
17
|
Genetic analyses of reddish-brown polyoxin-resistant mutants of Bipolaris maydis. MYCOSCIENCE 2018. [DOI: 10.1016/j.myc.2017.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Qin X, Su X, Luo H, Ma R, Yao B, Ma F. Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:58. [PMID: 29507610 PMCID: PMC5833081 DOI: 10.1186/s13068-018-1060-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/23/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Irpex lacteus is one of the most potent white rot fungi for biological pretreatment of lignocellulose for second biofuel production. To elucidate the underlying molecular mechanism involved in lignocellulose deconstruction, genomic and transcriptomic analyses were carried out for I. lacteus CD2 grown in submerged fermentation using ball-milled corn stover as the carbon source. RESULTS Irpex lacteus CD2 efficiently decomposed 74.9% lignin, 86.3% cellulose, and 83.5% hemicellulose in corn stover within 9 days. Manganese peroxidases were rapidly induced, followed by accumulation of cellulase and hemicellulase. Genomic analysis revealed that I. lacteus CD2 possessed a complete set of lignocellulose-degrading enzyme system composed mainly of class II peroxidases, dye-decolorizing peroxidases, auxiliary enzymes, and 182 glycoside hydrolases. Comparative transcriptomic analysis substantiated the notion of a selection mode of degradation. These analyses also suggested that free radicals, derived either from MnP-organic acid interplay or from Fenton reaction involving Fe2+ and H2O2, could play an important role in lignocellulose degradation. CONCLUSIONS The selective strategy employed by I. lacteus CD2, in combination with low extracellular glycosidases cleaving plant cell wall polysaccharides into fermentable sugars, may account for high pretreatment efficiency of I. lacteus. Our study also hints the importance of free radicals for future designing of novel, robust lignocellulose-degrading enzyme cocktails.
Collapse
Affiliation(s)
- Xing Qin
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Fuying Ma
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| |
Collapse
|
19
|
Pippin AB, Voll RJ, Li Y, Wu H, Mao H, Goodman MM. Radiochemical Synthesis and Evaluation of 13N-Labeled 5-Aminolevulinic Acid for PET Imaging of Gliomas. ACS Med Chem Lett 2017; 8:1236-1240. [PMID: 29259740 DOI: 10.1021/acsmedchemlett.7b00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/15/2017] [Indexed: 01/05/2023] Open
Abstract
The endogenous amino acid, 5-aminolevulinic acid (5-ALA), has received significant attention as an imaging agent, including ongoing clinical trials for image-guided tumor resection due to its selective uptake and subsequent accumulation of the fluorescent protoporphyrin IX in tumor cells. Based on the widely reported selectivity of 5-ALA, a new positron emission tomography imaging probe was developed by reacting methyl 5-bromolevulinate with [13N] ammonia. The radiotracer, [13N] 5-ALA, was produced in high radiochemical yield (65%) in 10 min and could be purified using only solid phase cartridges. In vivo testing in rats bearing intracranial 9L glioblastoma showed peak tumor uptake occurred within 10 min of radiotracer administration. Immunohistochemical staining and fluorescent imaging was used to confirm the tumor location and accumulation of the tracer seen from the PET images. The quick synthesis and rapid tumor specific uptake of [13N] 5-ALA makes it a potential novel clinical applicable radiotracer for detecting and monitoring tumors noninvasively.
