1
|
Treviño MA, Amankwah KA, Fernandez D, Weston SA, Stewart CJ, Gallardo JM, Shahgholi M, Sharaf NG. Expression, purification, and characterization of diacylated Lipo-YcjN from Escherichia coli. J Biol Chem 2024; 300:107853. [PMID: 39362470 PMCID: PMC11543891 DOI: 10.1016/j.jbc.2024.107853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
YcjN is a putative substrate binding protein expressed from a cluster of genes involved in carbohydrate import and metabolism in Escherichia coli. Here, we determine the crystal structure of YcjN to a resolution of 1.95 Å, revealing that its three-dimensional structure is similar to substrate binding proteins in subcluster D-I, which includes the well-characterized maltose binding protein. Furthermore, we found that recombinant overexpression of YcjN results in the formation of a lipidated form of YcjN that is posttranslationally diacylated at cysteine 21. Comparisons of size-exclusion chromatography profiles and dynamic light scattering measurements of lipidated and nonlipidated YcjN proteins suggest that lipidated YcjN aggregates in solution via its lipid moiety. Additionally, bioinformatic analysis indicates that YcjN-like proteins may exist in both Bacteria and Archaea, potentially in both lipidated and nonlipidated forms. Together, our results provide a better understanding of the aggregation properties of recombinantly expressed bacterial lipoproteins in solution and establish a foundation for future studies that aim to elucidate the role of these proteins in bacterial physiology.
Collapse
Affiliation(s)
- Matthew A Treviño
- Department of Biology, Stanford University, Stanford, California, USA
| | - Kofi A Amankwah
- Department of Biology, Stanford University, Stanford, California, USA
| | - Daniel Fernandez
- Macromolecular Structure Knowledge Center (MSKC) at Sarafan ChEM-H, Stanford University, Stanford, California, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Scott A Weston
- Department of Biology, Stanford University, Stanford, California, USA
| | - Claire J Stewart
- Department of Biology, Stanford University, Stanford, California, USA
| | | | - Mona Shahgholi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena California, USA
| | - Naima G Sharaf
- Department of Biology, Stanford University, Stanford, California, USA.
| |
Collapse
|
2
|
Treviño MA, Amankwah K, Fernandez D, Weston S, Stewart CJ, Gallardo JM, Shahgholi M, Sharaf NG. Expression, purification, and characterization of diacylated Lipo-YcjN from Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611266. [PMID: 39282304 PMCID: PMC11398462 DOI: 10.1101/2024.09.05.611266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
YcjN is a putative substrate-binding protein expressed from a cluster of genes involved in carbohydrate import and metabolism in Escherichia coli. Here, we determine the crystal structure of YcjN to a resolution of 1.95 Å, revealing that its three-dimensional structure is similar to substrate binding proteins in subcluster D-I, which includes the well-characterized maltose binding protein (MBP). Furthermore, we found that recombinant overexpression of YcjN results in the formation of a lipidated form of YcjN that is posttranslationally diacylated at cysteine 21. Comparisons of size-exclusion chromatography profiles and dynamic light scattering measurements of lipidated and non-lipidated YcjN proteins suggest that lipidated YcjN aggregates in solution via its lipid moiety. Additionally, bioinformatic analysis indicates that YcjN-like proteins may exist in both Bacteria and Archaea, potentially in both lipidated and non-lipidated forms. Together, our results provide a better understanding of the aggregation properties of recombinantly expressed bacterial lipoproteins in solution and establish a foundation for future studies that aim to elucidate the role of these proteins in bacterial physiology.
