1
|
Chen H, Cui J, Wang P, Wang X, Wen J. Enhancement of bleomycin production in Streptomyces verticillus through global metabolic regulation of N-acetylglucosamine and assisted metabolic profiling analysis. Microb Cell Fact 2020; 19:32. [PMID: 32054531 PMCID: PMC7017467 DOI: 10.1186/s12934-020-01301-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bleomycin is a broad-spectrum glycopeptide antitumor antibiotic produced by Streptomyces verticillus. Clinically, the mixture of bleomycin A2 and bleomycin B2 is widely used in combination with other drugs for the treatment of various cancers. As a secondary metabolite, the biosynthesis of bleomycin is precisely controlled by the complex extra-/intracellular regulation mechanisms, it is imperative to investigate the global metabolic and regulatory system involved in bleomycin biosynthesis for increasing bleomycin production. RESULTS N-acetylglucosamine (GlcNAc), the vital signaling molecule controlling the onset of development and antibiotic synthesis in Streptomyces, was found to increase the yields of bleomycins significantly in chemically defined medium. To mine the gene information relevant to GlcNAc metabolism, the DNA sequences of dasR-dasA-dasBCD-nagB and nagKA in S. verticillus were determined by chromosome walking. From the results of Real time fluorescence quantitative PCR (RT-qPCR) and electrophoretic mobility shift assays (EMSAs), the repression of the expression of nagB and nagKA by the global regulator DasR was released under induction with GlcNAc. The relief of blmT expression repression by BlmR was the main reason for increased bleomycin production. DasR, however, could not directly affect the expression of the pathway-specific repressor BlmR in the bleomycins gene cluster. With at the beginning of bleomycin synthesis, the supply of the specific precursor GDP-mannose played the key role in bleomycin production. Genetic engineering of the GDP-mannose synthesis pathway indicated that phosphomannose isomerase (ManA) and phosphomannomutase (ManB) were key enzymes for bleomycins synthesis. Here, the blmT, manA and manB co-expression strain OBlmT/ManAB was constructed. Based on GlcNAc regulation and assisted metabolic profiling analysis, the yields of bleomycin A2 and B2 were ultimately increased to 61.79 and 36.9 mg/L, respectively. CONCLUSIONS Under GlcNAc induction, the elevated production of bleomycins was mainly associated with the alleviation of the inhibition of BlmT, so blmT and specific precursor synthesis pathways were genetically engineered for bleomycins production improvement. Combination with subsequent metabolomics analysis not only effectively increased the bleomycin yield, but also extended the utilization of chitin-derived substrates in microbial-based antibiotic production.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jiaqi Cui
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
2
|
Genome-Wide Mutagenesis Links Multiple Metabolic Pathways with Actinorhodin Production in Streptomyces coelicolor. Appl Environ Microbiol 2019; 85:AEM.03005-18. [PMID: 30709825 PMCID: PMC6585502 DOI: 10.1128/aem.03005-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/25/2019] [Indexed: 12/22/2022] Open
Abstract
Streptomyces species are important antibiotic-producing organisms that tightly regulate their antibiotic production. Actinorhodin is a typical antibiotic produced by the model actinomycete Streptomyces coelicolor To discover the regulators of actinorhodin production, we constructed a library of 50,000 independent mutants with hyperactive Tn5 transposase-based transposition systems. Five hundred fifty-one genes were found to influence actinorhodin production in 988 individual mutants. Genetic complementation suggested that most of the insertions (76%) were responsible for the changes in antibiotic production. Genes involved in diverse cellular processes such as amino acid biosynthesis, carbohydrate metabolism, cell wall homeostasis, and DNA metabolism affected actinorhodin production. Genome-wide mutagenesis can identify novel genes and pathways that impact antibiotic levels, potentially aiding in engineering strains to optimize the production of antibiotics in Streptomyces IMPORTANCE Previous studies have shown that various genes can influence antibiotic production in Streptomyces and that intercommunication between regulators can complicate antibiotic production. Therefore, to gain a better understanding of antibiotic regulation, a genome-wide perspective on genes that influence antibiotic production was needed. We searched for genes that affected production of the antibiotic actinorhodin using a genome-wide gene disruption system. We identified 551 genes that altered actinorhodin levels, and more than half of these genes were newly identified effectors. Some of these genes may be candidates for engineering Streptomyces strains to improve antibiotic production levels.