Collapse
Affiliation(s)
- Adam B. Pippin
- Department of Radiology
and
Imaging Sciences, Emory University Center for Systems Imaging, Wesley Woods Health Center, 1841 Clifton Road, NE, Atlanta, Georgia 30329, United States
| | - Ronald J. Voll
- Department of Radiology
and
Imaging Sciences, Emory University Center for Systems Imaging, Wesley Woods Health Center, 1841 Clifton Road, NE, Atlanta, Georgia 30329, United States
| | - Yuancheng Li
- Department of Radiology
and
Imaging Sciences, Emory University Center for Systems Imaging, Wesley Woods Health Center, 1841 Clifton Road, NE, Atlanta, Georgia 30329, United States
| | - Hui Wu
- Department of Radiology
and
Imaging Sciences, Emory University Center for Systems Imaging, Wesley Woods Health Center, 1841 Clifton Road, NE, Atlanta, Georgia 30329, United States
| | - Hui Mao
- Department of Radiology
and
Imaging Sciences, Emory University Center for Systems Imaging, Wesley Woods Health Center, 1841 Clifton Road, NE, Atlanta, Georgia 30329, United States
| | - Mark M. Goodman
- Department of Radiology
and
Imaging Sciences, Emory University Center for Systems Imaging, Wesley Woods Health Center, 1841 Clifton Road, NE, Atlanta, Georgia 30329, United States
| |
Collapse
|
20
|
A mitochondrial proteomics view of complex I deficiency in Candida albicans. Mitochondrion 2017; 38:48-57. [PMID: 28801230 DOI: 10.1016/j.mito.2017.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 12/28/2022]
Abstract
Proteomic analyses were carried out on isolated mitochondrial samples of C. albicans from gene-deleted mutants (nuo1Δ, nuo2Δ and goa1Δ) as well as the parental strain in order to better understand the contribution of these three fungal-specific mitochondrial ETC complex I (CI) subunits to cellular activities. Herein, we identify 2333 putative proteins from four strains, in which a total of 663 proteins (28.5%) are putatively located in mitochondria. Comparison of protein abundances between mutants and the parental strain reveal 146 differentially-expressed proteins, of which 78 are decreased and 68 are increased in at least one mutant. The common changes across the three mutants include the down-regulation of nuclear-encoded CI subunit proteins as well as phospholipid, ergosterol and cell wall mannan synthesis, and up-regulated proteins in CIV and the alternative oxidase (AOX2). As for gene-specific functions, we find that NUO1 participates in nucleotide synthesis and ribosomal biogenesis; NUO2 is involved in vesicle trafficking; and GOA1 appears to regulate membrane transporter proteins, ROS removal, and substrates trafficking between peroxisomes and mitochondria. The proteomic view of general as well as mutant-specific proteins further extends our understanding of the functional roles of non-mammalian CI-specific subunit proteins in cell processes. Particularly intriguing is the confirmation of a regulatory role for GOA1 on ETC function, a protein found almost exclusively in Candida species. SIGNIFICANCE Fungal mitochondria are critical for fungal pathogenesis. The absence of any of the three fungal specific CI subunits in mitochondria causes an avirulence phenotype of C. albicans in a murine model of invasive disease. As model yeast (Saccharomyces cerevisiae) lacks a CI and is rarely a pathogen of humans, C. albicans is a better choice for establishing a link between mitochondrial CI and pathogenesis. Apart from the general effects of CI mutants on respiration, previous phenotyping of these mutants were quite similar to each other or to CI conservative subunit. By comparison to transcriptional data, the proteomic data obtained in this study indicate that biosynthetic events in each mutant such as cell wall and cell membrane phospholipids and ergosterol are generally decreased in both transcriptomal and translational levels. However, in the case of mitochondrial function, glycolysis/gluconeogenesis, and ROS scavengers, often gene changes are opposite that of proteomic data in mutants. We hypothesize that the loss of energy production in mutants is compensated by increases in protein levels of glycolysis, gluconeogenesis, and anti-ROS scavengers that at least extend mutant survival.
Collapse
|
21
|
Solis WG, Hansen M. Fluorescence in a cryptococcoma following administration of 5-aminolevulinic acid hydrochloride (Gliolan). BMJ Case Rep 2017; 2017:bcr-2017-219469. [PMID: 28400397 DOI: 10.1136/bcr-2017-219469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 54-year-old man presented with two episodes of dysarthria and left facial droop. Both episodes resolved by the time of examination. MRI of the brain revealed a right frontotemporal, heterogeneously enhancing mass with surrounding vasogenic oedema, suggestive of a high-grade primary brain neoplasm. The patient was administered preoperative 5-aminolevulinic acid hydrochloride (Gliolan), and fluorescence-guided resection of the lesion was undertaken. Cryptococcus gattii infection was diagnosed from the specimen and the patient was given appropriate antifungal treatment. This is the first reported case of Gliolan-mediated fluorescence in a fungal abscess and highlights one of the potential pitfalls in fluorescence-guided surgery.