Collapse
Affiliation(s)
| | - Kofi Amankwah
- Department of Biology, Stanford University, Stanford CA 94305
| | - Daniel Fernandez
- Macromolecular Structure Knowledge Center (MSKC) at Sarafan ChEM-H
- Sarafan ChEM-H, Stanford ChEM-H Building, Stanford University, Stanford CA 94305
| | - Scott Weston
- Department of Biology, Stanford University, Stanford CA 94305
| | | | | | - Mona Shahgholi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA
| | - Naima G. Sharaf
- Department of Biology, Stanford University, Stanford CA 94305
| |
Collapse
|
3
|
Kaur R, Mangiafesto J, Pryharski K, Rasam S, Zagursky R, Pichichero M. Expression conditions and characterization of a novelly constructed lipoprotein intended as a vaccine to prevent human Haemophilus influenzae infections. J Biol Chem 2023; 299:105031. [PMID: 37437888 PMCID: PMC10407732 DOI: 10.1016/j.jbc.2023.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023] Open
Abstract
Bacterial lipoproteins are structurally divided into two groups, based on their lipid moieties: diacylated (present in Gram-positive bacteria) and triacylated (present in some Gram-positive and most Gram-negative bacteria). Diacylated and triacylated lipid moieties differ by a single amide-linked fatty acid chain. Lipoproteins induce host innate immune responses by the mammalian Toll-like receptor 2 (TLR2). In this study, we added a lipid moiety to recombinant OMP26, a native nonlipidated (NL) membrane protein of Haemophilus influenzae, and characterized it extensively under different expression conditions using flow cytometry, LC/MS, and MALDI-TOF. We also investigated the ability of NL and lipidated (L) OMP26 to induce in vitro stimulation of HEK Blue-hTLR2-TR1 and hTLR-TLR6 cells. Our L-OMP26 was predominantly expressed in diacylated form, so we employed an additional gene copy of apolipoprotein N-acetyltransferase enzyme (Lnt)-rich Escherichia coli strain that further acylates the diacyl lipoproteins to enhance the production of triacylated L-OMP26. The diacyl and triacyl versions of L-OMP26, intended as a vaccine for use in humans, were characterized and evaluated as protein vaccine components in a mouse model. We found that the diacyl and triacyl L-OMP26 protein formulations differed markedly in their immune-stimulatory activity, with diacylated L-OMP26 stimulating higher adaptive immune responses compared with triacylated L-OMP26 and both stimulating higher adaptive immune response compared to NL-OMP26. We also constructed and characterized an L-OMP26φNL-P6 fusion protein, where NL-P6 protein (a commonly studied H. influenzae vaccine candidate) was recombinantly fused to L-OMP26. We observed a similar pattern of lipidation (predominantly diacylated) in the L-OMP26φNL-P6 fusion protein.
Collapse
Affiliation(s)
- Ravinder Kaur
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA.
| | - Jill Mangiafesto
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
| | - Karin Pryharski
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
| | - Sailee Rasam
- Department of Biochemistry, State University of New York at Buffalo, New York, USA
| | - Robert Zagursky
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
| | - Michael Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA.
| |
Collapse
|
4
|
Carmody CM, Farquharson EL, Nugen SR. Enterobacteria Phage SV76 Host Range and Genomic Characterization. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:59-63. [PMID: 35495085 PMCID: PMC9041521 DOI: 10.1089/phage.2022.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Increasing the quantity and detail of bacteriophage genomic data is critical to broadening our understanding of how bacteriophages operate to allow us to harness their unique properties for biotechnology advancements. Here we present the complete sequence of phage SV76's assembled and annotated genome (Accession OM339528). SV76 has previously been classified as a T4-like bacteriophage belonging to the Tequatrovirus genus within the Myoviridae family of contractile tailed bacteriophages. Materials and Methods Whole genome sequencing, assembly, and annotation was performed on SV76. Double-agar spot assays were utilized to determine SV76's host range against a panel of 72 Escherichia coli isolates meant to represent the diversity of E. coli, as well as a series of knockouts designed to identify required receptor binding proteins. The genome and host range were compared to the closely related phage, T2. Results Spot assays revealed that SV76 could plaque on 10 of the 72 strains (13.9 %) and nine of the nine E. coli K12 single gene knockout of known phage receptors (100%). SV76 did not plate on a ΔfadL E. coli indicating suggesting a requirement as a receptor binding protein. Conclusions SV76 is closely related to T2 with similar host ranges within ECOR. This study presents novel host range and genomic data on SV76 phage, providing a foundation for future studies to further characterize SV76 to understand more about SV76 and other T4-like phages that can be applied to create novel biotechnologies.
