1
|
Accumulation of formaldehyde causes motor deficits in an in vivo model of hindlimb unloading. Commun Biol 2021; 4:933. [PMID: 34413463 PMCID: PMC8376875 DOI: 10.1038/s42003-021-02448-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
During duration spaceflight, or after their return to earth, astronauts have often suffered from gait instability and cerebellar ataxia. Here, we use a mouse model of hindlimb unloading (HU) to explore a mechanism of how reduced hindlimb burden may contribute to motor deficits. The results showed that these mice which have experienced HU for 2 weeks exhibit a rapid accumulation of formaldehyde in the gastrocnemius muscle and fastigial nucleus of cerebellum. The activation of semicarbazide-sensitive amine oxidase and sarcosine dehydrogenase induced by HU-stress contributed to formaldehyde generation and loss of the abilities to maintain balance and coordinate motor activities. Further, knockout of formaldehyde dehydrogenase (FDH-/-) in mice caused formaldehyde accumulation in the muscle and cerebellum that was associated with motor deficits. Remarkably, formaldehyde injection into the gastrocnemius muscle led to gait instability; especially, microinfusion of formaldehyde into the fastigial nucleus directly induced the same symptoms as HU-induced acute ataxia. Hence, excessive formaldehyde damages motor functions of the muscle and cerebellum.
Collapse
|
2
|
Rcheulishvili N, Papukashvili D, Deng Z, Wang S, Deng Y. Simulated microgravity alters the expression of plasma SSAO and its enzymatic activity in healthy rats and increases the mortality in high-fat diet/streptozotocin-induced diabetes. LIFE SCIENCES IN SPACE RESEARCH 2021; 30:24-28. [PMID: 34281661 DOI: 10.1016/j.lssr.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 06/13/2023]
Abstract
Semicarbazide-sensitive amine oxidase (SSAO) activity is known to be associated with certain pathologies including diabetes. In this study, SSAO expression and enzymatic activity in blood plasma of healthy rats were significantly upregulated under simulated microgravity (SMG) condition. Significant mortality was observed in SMG group of diabetic rats. Results indicate that microgravity might increase the risks of SSAO-associated alterations.
Collapse
Affiliation(s)
- Nino Rcheulishvili
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | | | - Zixuan Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Shibo Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing, China.
| |
Collapse
|
3
|
Padgen MR, Lera MP, Parra MP, Ricco AJ, Chin M, Chinn TN, Cohen A, Friedericks CR, Henschke MB, Snyder TV, Spremo SM, Wang JH, Matin AC. EcAMSat spaceflight measurements of the role of σ s in antibiotic resistance of stationary phase Escherichia coli in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:18-24. [PMID: 31987476 DOI: 10.1016/j.lssr.2019.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 05/22/2023]
Abstract
We report the results of the EcAMSat (Escherichia coli Antimicrobial Satellite) autonomous space flight experiment, investigating the role of σs in the development of antibiotic resistance in uropathogenic E. coli (UPEC) in microgravity (µ-g). The presence of σs, encoded by the rpoS gene, has been shown to increase antibiotic resistance in Earth gravity, but it was unknown if this effect occurs in µ-g. Two strains, wildtype (WT) UPEC and its isogenic ΔrpoS mutant, were grown to stationary phase aboard EcAMSat, an 11-kg small satellite, and in a parallel ground-based control experiment; cell growth rates for the two strains were found to be unaltered by µ-g. After starvation for over 24 h, stationary-phase cells were incubated with three doses of gentamicin (Gm), a common treatment for urinary tract infections (which have been reported in astronauts). Cellular metabolic activity was measured optically using the redox-based indicator alamarBlue (aB): both strains exhibited slower metabolism in µ-g, consistent with results from previous smallsat missions. The results also showed that µ-g did not enhance UPEC resistance to Gm; in fact, both strains were more susceptible to Gm in µ-g. It was also found, via a second ground-control experiment, that multi-week storage in the payload hardware stressed the cells, potentially obscuring small differential effects of the antibiotic between WT and mutant and/or between µ-g and ground. Overall, results showed that the ∆rpoS mutant was 34-37% less metabolically active than the WT for four different sets of conditions: ground without Gm, ground with Gm; µ-g without Gm, µ-g with Gm. We conclude therefore that the rpoS gene and its downstream products are important therapeutic targets for treating bacterial infections in space, much as they are on the ground.