Collapse
|
3
|
Liu X, Tang J, Wang L, Giesy JP. Mechanisms of oxidative stress caused by CuO nanoparticles to membranes of the bacterium Streptomyces coelicolor M145. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:123-130. [PMID: 29677594 DOI: 10.1016/j.ecoenv.2018.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 05/26/2023]
Abstract
UNLABELLED Toxic effects of widely used CuO nanoparticles (NPs) on the genus Streptomyces has been seldom studied. This work investigated toxicities of several sizes of CuO nanoparticles (NPs) to Streptomyces coelicolor M145 (S. coelicolor M145). Compared with NPs, toxicity of micrometer-sized CuO on M145 was trivial. In 0.9% NaCl, when the concentration of CuO NPs was 100 mg/L, survival of bacteria increased from 18.3% in 20 nm particles to 31.1% in 100 nm particles. With increasing concentrations of CuO, the level of ROS gradually increased and there were significant differences (p < 0.05) in ROS exposed to 20, 40 and 100 nm (80 nm) CuO NPs. In TSBY medium, toxicity of CuO NPs was less and mainly attributed to release of Cu2+, analysis by confocal laser scanning microscope (CLSM) showed that size of the mycelium did not change although some individual bacteria died. This was likely due to Cu2+ released from NPs entering cells through the membrane, while in 0.9% NaCl, lesions on membranes was caused by NPs outside the bacteria. This research indicated that toxicity of CuO NPs to S. coelicolor, is related to both size of NPs and is dependent on characteristics of the medium. CAPSULE This is the first time to measure the toxicity of nano materials to Streptomyces, and toxic CuO NPs to Streptomyces have been shown to differ depending on medium.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Spagnuolo M, Shabbir Hussain M, Gambill L, Blenner M. Alternative Substrate Metabolism in Yarrowia lipolytica. Front Microbiol 2018; 9:1077. [PMID: 29887845 PMCID: PMC5980982 DOI: 10.3389/fmicb.2018.01077] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Recent advances in genetic engineering capabilities have enabled the development of oleochemical producing strains of Yarrowia lipolytica. Much of the metabolic engineering effort has focused on pathway engineering of the product using glucose as the feedstock; however, alternative substrates, including various other hexose and pentose sugars, glycerol, lipids, acetate, and less-refined carbon feedstocks, have not received the same attention. In this review, we discuss recent work leading to better utilization of alternative substrates. This review aims to provide a comprehensive understanding of the current state of knowledge for alternative substrate utilization, suggest potential pathways identified through homology in the absence of prior characterization, discuss recent work that either identifies, endogenous or cryptic metabolism, and describe metabolic engineering to improve alternative substrate utilization. Finally, we describe the critical questions and challenges that remain for engineering Y. lipolytica for better alternative substrate utilization.
Collapse
Affiliation(s)
- Michael Spagnuolo
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Murtaza Shabbir Hussain
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Lauren Gambill
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
- Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| |
Collapse
|
5
|
Islam MA, Tchigvintsev A, Yim V, Savchenko A, Yakunin AF, Mahadevan R, Edwards EA. Experimental validation of in silico model-predicted isocitrate dehydrogenase and phosphomannose isomerase from Dehalococcoides mccartyi. Microb Biotechnol 2015; 9:47-60. [PMID: 26374290 PMCID: PMC4720418 DOI: 10.1111/1751-7915.12315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 07/12/2015] [Accepted: 08/07/2015] [Indexed: 11/28/2022] Open
Abstract
Gene sequences annotated as proteins of unknown or non‐specific function and hypothetical proteins account for a large fraction of most genomes. In the strictly anaerobic and organohalide respiring Dehalococcoides mccartyi, this lack of annotation plagues almost half the genome. Using a combination of bioinformatics analyses and genome‐wide metabolic modelling, new or more specific annotations were proposed for about 80 of these poorly annotated genes in previous investigations of D. mccartyi metabolism. Herein, we report the experimental validation of the proposed reannotations for two such genes (KB1_0495 and KB1_0553) from D. mccartyi strains in the KB‐1 community. KB1_0495 or DmIDH was originally annotated as an NAD+‐dependent isocitrate dehydrogenase, but biochemical assays revealed its activity primarily with NADP+ as a cofactor. KB1_0553, also denoted as DmPMI, was originally annotated as a hypothetical protein/sugar isomerase domain protein. We previously proposed that it was a bifunctional phosphoglucose isomerase/phosphomannose isomerase, but only phosphomannose isomerase activity was identified and confirmed experimentally. Further bioinformatics analyses of these two protein sequences suggest their affiliation to potentially novel enzyme families within their respective larger enzyme super families.