Collapse
Affiliation(s)
| | | | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, New York, USA.,Address correspondence to: Sam R. Nugen, PhD, Department of Food Science, Cornell University, 411 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Saavedra-Langer R, Costa TGF, Lima SA, Costal-Oliveira F, Martins CA, Machado-de-Ávila RA, Minozzo JC, Soccol VT, Guerra-Duarte C, Kalapothakis E, Chávez-Olórtegui C. A prokaryote system optimization for rMEPLox expression: A promising non-toxic antigen for Loxosceles antivenom production. Int J Biol Macromol 2021; 187:66-75. [PMID: 34246677 DOI: 10.1016/j.ijbiomac.2021.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Loxoscelism is the most dangerous araneism form in Brazil and antivenom therapy is the recommended treatment. Antivenom is produced by horse immunization with Loxosceles spider venom, which is toxic for the producer animal. Moreover, due to the high amount of venom required for horse hyperimmunization, new strategies for antigens obtention have been proposed. In this sense, our research group has previously produced a non-toxic recombinant multiepitopic protein derived from Loxosceles toxins (rMEPLox). rMEPLox was a successful immunogen, being able to induce the production of neutralizing antibodies, which could be used in the Loxoscelism treatment. However, rMEPLox obtention procedure requires optimization, as its production needs to be scaled up to suit antivenom manufacture. Therefore, an effective protocol development for rMEPlox production would be advantageous. To achieve this objective, we evaluated the influence of different cultivation conditions for rMEPLox optimum expression. The optimum conditions to obtain large amounts of rMEPlox were defined as the use of C43(DE3)pLysS as a host strain, 2xTY medium, 0.6 mM IPTG, biomass pre induction of OD600nm = 0.4 and incubation at 30 °C for 16 h. Following the optimized protocol, 39.84 mg/L of soluble rMEPLox was obtained and tested as immunogen. The results show that the obtained rMEPLox preserved the previously described immunogenicity, and it was able to generate antibodies that recognize different epitopes of the main Loxosceles venom toxins, which makes it a promising candidate for the antivenom production for loxoscelism treatment.
Collapse
Affiliation(s)
- Rafael Saavedra-Langer
- Departamentos de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tamara G F Costa
- Departamentos de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sabrina A Lima
- Departamentos de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamentos de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Christina A Martins
- Departamentos de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - João C Minozzo
- Centro de Pesquisa e Produção de Imunobiologicos of Paraná State (CPPI), Brazil
| | | | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010 Belo Horizonte, MG, Brazil
| | - Evanguedes Kalapothakis
- Genética, Ecologia e Evolução, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamentos de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Behravan A, Hashemi A. Statistical optimization of culture conditions for expression of recombinant humanized anti-EpCAM single-chain antibody using response surface methodology. Res Pharm Sci 2021; 16:153-164. [PMID: 34084202 PMCID: PMC8102927 DOI: 10.4103/1735-5362.310522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/14/2020] [Accepted: 02/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background and purpose: The epithelial cell adhesion molecule (EpCAM), is one of the first cancer- associated markers discovered. Its overexpression in cancer stem cells, epithelial tumors, and circulating tumor cells makes this molecule interesting for targeted cancer therapy. So, in recent years scFv fragments have been developed for EpCAM targeting. Experimental approach: In this study, an scFv against EpCAM extracellular domain (EpEX) derived from 4D5MOC-B humanized mAb was expressed in Escherichia coli k12 strain, and in order to obtain the optimum culture conditions in chemically defined minimal medium, response surface methodology (RSM) was employed. According to the RSM-CCD method, a total of 30 experiments were designed to investigate the effects of various parameters including isopropyl-b-D-thiogalactopyranoside (IPTG) concentration, cell density before induction, post-induction time, and post-induction temperature on anti EpEX-scFv expression level. Findings/Results: At the optimum conditions (induction at cell density 0.8 with 0.8 mM IPTG for 24 h at 37 °C), the recombinant anti EpEX-scFv was produced at a titer of 197.33 μg/mL that was significantly consistent with the prediction of the model. Conclusion and implication: The optimized-culture conditions obtained here for efficient production of anti EpEX-scFv in shake flask cultivation on a chemically defined minimal medium could be applied to large- scale fermentation for the anti EpEX-scFv production.