Collapse
Affiliation(s)
- Waldo Gerard Solis
- Department of Neurosurgery, John Hunter Hospital, New Lambton, New South Wales, Australia
| | - Mitchell Hansen
- Department of Neurosurgery, John Hunter Hospital, New Lambton, New South Wales, Australia
| |
Collapse
|
22
|
Hey D, Ortega-Rodes P, Fan T, Schnurrer F, Brings L, Hedtke B, Grimm B. Transgenic Tobacco Lines Expressing Sense or Antisense FERROCHELATASE 1 RNA Show Modified Ferrochelatase Activity in Roots and Provide Experimental Evidence for Dual Localization of Ferrochelatase 1. PLANT & CELL PHYSIOLOGY 2016; 57:2576-2585. [PMID: 27818378 DOI: 10.1093/pcp/pcw171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
In plants, two genes encode ferrochelatase (FC), which catalyzes iron chelation into protoporphyrin IX at the final step of heme biosynthesis. FERROCHELATASE1 (FC1) is continuously, but weakly expressed in roots and leaves, while FC2 is dominantly active in leaves. As a continuation of previous studies on the physiological consequences of FC2 inactivation in tobacco, we aimed to assign FC1 function in plant organs. While reduced FC2 expression leads to protoporphyrin IX accumulation in leaves, FC1 down-regulation and overproduction caused reduced and elevated FC activity in root tissue, respectively, but were not associated with changes in macroscopic phenotype, plant development or leaf pigmentation. In contrast to the lower heme content resulting from a deficiency of the dominant FC2 expression in leaves, a reduction of FC1 in roots and leaves does not significantly disturb heme accumulation. The FC1 overexpression was used for an additional approach to re-examine FC activity in mitochondria. Transgenic FC1 protein was immunologically shown to be present in mitochondria. Although matching only a small portion of total cellular FC activity, the mitochondrial FC activity in a FC1 overexpressor line increased 5-fold in comparison with wild-type mitochondria. Thus, it is suggested that FC1 contributes to mitochondrial heme synthesis.
Collapse
Affiliation(s)
- Daniel Hey
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Patricia Ortega-Rodes
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Tingting Fan
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Florian Schnurrer
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Lea Brings
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Boris Hedtke
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Bernhard Grimm
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| |
Collapse
|
23
|
Wu J, Wen S, Zhou Y, Chao H, Shen Y. Human Ferrochelatase: Insights for the Mechanism of Ferrous Iron Approaching Protoporphyrin IX by QM/MM and QTCP Free Energy Studies. J Chem Inf Model 2016; 56:2421-2433. [PMID: 27801584 DOI: 10.1021/acs.jcim.6b00216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferrochelatase catalyzes the insertion of ferrous iron into protoporphyrin IX, the terminal step in heme biosynthesis. Some disputes in its mechanism remain unsolved, especially for human ferrochelatase. In this paper, high-level quantum mechanical/molecular mechanics (QM/MM) and free-energy studies were performed to address these controversial issues including the iron-binding site, the optimal reaction path, the substrate porphyrin distortion, and the presence of the sitting-atop (SAT) complex. Our results reveal that the ferrous iron is probably at the binding site coordinating with Met76, and His263 plays the role of proton acceptor. The rate-determining step is either the first proton removed by His263 or the proton transition within the porphyrin with an energy barrier of 14.99 or 14.87 kcal/mol by the quantum mechanical thermodynamic cycle perturbation (QTCP) calculations, respectively. The fast deprotonation step with the conservative residues rather than porphyrin deformation found in solution provides the driving force for biochelation. The SAT complex is not a necessity for the catalysis though it induces a modest distortion on the porphyrin ring.