Collapse
Affiliation(s)
- M Ahsanul Islam
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Veronica Yim
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
6
|
Pessoni RAB, Tersarotto CC, Mateus CAP, Zerlin JK, Simões K, de Cássia L Figueiredo-Ribeiro R, Braga MR. Fructose affecting morphology and inducing β-fructofuranosidases in Penicillium janczewskii. SPRINGERPLUS 2015; 4:487. [PMID: 26380163 PMCID: PMC4564379 DOI: 10.1186/s40064-015-1298-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/01/2015] [Indexed: 12/03/2022]
Abstract
Fructose, glucose, and an equimolar mixture of both sugars affected differently hyphae thickness, biomass production and secretion of β-fructofuranosidase in Penicillium janczewskii. Reduced growth, thinner hyphae and visible injuries were early observed during fungal cultivation in fructose-containing medium, reaching the maximum between 12 and 15 days of culture. Total sugar content from the cell wall was lower when fructose was supplied and polysaccharides lower than 10 kDa predominated, regardless the culture age. Maximal inulinase and invertase activities were detected in culture filtrates after 12 days, excepting in the glucose-containing medium. Structural changes in cell walls coincided with the increase of extracellular enzyme activity in the fructose-containing medium. The fragility of the hyphae might be related with both low carbohydrate content and predominance of low molecular weight glucans in the walls. Data presented here suggest changes in carbohydrate component of the cell walls are induced by the carbon source.
Collapse
Affiliation(s)
- Rosemeire A B Pessoni
- Faculdade da Saúde, Curso de Ciências Biológicas, Universidade Metodista de São Paulo, São Bernardo do Campo, SP Brazil
| | - Carla C Tersarotto
- Faculdade da Saúde, Curso de Ciências Biológicas, Universidade Metodista de São Paulo, São Bernardo do Campo, SP Brazil
| | - Cássia A P Mateus
- Faculdade da Saúde, Curso de Ciências Biológicas, Universidade Metodista de São Paulo, São Bernardo do Campo, SP Brazil
| | - Juliana K Zerlin
- Faculdade da Saúde, Curso de Ciências Biológicas, Universidade Metodista de São Paulo, São Bernardo do Campo, SP Brazil
| | - Kelly Simões
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, CP 68041, São Paulo, SP CEP 04045-972 Brazil
| | | | - Márcia R Braga
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, CP 68041, São Paulo, SP CEP 04045-972 Brazil
| |
Collapse
|
7
|
Stankovic N, Senerovic L, Ilic-Tomic T, Vasiljevic B, Nikodinovic-Runic J. Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Appl Microbiol Biotechnol 2014; 98:3841-58. [PMID: 24562326 DOI: 10.1007/s00253-014-5590-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
The growing demand to fulfill the needs of present-day medicine in terms of novel effective molecules has lead to reexamining some of the old and known bacterial secondary metabolites. Bacterial prodigiosins (prodiginines) have a long history of being re markable multipurpose compounds, best examined for their anticancer and antimalarial activities. Production of prodigiosin in the most common producer strain Serratia marcescens has been described in great detail. However, few reports have discussed the ecophysiological roles of these molecules in the producing strains, as well as their antibiotic and UV-protective properties. This review describes recent advances in the production process, biosynthesis, properties, and applications of bacterial prodigiosins. Special emphasis is put on undecylprodigiosin which has generally been a less studied member of the prodigiosin family. In addition, it has been suggested that proteins involved in undecylprodigiosin synthesis, RedG and RedH, could be a useful addition to the biocatalytic toolbox being able to mediate regio- and stereoselective oxidative cyclization. Judging by the number of recent references (216 for the 2007-2013 period), it has become clear that undecylprodigiosin and other bacterial prodigiosins still hold surprises in terms of valuable properties and applicative potential to medical and other industrial fields and that they still deserve continuing research curiosity.