Collapse
Affiliation(s)
- Aidin Behravan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehan, I.R. Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehan, I.R. Iran
| |
Collapse
|
7
|
Ou X, Wu X, Peng F, Zeng Y, Li H, Xu P, Chen G, Guo Z, Yang J, Zong M, Lou W. Metabolic engineering of a robustEscherichia colistrain with a dual protection system. Biotechnol Bioeng 2019; 116:3333-3348. [DOI: 10.1002/bit.27165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Xiao‐Yang Ou
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Xiao‐Ling Wu
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Fei Peng
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Ying‐Jie Zeng
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Hui‐Xian Li
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Pei Xu
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Gu Chen
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Ze‐Wang Guo
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
| | - Ji‐Guo Yang
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
- Innovation Center of Bioactive Molecule Development and ApplicationSouth China Institute of Collaborative InnovationDongguan China
| | - Min‐Hua Zong
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhou China
| | - Wen‐Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and EngineeringSouth China University of TechnologyGuangzhou China
- Innovation Center of Bioactive Molecule Development and ApplicationSouth China Institute of Collaborative InnovationDongguan China
| |
Collapse
|
8
|
Wu Z, Hong H, Zhao X, Wang X. Efficient expression of sortase A from Staphylococcus aureus in Escherichia coli and its enzymatic characterizations. BIORESOUR BIOPROCESS 2017; 4:13. [PMID: 28261538 PMCID: PMC5316389 DOI: 10.1186/s40643-017-0143-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/07/2017] [Indexed: 02/08/2023] Open
Abstract
Background Sortase A (SrtA) is a transpeptidase found in Staphylococcus aureus, which is widely used in site-specific protein modification. However, SrtA was expressed in Escherichia coli (E. coli) in rather low level (ranging from several milligrams to 76.9 mg/L at most). The present study aims to optimize fermentation conditions for improving SrtA expression in E. coli. Results Under the optimized media (0.48 g/L glycerol, 1.37 g/L tryptone, 0.51 g/L yeast extract, MOPS 0.5 g/L, PBS buffer 180 mL/L) and condition (30 °C for 8 h) in a 7-L fermentor, the enzyme activity and the yield of SrtA reached 2458.4 ± 115.9 U/mg DCW and 232.4 ± 21.1 mg/L, respectively, which were higher by 5.8- and 4.5-folds compared with initial conditions, respectively. The yield of SrtA also represented threefold increase than the previously reported maximal level. In addition, the enzymatic characterizations of SrtA (optimal temperature, optimal pH, the influence of metal irons, and tolerance to water-soluble organic solvents) were determined. Conclusions Enhanced expression of SrtA was achieved by optimization of medium and condition. This result will have potential application for production levels of SrtA on an industry scale. Moreover, the detailed enzymatic characterizations of SrtA were examined, which will provide a useful guide for its future application. Electronic supplementary material The online version of this article (doi:10.1186/s40643-017-0143-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191 China
| | - Haofei Hong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, China
| | - Xinrui Zhao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, China
| | - Xun Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, China
| |
Collapse
|
9
|
Leng CH, Liu SJ, Chen HW, Chong P. Recombinant bacterial lipoproteins as vaccine candidates. Expert Rev Vaccines 2015; 14:1623-32. [PMID: 26420467 DOI: 10.1586/14760584.2015.1091732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant bacterial lipoproteins (RLP) with built-in immuno-stimulating properties for novel subunit vaccine development are reviewed. This platform technology offers the following advantages: easily converts antigens into highly immunogenic RLP using a fusion sequence containing lipobox; the lipid moiety of RLP is recognized as the danger signals in the immune system through the Toll-like receptor 2, so both innate and adaptive immune responses can be induced by RLP; serves as an efficient and cost-effective bioprocess for producing RLP in Escherichia coli and the feasibility and safety of this core platform technology has been successfully demonstrated in animal model studies including meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases and HPV-based immunotherapeutic vaccines.
Collapse
Affiliation(s)
- Chih-Hsiang Leng
- a Vaccine R&D Center, National Health Research Institutes, Zhunan Town, Miaoli 350, Taiwan
| | - Shih-Jen Liu
- a Vaccine R&D Center, National Health Research Institutes, Zhunan Town, Miaoli 350, Taiwan
| | - Hsin-Wei Chen
- a Vaccine R&D Center, National Health Research Institutes, Zhunan Town, Miaoli 350, Taiwan
| | | |
Collapse
|
10
|
Recombinant Lipoproteins as Novel Vaccines with Intrinsic Adjuvant. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 99:55-74. [PMID: 26067816 DOI: 10.1016/bs.apcsb.2015.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A core platform technology for high production of recombinant lipoproteins with built-in immunostimulator for novel subunit vaccine development has been established. This platform technology has the following advantages: (1) easily convert antigen into lipidated recombinant protein using a fusion sequence containing lipobox and express high level (50-150mg/L) in Escherichia coli; (2) a robust high-yield up- and downstream bioprocess for lipoprotein production is successfully developed to devoid endotoxin contamination; (3) the lipid moiety of recombinant lipoproteins, which is identical to that of bacterial lipoproteins is recognized as danger signals by the immune system (Toll-like receptor 2 agonist), so both innate and adaptive immune responses can be induced by lipoproteins; and (4) successfully demonstrate the feasibility and safety of this core platform technology in meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases, and HPV-based immunotherapeutic vaccines in animal model studies.
Collapse
|
11
|
Recombinant protein truncation strategy for inducing bactericidal antibodies to the macrophage infectivity potentiator protein of Neisseria meningitidis and circumventing potential cross-reactivity with human FK506-binding proteins. Infect Immun 2014; 83:730-42. [PMID: 25452551 DOI: 10.1128/iai.01815-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (-LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines.