Collapse
Affiliation(s)
- Jingheng Wu
- School of Chemistry, Sun Yat-sen University , 510275 Guangzhou, P R China
| | - Sixiang Wen
- School of Chemistry, Sun Yat-sen University , 510275 Guangzhou, P R China
| | - Yiwei Zhou
- School of Chemistry, Sun Yat-sen University , 510275 Guangzhou, P R China
| | - Hui Chao
- School of Chemistry, Sun Yat-sen University , 510275 Guangzhou, P R China
| | - Yong Shen
- School of Chemistry, Sun Yat-sen University , 510275 Guangzhou, P R China
| |
Collapse
|
24
|
Torres-Martínez S, Ruiz-Vázquez RM. RNAi pathways in Mucor: A tale of proteins, small RNAs and functional diversity. Fungal Genet Biol 2016; 90:44-52. [DOI: 10.1016/j.fgb.2015.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 12/30/2022]
|
25
|
Ben Yaakov D, Rivkin A, Mircus G, Albert N, Dietl AM, Kovalerchick D, Carmeli S, Haas H, Kontoyiannis DP, Osherov N. Identification and characterization of haemofungin, a novel antifungal compound that inhibits the final step of haem biosynthesis. J Antimicrob Chemother 2016; 71:946-52. [PMID: 26747101 DOI: 10.1093/jac/dkv446] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/20/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES During recent decades, the number of invasive fungal infections among immunosuppressed patients has increased significantly, whereas the number of effective systemic antifungal drugs remains low and unsatisfactory. The aim of this study was to characterize a novel antifungal compound, CW-8/haemofungin, which we previously identified in a screen for compounds affecting fungal cell wall integrity. METHODS The in vitro characteristics of haemofungin were investigated by MIC evaluation against a panel of pathogenic and non-pathogenic fungi, bacteria and mammalian cells in culture. Haemofungin mode-of-action studies were performed by screening an Aspergillus nidulans overexpression genomic library for resistance-conferring plasmids and biochemical validation of the target. In vivo efficacy was tested in the Galleria mellonella and Drosophila melanogaster insect models of infection. RESULTS We demonstrate that haemofungin causes swelling and lysis of growing fungal cells. It inhibits the growth of pathogenic Aspergillus, Candida, Fusarium and Rhizopus isolates at micromolar concentrations, while only weakly affecting the growth of mammalian cell lines. Genetic and biochemical analyses in A. nidulans and Aspergillus fumigatus indicate that haemofungin primarily inhibits ferrochelatase (HemH), the last enzyme in the haem biosynthetic pathway. Haemofungin was non-toxic and significantly reduced mortality rates of G. mellonella and D. melanogaster infected with A. fumigatus and Rhizopus oryzae, respectively. CONCLUSIONS Further development and in vivo validation of haemofungin is warranted.
Collapse
Affiliation(s)
- Dafna Ben Yaakov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anna Rivkin
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Mircus
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nathaniel Albert
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna-Maria Dietl
- Biocenter-Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dimitry Kovalerchick
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | - Shmuel Carmeli
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | - Hubertus Haas
- Biocenter-Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
26
|
Homologous and Heterologous Expression of Basidiomycete Genes Related to Plant Biomass Degradation. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production. Appl Biochem Biotechnol 2015; 178:1252-62. [PMID: 26637361 DOI: 10.1007/s12010-015-1942-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
5-Aminolevulinic acid (ALA) is a nonprotein amino acid that has been widely used in many fields. In this study, we developed a new process for ALA production by optimizing the in vivo heme biosynthesis pathway and the iron concentration during cultivation. With the addition of iron, co-overexpression of the heme synthesis pathway genes hemA, hemL, hemF, and hemD significantly increased the accumulation of ALA and cell biomass. Further experiments demonstrated that the increased ALA accumulation resulted from moderate repression of ALA dehydratase (encoded by hemB), which was caused by hemF overexpression. After the addition of an optimized concentration (7.5 mg/L) of iron, ALA production by the recombinant Escherichia coli LADF-6 strain that overexpressed hemA, hemL, hemD, and hemF increased to 2840 mg/L in flask cultures. After applying a batch fermentation strategy, the ALA concentration increased to 4.05 g/L, with a productivity of 0.127 g/L·h. The results showed that the moderate repression of the in vivo heme pathway enzyme ALA dehydratase and the simultaneous optimization of the in vitro iron ion concentration served to increase the production of ALA and cell biomass.