Collapse
Affiliation(s)
- Nada Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11000, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
8
|
ManA is regulated by RssAB signaling and promotes motility in Serratia marcescens. Res Microbiol 2014; 165:21-9. [DOI: 10.1016/j.resmic.2013.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/25/2013] [Indexed: 01/30/2023]
|
9
|
Putative Role of a Streptomyces coelicolor-Derived α-Mannosidase in Deglycosylation and Antibiotic Production. Appl Biochem Biotechnol 2013; 172:1639-51. [DOI: 10.1007/s12010-013-0635-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/30/2013] [Indexed: 01/13/2023]
|
10
|
Rajesh T, Sung C, Kim H, Song E, Park HY, Jeon JM, Yoo D, Kim HJ, Kim YH, Choi KY, Song KG, Yang YH. Phosphorylation of chloramphenicol by a recombinant protein Yhr2 from Streptomyces avermitilis MA4680. Bioorg Med Chem Lett 2013; 23:3614-9. [PMID: 23659856 DOI: 10.1016/j.bmcl.2013.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 02/03/2023]
Abstract
Although phosphorylation of chloramphenicol has been shown to occur in the chloramphenicol producer, Streptomyces venezuelae, there are no reports on the existence of chloramphenicol phosphorylase in other Streptomyces species. In the present study, we report the modification of chloramphenicol by a recombinant protein, designated as Yhr2 (encoded by SAV_877), from Streptomyces avermitilis MA4680. Recombinant Yhr2 was expressed in Escherichia coli BL21 (DE3) and the cells expressing this recombinant protein were shown to phosphorylate chloramphenicol to a 3'-O-phosphoryl ester derivative, resulting in an inactivated form of the antibiotic. Expression of yhr2 conferred chloramphenicol resistance to E. coli cells up to 25 μg/mL and in an in vitro reaction, adenosine triphosphate (ATP), guanosine triphosphate (GTP), adenosine diphosphate (ADP) and guanosine diphosphate (GDP) were shown to be the phosphate donors for phosphorylation of chloramphenicol. This study highlights that antibiotic resistance conferring genes could be easily expressed and functionalized in other organisms that do not produce the respective antibiotic.
Collapse
Affiliation(s)
- Thangamani Rajesh
- Department of Microbial Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Song E, Rajesh T, Lee BR, Kim EJ, Jeon JM, Park SH, Park HY, Choi KY, Kim YG, Yang YH, Kim BG. Deletion of an architectural unit, leucyl aminopeptidase (SCO2179), in Streptomyces coelicolor increases actinorhodin production and sporulation. Appl Microbiol Biotechnol 2013; 97:6823-33. [PMID: 23525887 DOI: 10.1007/s00253-013-4847-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/25/2013] [Accepted: 03/08/2013] [Indexed: 12/01/2022]
Abstract
Several reports state that three architectural units, including integration host factor, leucyl aminopeptidase (PepA), and purine regulator, are involved in transcriptional process with RNA polymerase in Escherichia coli. Similarly, Streptomyces species possess the same structural units. We previously identified a protein, Streptomyces integration host factor (sIHF), involved in antibiotic production and sporulation. Subsequently, the function of PepA (SCO2179) was examined in detail. PepA is highly conserved among various Streptomyces spp., but it has not yet been characterized in Streptomyces coelicolor. While it is annotated as a putative leucyl aminopeptidase because it contains a peptidase M17 superfamily domain, this protein did not exhibit leucyl aminopeptidase activity. SCO2179 deletion mutant showed increased actinorhodin production and sporulation, as well as more distinct physiological differences, particularly when cultured on N-acetylglucosamine (GlcNAc) minimal media. The results of two-dimensional gel analysis and reverse transcription PCR showed that the SCO2179 deletion increased protein and mRNA levels of ftsZ, ssgA, and actinorhodin (ACT)-related genes such as actII-ORF4, resulting in increased actinorhodin production and spore formation in minimal media containing GlcNAc.
Collapse
Affiliation(s)
- Eunjung Song
- School of Chemical and Biological Engineering, Institute of Bioengineering, and Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-gu, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|