Collapse
|
12
|
Lee MS, Lin IF, Lai GH, Lin YC, Li KY. Statistical optimization of culture medium for the overproduction of chicken anemia virus immunogen- VP1 protein in a recombinantE. colifor vaccine application. ASIA-PAC J CHEM ENG 2014. [DOI: 10.1002/apj.1850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meng-Shiou Lee
- Dept. of Chinese Pharmaceutical Science and Chinese Medicine Resources; China Medical University; 91 Hsuh-shih Rd Taichung 40402 Taiwan
| | - I-Fen Lin
- Graduate Institute of Food Science; Tunghai University; No.1727, Sec.4, Taiwan Boulevard Taichung 40704 Taiwan
| | - Guan-Hua Lai
- Graduate institute of Biotechnology; National Chung Hsing University; 250 Kuo Kuang Rd. Taichung 402 Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology; Chinese Culture University; 55, Hwa-Kang Rd Taipei 111 Taiwan
| | - Ken-Yuon Li
- Graduate Institute of Food Science; Tunghai University; No.1727, Sec.4, Taiwan Boulevard Taichung 40704 Taiwan
| |
Collapse
|
13
|
Wyre C, Overton TW. Use of a stress-minimisation paradigm in high cell density fed-batch Escherichia coli fermentations to optimise recombinant protein production. J Ind Microbiol Biotechnol 2014; 41:1391-404. [PMID: 25056840 DOI: 10.1007/s10295-014-1489-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/08/2014] [Indexed: 11/25/2022]
Abstract
Production of recombinant proteins is an industrially important technique in the biopharmaceutical sector. Many recombinant proteins are problematic to generate in a soluble form in bacteria as they readily form insoluble inclusion bodies. Recombinant protein solubility can be enhanced by minimising stress imposed on bacteria through decreasing growth temperature and the rate of recombinant protein production. In this study, we determined whether these stress-minimisation techniques can be successfully applied to industrially relevant high cell density Escherichia coli fermentations generating a recombinant protein prone to forming inclusion bodies, CheY-GFP. Flow cytometry was used as a routine technique to rapidly determine bacterial productivity and physiology at the single cell level, enabling determination of culture heterogeneity. We show that stress minimisation can be applied to high cell density fermentations (up to a dry cell weight of >70 g L(-1)) using semi-defined media and glucose or glycerol as carbon sources, and using early or late induction of recombinant protein production, to produce high yields (up to 6 g L(-1)) of aggregation-prone recombinant protein in a soluble form. These results clearly demonstrate that stress minimisation is a viable option for the optimisation of high cell density industrial fermentations for the production of high yields of difficult-to-produce recombinant proteins, and present a workflow for the application of stress-minimisation techniques in a variety of fermentation protocols.
Collapse
Affiliation(s)
- Chris Wyre
- Bioengineering, School of Chemical Engineering, and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
14
|
Kim DH, Son BG, Lim JJ, Lee JJ, Kim DG, Lee HJ, Min W, Rhee MH, Kim KD, Chang HH, Kim S. The role of a Brucella abortus lipoprotein in intracellular replication and pathogenicity in experimentally infected mice. Microb Pathog 2012; 54:34-9. [PMID: 23006628 DOI: 10.1016/j.micpath.2012.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/11/2012] [Accepted: 09/10/2012] [Indexed: 01/18/2023]
Abstract
Brucella abortus, the causative agent of brucellosis, can survive and replicate within host cells. Understanding bacterial virulence factors and bacteria-host cell interactions is critical for controlling brucellosis. However, little is known regarding the pathogenic mechanisms of brucellosis. A lipoprotein mutant (Gene Bank ID: 3339351) of B. abortus showed a lower rate of intracellular replication than did the wild-type strain in HeLa cells and RAW 264.7 macrophages. The adherent activity of the lipoprotein mutant was slightly increased compared to that of the wild-type strain in HeLa cells. After infection into macrophages, the lipoprotein mutant co-localized with either late endosomes or lysosomes. In mice infected with the lipoprotein mutant, fewer lipoprotein mutants were recovered from the spleen at 8 weeks post-infection compared to the wild-type strain. The ability to protect the lipoprotein mutant against infection by the virulent B. abortus strain 544 was similar to that of strain RB51. Our results indicate that the B. abortus lipoprotein is an important factor for survival within phagocytes and mice, and the B. abortus lipoprotein mutant may help improve live vaccines used to control brucellosis.
Collapse
Affiliation(s)
- Dong Hyeok Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|