Collapse
|
28
|
Wirsing L, Klawonn F, Sassen WA, Lünsdorf H, Probst C, Hust M, Mendel RR, Kruse T, Jänsch L. Linear Discriminant Analysis Identifies Mitochondrially Localized Proteins in Neurospora crassa. J Proteome Res 2015. [PMID: 26215788 DOI: 10.1021/acs.jproteome.5b00329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Besides their role as powerhouses, mitochondria play a pivotal role in the spatial organization of numerous enzymatic functions. They are connected to the ER, and many pathways are organized through the mitochondrial membranes. Thus, the precise definition of mitochondrial proteomes remains a challenging task. Here, we have established a proteomic strategy to accurately determine the mitochondrial localization of proteins from the fungal model organism Neurospora crassa. This strategy relies on both highly pure mitochondria as well as the quantitative monitoring of mitochondrial components along their consecutive enrichment. Pure intact mitochondria were obtained by a multistep approach combining differential and density Percoll (ultra) centrifugations. When compared with three other intermediate enrichment stages, peptide sequencing and quantitative profiling of pure mitochondrial fractions revealed prototypic regulatory profiles of per se mitochondrial components. These regulatory profiles constitute a distinct cluster defining the mitochondrial compartment and support linear discriminant analyses, which rationalized the annotation process. In total, this approach experimentally validated the mitochondrial localization of 512 proteins including 57 proteins that had not been reported for N. crassa before.
Collapse
Affiliation(s)
- Lisette Wirsing
- Cellular Proteomics Research Group, §Central Facility for Microscopy, Helmholtz Centre for Infection Research , 38124 Braunschweig, Germany
| | - Frank Klawonn
- Cellular Proteomics Research Group, §Central Facility for Microscopy, Helmholtz Centre for Infection Research , 38124 Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences , 38302 Wolfenbüttel, Germany
| | | | | | | | | | | | | | - Lothar Jänsch
- Cellular Proteomics Research Group, §Central Facility for Microscopy, Helmholtz Centre for Infection Research , 38124 Braunschweig, Germany
| |
Collapse
|
29
|
Trieu TA, Calo S, Nicolás FE, Vila A, Moxon S, Dalmay T, Torres-Martínez S, Garre V, Ruiz-Vázquez RM. A non-canonical RNA silencing pathway promotes mRNA degradation in basal Fungi. PLoS Genet 2015; 11:e1005168. [PMID: 25875805 PMCID: PMC4395119 DOI: 10.1371/journal.pgen.1005168] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/20/2015] [Indexed: 12/04/2022] Open
Abstract
The increasing knowledge on the functional relevance of endogenous small RNAs (esRNAs) as riboregulators has stimulated the identification and characterization of these molecules in numerous eukaryotes. In the basal fungus Mucor circinelloides, an emerging opportunistic human pathogen, esRNAs that regulate the expression of many protein coding genes have been described. These esRNAs share common machinery for their biogenesis consisting of an RNase III endonuclease Dicer, a single Argonaute protein and two RNA-dependent RNA polymerases. We show in this study that, besides participating in this canonical dicer-dependent RNA interference (RNAi) pathway, the rdrp genes are involved in a novel dicer-independent degradation process of endogenous mRNAs. The analysis of esRNAs accumulated in wild type and silencing mutants demonstrates that this new rdrp-dependent dicer-independent regulatory pathway, which does not produce sRNA molecules of discrete sizes, controls the expression of target genes promoting the specific degradation of mRNAs by a previously unknown RNase. This pathway mainly regulates conserved genes involved in metabolism and cellular processes and signaling, such as those required for heme biosynthesis, and controls responses to specific environmental signals. Searching the Mucor genome for candidate RNases to participate in this pathway, and functional analysis of the corresponding knockout mutants, identified a new protein, R3B2. This RNase III-like protein presents unique domain architecture, it is specifically found in basal fungi and, besides its relevant role in the rdrp-dependent dicer-independent pathway, it is also involved in the canonical dicer-dependent RNAi pathway, highlighting its crucial role in the biogenesis and function of regulatory esRNAs. The involvement of RdRPs in RNA degradation could represent the first evolutionary step towards the development of an RNAi mechanism and constitutes a genetic link between mRNA degradation and post-transcriptional gene silencing. Most eukaryotic organisms produce different classes of endogenous small RNA (esRNA) molecules that suppress gene expression through RNA interference (RNAi) pathways. These pathways, which may differ among organisms, are normally involved in genome defense, heterochromatin formation and regulation of genes involved in multiple cellular functions. In the basal fungus Mucor circinelloides, an opportunistic human pathogen, we previously demonstrated that biogenesis of a large group of esRNA molecules requires a basic RNAi machinery consisting of a Dicer-like protein, an Argonaute nuclease and two RNA-dependent RNA polymerases. This canonical dicer-dependent pathway regulates different cellular processes, such as vegetative sporulation. Besides those esRNAs generated by this canonical RNAi pathway, we have identified a new rdrp-dependent dicer-independent esRNA class. These esRNAs are produced by a degradation pathway in which the RdRP proteins signal specific transcripts that will be degraded by a newly identified RNase. This RNase, named R3B2, presents unique domain architecture, can only be found in basal fungi and it is also involved in the canonical dicer-dependent RNAi pathway. Our results expand the role of RdRPs in gene silencing and reveal the involvement of these proteins in a new RNA degradation process that could represent the first step in the evolution of RNAi.