Collapse
Affiliation(s)
| | - Matthew P Lera
- NASA Ames Research Center, Moffett Field, CA, United States
| | | | | | - Matthew Chin
- NASA Ames Research Center, Moffett Field, CA, United States
| | - Tori N Chinn
- NASA Ames Research Center, Moffett Field, CA, United States
| | - Aaron Cohen
- NASA Ames Research Center, Moffett Field, CA, United States
| | | | | | | | | | - Jing-Hung Wang
- Department of Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, United States
| | - A C Matin
- Department of Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, United States.
| |
Collapse
|
4
|
Dong X, Tang J, Ren Y, Chen X. Development of a HPLC-FL method to determine benzaldehyde after derivatization with N-acetylhydrazine acridone and its application for determination of semicarbazide-sensitive amine oxidase activity in human serum. RSC Adv 2019; 9:6717-6723. [PMID: 35518507 PMCID: PMC9061080 DOI: 10.1039/c8ra10004g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
A novel fluorescence labeling reagent N-acetylhydrazine acridone (AHAD) was designed and synthesized. A highly sensitive high performance liquid chromatography (HPLC) method coupled with fluorescence detection to determine benzaldehyde after derivatization with AHAD was developed. Optimum derivatization was obtained at 40 °C for 30 min with trichloroacetic acid as catalyst. Benzaldehyde derivative was separated on a reversed-phase SB-C18 column in conjunction with a gradient elution and detected by fluorescence detection at excitation and emission wavelengths of 371 nm and 421 nm. The established method exhibited excellent linearity over the injected amount of benzaldehyde of 0.003 to 5 nmol mL−1. The method was successfully applied to the determination of serum semicarbazide-sensitive amine oxidase (SSAO) activity in humans. SSAO is a significant biomarker because serum SSAO activity is elevated in patients with Alzheimer's disease, vascular disorders, heart disease and diabetes mellitus. It was demonstrated that the SSAO activity of the hyperglycemic group (60 ± 4 nmol mL−1 h−1) was significantly higher than that of normal blood sugar group (44 ± 4 nmol mL−1 h−1) with P < 0.05. A highly sensitive HPLC-FL method to determine semicarbazide-sensitive amine oxidase activity was developed utilizing AHAD as the novel fluorescence labeling reagent.![]()
Collapse
Affiliation(s)
- Xiuli Dong
- School of Pharmacy, Binzhou Medical University Yantai 264003 P. R. China +86-535-6913406
| | - Jiayuan Tang
- School of Pharmacy, Binzhou Medical University Yantai 264003 P. R. China +86-535-6913406
| | - Yan Ren
- School of Pharmacy, Binzhou Medical University Yantai 264003 P. R. China +86-535-6913406
| | - Xiangming Chen
- School of Pharmacy, Binzhou Medical University Yantai 264003 P. R. China +86-535-6913406
| |
Collapse
|
5
|
Zhao T, Tang X, Umeshappa CS, Ma H, Gao H, Deng Y, Freywald A, Xiang J. Simulated Microgravity Promotes Cell Apoptosis Through Suppressing Uev1A/TICAM/TRAF/NF-κB-Regulated Anti-Apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-Controlled DNA-Damage Response Pathways. J Cell Biochem 2016; 117:2138-48. [PMID: 26887372 DOI: 10.1002/jcb.25520] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/12/2016] [Indexed: 11/11/2022]
Abstract
Microgravity has been known to induce cell death. However, its underlying mechanism is less studied. In this study, BL6-10 melanoma cells were cultured in flasks under simulated microgravity (SMG). We examined cell apoptosis, and assessed expression of genes associated with apoptosis and genes regulating apoptosis in cells under SMG. We demonstrate that SMG induces cell morphological changes and microtubule alterations by confocal microscopy, and enhances apoptosis by flow cytometry, which was associated with up- and down-regulation of pro-apoptotic and anti-apoptotic genes, respectively. Moreover, up- and down-regulation of pro-apoptotic (Caspases 3, 7, 8) and anti-apoptotic (Bcl2 and Bnip3) molecules was confirmed by Western blotting analysis. Western blot analysis also indicates that SMG causes inhibition of an apoptosis suppressor, pNF-κB-p65, which is complemented by the predominant localization of NF-κB-p65 in the cytoplasm. SMG also reduces expression of molecules regulating the NF-κB pathway including Uev1A, TICAM, TRAF2, and TRAF6. Interestingly, 10 DNA repair genes are down-regulated in cells exposed to SMG, among which down-regulation of Parp, Ercc8, Rad23, Rad51, and Ku70 was confirmed by Western blotting analysis. In addition, we demonstrate a significant inhibition of molecules involved in the DNA-damage response, such as p53, PCNA, ATM/ATR, and Chk1/2. Taken together, our work reveals that SMG promotes the apoptotic response through a combined modulation of the Uev1A/TICAM/TRAF/NF-κB-regulated apoptosis and the p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-damage response pathways. Thus, our investigation provides novel information, which may help us to determine the cause of negative alterations in human physiology occurring at spaceflight environment. J. Cell. Biochem. 117: 2138-2148, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tuo Zhao