Collapse
Affiliation(s)
- Trung Anh Trieu
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Silvia Calo
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | | | - Ana Vila
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Simon Moxon
- The Genome Analysis Centre, University of East Anglia, Norwich, United Kingdom
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | - Victoriano Garre
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Rosa M. Ruiz-Vázquez
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
30
|
Krainer FW, Capone S, Jäger M, Vogl T, Gerstmann M, Glieder A, Herwig C, Spadiut O. Optimizing cofactor availability for the production of recombinant heme peroxidase in Pichia pastoris. Microb Cell Fact 2015; 14:4. [PMID: 25586641 PMCID: PMC4299804 DOI: 10.1186/s12934-014-0187-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/26/2014] [Indexed: 02/08/2023] Open
Abstract
Background Insufficient incorporation of heme is considered a central impeding cause in the recombinant production of active heme proteins. Currently, two approaches are commonly taken to overcome this bottleneck; metabolic engineering of the heme biosynthesis pathway in the host organism to enhance intracellular heme production, and supplementation of the growth medium with the desired cofactor or precursors thereof to allow saturation of recombinantly produced apo-forms of the target protein. In this study, we investigated the effect of both, pathway engineering and medium supplementation, to optimize the recombinant production of the heme protein horseradish peroxidase in the yeast Pichia pastoris. Results In contrast to studies with other hosts, co-overexpression of genes of the endogenous heme biosynthesis pathway did not improve the recombinant production of active heme protein. However, medium supplementation with hemin proved to be an efficient strategy to increase the yield of active enzyme, whereas supplementation with the commonly used precursor 5-aminolevulinic acid did not affect target protein yield. Conclusions The yield of active recombinant heme peroxidase from P. pastoris can be easily enhanced by supplementation of the cultivation medium with hemin. Thereby, secreted apo-species of the target protein are effectively saturated with cofactor, maximizing the yield of target enzyme activity. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0187-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian W Krainer
- Graz University of Technology, NAWI Graz, Institute of Molecular Biotechnology, Graz, Austria.
| | - Simona Capone
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| | - Martin Jäger
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| | - Thomas Vogl
- Graz University of Technology, NAWI Graz, Institute of Molecular Biotechnology, Graz, Austria.
| | - Michaela Gerstmann
- Graz University of Technology, NAWI Graz, Institute of Molecular Biotechnology, Graz, Austria.
| | - Anton Glieder
- Graz University of Technology, NAWI Graz, Institute of Molecular Biotechnology, Graz, Austria.
| | - Christoph Herwig
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| | - Oliver Spadiut
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| |
Collapse
|
31
|
|
32
|
Ruiz-Vázquez RM, Nicolás FE, Torres-Martínez S, Garre V. Distinct RNAi Pathways in the Regulation of Physiology and Development in the Fungus Mucor circinelloides. ADVANCES IN GENETICS 2015; 91:55-102. [DOI: 10.1016/bs.adgen.2015.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Imada K, Tanaka S, Ibaraki Y, Yoshimura K, Ito S. Antifungal effect of 405-nm light on Botrytis cinerea. Lett Appl Microbiol 2014; 59:670-6. [PMID: 25236427 DOI: 10.1111/lam.12330] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED There is very little information on the fungistatic or fungicidal effect of visible light. This study investigated the effect of 405-nm light, generated by a light-emitting diode array, on the economically important fungus Botrytis cinerea. The mycelial growth of B. cinerea was inhibited to the greatest extent by light at 405 and 415 nm and was negligibly inactivated at 450 nm, suggesting the presence of a photosensitizing compound that absorbs light mainly at wavelengths of 405-415 nm. Delta-aminolevulinic acid, a precursor of endogenous photosensitizer porphyrins, was used to determine the role of these porphyrins in 405-nm light-mediated photoinactivation of the fungus. Concentration-dependent inhibition of spore germination by delta-aminolevulinic acid and accumulation of singlet oxygen in the spores was observed when the spores were exposed to 405-nm light. These results suggest that the excitation of endogenous porphyrins and subsequent accumulation of singlet oxygen could partially explain the 405-nm light-mediated photoinactivation of B. cinerea. The development of symptoms in detached tomato leaves inoculated with B. cinerea spores was significantly reduced by irradiation with 405-nm light, indicating that 405-nm light has a potential use for controlling plant diseases caused by B. cinerea. SIGNIFICANCE AND IMPACT OF THE STUDY Grey mould (Botrytis cinerea) is a very successful necrotroph, causing serious losses in more than 200 crop hosts. This study investigated the antifungal effect of 405-nm light on this pathogen. Our results suggest that the excitation of endogenous porphyrins and subsequent accumulation of singlet oxygen contribute to the 405-nm light-mediated photoinactivation of grey mould. The development of symptoms in detached tomato leaves inoculated with B. cinerea spores was significantly inhibited by irradiation with 405-nm light, indicating that this wavelength of light has a potential use in controlling plant diseases caused by B. cinerea.
Collapse
Affiliation(s)
- K Imada
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | |
Collapse
|
34
|
The role of coproporphyrinogen III oxidase and ferrochelatase genes in heme biosynthesis and regulation in Aspergillus niger. Appl Microbiol Biotechnol 2013; 97:9773-85. [PMID: 24113826 DOI: 10.1007/s00253-013-5274-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
Heme is a suggested limiting factor in peroxidase production by Aspergillus spp., which are well-known suitable hosts for heterologous protein production. In this study, the role of genes coding for coproporphyrinogen III oxidase (hemF) and ferrochelatase (hemH) was analyzed by means of deletion and overexpression to obtain more insight in fungal heme biosynthesis and regulation. These enzymes represent steps in the heme biosynthetic pathway downstream of the siroheme branch and are suggested to play a role in regulation of the pathway. Based on genome mining, both enzymes deviate in cellular localization and protein domain structure from their Saccharomyces cerevisiae counterparts. The lethal phenotype of deletion of hemF or hemH could be remediated by heme supplementation confirming that Aspergillus niger is capable of hemin uptake. Nevertheless, both gene deletion mutants showed an extremely impaired growth even with hemin supplementation which could be slightly improved by media modifications and the use of hemoglobin as heme source. The hyphae of the mutant strains displayed pinkish coloration and red autofluorescence under UV indicative of cellular porphyrin accumulation. HPLC analysis confirmed accumulation of specific porphyrins, thereby confirming the function of the two proteins in heme biosynthesis. Overexpression of hemH, but not hemF or the aminolevulinic acid synthase encoding hemA, modestly increased the cellular heme content, which was apparently insufficient to increase activity of endogenous peroxidase and cytochrome P450 enzyme activities. Overexpression of all three genes increased the cellular accumulation of porphyrin intermediates suggesting regulatory mechanisms operating in the final steps of the fungal heme biosynthesis pathway.