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xin Tang
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | | | - Hong Ma
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Haijun Gao
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China.,Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Li HF, Chen XP, Zhu FH, Liu HY, Hong YB, Liang XQ. Transcriptome profiling of peanut (Arachis hypogaea) gynophores in gravitropic response. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1249-1260. [PMID: 32481192 DOI: 10.1071/fp13075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/18/2013] [Indexed: 06/11/2023]
Abstract
Peanut (Arachis hypogaea L.) produces flowers aerially, but the fruit develops underground. This process is mediated by the gynophore, which always grows vertically downwards. The genetic basis underlying gravitropic bending of gynophores is not well understood. To identify genes related to gynophore gravitropism, gene expression profiles of gynophores cultured in vitro with tip pointing upward (gravitropic stimulation sample) and downward (control) at both 6 and 12h were compared through a high-density peanut microarray. After gravitropic stimulation, there were 174 differentially expressed genes, including 91 upregulated and 83 downregulated genes at 6h, and 491 differentially expressed genes including 129 upregulated and 362 downregulated genes at 12h. The differentially expressed genes identified were assigned to 24 functional categories. Twenty pathways including carbon fixation, aminoacyl-tRNA biosynthesis, pentose phosphate pathway, starch and sucrose metabolism were identified. The quantitative real-time PCR analysis was performed for validation of microarray results. Our study paves the way to better understand the molecular mechanisms underlying the peanut gynophore gravitropism.
Collapse
Affiliation(s)
- Hai-Fen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiao-Ping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Fang-He Zhu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hai-Yan Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yan-Bin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuan-Qiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
7
|
Zhang Y, Wang H, Lai C, Wang L, Deng Y. Comparative proteomic analysis of human SH-SY5Y neuroblastoma cells under simulated microgravity. ASTROBIOLOGY 2013; 13:143-150. [PMID: 23421552 DOI: 10.1089/ast.2012.0822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microgravity is one of the most important features in spaceflight. Previous evidence has shown that neurophysiological impairment signs occurred under microgravity. The present study was undertaken to explore the change in protein abundance in human SH-SY5Y neuroblastoma cells that were grown in a microgravity environment. The comparative proteomic method based on the (18)O labeling technique was applied to investigate the up-regulated proteins and down-regulated proteins in SH-SY5Y under simulated microgravity. Twenty-two differentially abundant proteins were quantified in human SH-SY5Y neuroblastoma cells. The cell microfilament network was disrupted under simulated microgravity, which was determined by the immunocytochemistry. The concentration of reactive oxygen species, malondialdehyde, and free Ca2+ ion significantly increased, and the level of ATP significantly decreased under simulated microgravity. However, there was no obvious cell apoptosis observed under simulated microgravity. These results provide new molecular evidence for the change in protein abundance in SH-SY5Y cells under simulated microgravity, which might unfold biological mechanisms and the development of effective countermeasures to deal with microgravity-related neurological problems. We believe that the state-of-the-art proteomic assay may be a means by which aerospace scientists will begin to understand the underlying mechanisms of space life activities at the protein level.
Collapse
Affiliation(s)
- Yongqian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | | | | | | | | |
Collapse
|