Collapse
|
35
|
Suzuki C, Kato K, Tsuji AB, Kikuchi T, Zhang MR, Arano Y, Saga T. Synthesis and in vitro cellular uptake of 11C-labeled 5-aminolevulinic acid derivative to estimate the induced cellular accumulation of protoporphyrin IX. Bioorg Med Chem Lett 2013; 23:4567-70. [DOI: 10.1016/j.bmcl.2013.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 11/27/2022]
|
36
|
Efficient production of skimmin and 6′-succinylskimmin from umbelliferone by organic solvent-tolerant Bacillus licheniformis ZSP01 using nitrogen sources regulation strategy. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol 2012; 97:939-55. [DOI: 10.1007/s00253-012-4615-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
|
38
|
Chung D, Haas H, Cramer RA. Coordination of hypoxia adaptation and iron homeostasis in human pathogenic fungi. Front Microbiol 2012; 3:381. [PMID: 23133438 PMCID: PMC3490150 DOI: 10.3389/fmicb.2012.00381] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022] Open
Abstract
In mammals, hypoxia causes facilitated erythropoiesis that requires increased iron availability with established links between oxygen and iron in regulation of the transcription factor hypoxia-inducible factor. Therefore, cellular responses to hypoxia and iron starvation are linked in mammals and are host conditions that pathogens encounter during infection. In human pathogenic fungi, molecular mechanisms underlying hypoxia adaptation and iron homeostasis have been investigated. However, the interconnected regulation of hypoxia adaptation and iron homeostasis remains to be fully elucidated. This review discusses the potential transcriptional regulatory links between hypoxia adaptation and iron homeostasis in human pathogenic fungi. Transcriptome analyses demonstrate that core regulators of hypoxia adaptation and iron homeostasis are involved in regulation of several common genes responsible for iron acquisition and ergosterol biosynthesis. Importantly, iron starvation increases susceptibility of fungal cells to antifungal drugs and decreased levels of ergosterol, while key hypoxia regulators are also involved in responses to antifungal drugs and mediating ergosterol levels. We suggest that pathogenic fungi have developed a coordinated regulatory system in response to hypoxia and iron starvation through (i) regulation of expression of hypoxia-responsive and iron-responsive genes via cross-linked key regulators, and/or (ii) regulation of factors involved in ergosterol biosynthesis. Thus, both oxygen and iron availability are intimately tied with fungal virulence and responses to existing therapeutics and further elucidation of their interrelationship should have significant clinical implications.
Collapse
Affiliation(s)
- Dawoon Chung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth Hanover, NH, USA
| | | | | |
Collapse
|
39
|
Franken ACW, Lokman BC, Ram AFJ, van den Hondel CAMJJ, de Weert S, Punt PJ. Analysis of the role of the Aspergillus niger aminolevulinic acid synthase (hemA) gene illustrates the difference between regulation of yeast and fungal haem- and sirohaem-dependent pathways. FEMS Microbiol Lett 2012; 335:104-12. [PMID: 22889260 DOI: 10.1111/j.1574-6968.2012.02655.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 11/27/2022] Open
Abstract
To increase knowledge on haem biosynthesis in filamentous fungi like Aspergillus niger, pathway-specific gene expression in response to haem and haem intermediates was analysed. This analysis showed that iron, 5'-aminolevulinic acid (ALA) and possibly haem control haem biosynthesis mostly via modulating expression of hemA [coding for 5'-aminolevulinic acid synthase (ALAS)]. A hemA deletion mutant (ΔhemA) was constructed, which showed conditional lethality. Growth of ΔhemA was supported on standard nitrate-containing media with ALA, but not by hemin. Growth of ΔhemA could be sustained in the presence of hemin in combination with ammonium instead of nitrate as N-source. Our results suggest that a branch-off within the haem biosynthesis pathway required for sirohaem synthesis is responsible for lack of growth of ΔhemA in media containing nitrate as sole N-source, because of the requirement of sirohaem for nitrate assimilation, as a cofactor of nitrite reductase. In contrast to the situation in Saccharomyces cerevisiae, cysteine, but not methionine, was found to further improve growth of ΔhemA. These results demonstrate that A. niger can use exogenous hemin for its cellular processes. They also illustrate important differences in regulation of haem biosynthesis and in the role of haem and sirohaem in A. niger compared to S. cerevisiae.
Collapse
Affiliation(s)
- Angelique C W Franken
- Department of Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Martínez JL, Liu L, Petranovic D, Nielsen J. Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol 2012; 23:965-71. [PMID: 22503236 DOI: 10.1016/j.copbio.2012.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 11/25/2022]
Abstract
Since the approval of recombinant insulin from Escherichia coli for its clinical use in the early 1980s, the amount of recombinant pharmaceutical proteins obtained by microbial fermentations has significantly increased. The recent advances in genomics together with high throughput analysis techniques (the so-called-omics approaches) and integrative approaches (systems biology) allow the development of novel microbial cell factories as valuable platforms for large scale production of therapeutic proteins. This review summarizes the main achievements and the current situation in the field of recombinant therapeutics using yeast Saccharomyces cerevisiae as a model platform, and discusses the future potential of this platform for production of blood proteins and substitutes.
Collapse
Affiliation(s)
- José L Martínez
- Novo Nordisk Center for Biosustainability, Department of Chemical & Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | | | | | | |
Collapse
|