1
|
Wang C, Dong W, Zhang P, Ma Y, Han Z, Zou Y, Wang W, Li H, Hollmann F, Liu J. Formate-Mediated Electroenzymatic Synthesis via Biological Cofactor NADH. Angew Chem Int Ed Engl 2024; 63:e202408756. [PMID: 39034766 DOI: 10.1002/anie.202408756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 07/23/2024]
Abstract
Synthetic biohybrid systems by coupling artificial system with nature's machinery may offer a disruptive solution to address the global energy crisis. We developed a versatile electroenzymatic pathway for the continuous synthesis of valuable chemicals, facilitated by formate-driven NADH regeneration. Utilizing a bismuth electrocatalyst, we achieved stable CO2 reduction to formate with approximately 90 % Faraday efficiency at a current density of 150 mA cm-2. The generated formate acts as a mediator to regenerate NADH, which is then coupled with immobilized redox enzymes-alcohol dehydrogenase (ADH), L-lactate dehydrogenase (LDH), and L-glutamate dehydrogenase (GDH)-to produce targeted chemicals at significant rates and exceptionally high turnover numbers (1.8×106 to 3.1×106). These achievements not only underscore the efficiency of the system but also its practical applicability in industrial settings. By leveraging in situ generated formate, this innovative approach demonstrates the potential of integrating electrocatalysis with enzymatic reactions for sustainable and efficient chemical production on a practical scale.
Collapse
Affiliation(s)
- Chuanjun Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Wenjin Dong
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Pengye Zhang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yaya Ma
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zhiwei Han
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yutai Zou
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wenshuo Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Hao Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Delft, The, Netherlands
| | - Jian Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
2
|
Hengge E, Steyskal EM, Dennig A, Nachtnebel M, Fitzek H, Würschum R, Nidetzky B. Electrochemically Induced Nanoscale Stirring Boosts Functional Immobilization of Flavocytochrome P450 BM3 on Nanoporous Gold Electrodes. SMALL METHODS 2024:e2400844. [PMID: 39300852 DOI: 10.1002/smtd.202400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 09/22/2024]
Abstract
Enzyme-modified electrodes are core components of electrochemical biosensors for diagnostic and environmental analytics and have promising applications in bioelectrocatalysis. Despite huge research efforts spanning decades, design of enzyme electrodes for superior performance remains challenging. Nanoporous gold (npAu) represents advanced electrode material due to high surface-to-volume ratio, tunable porosity, and intrinsic redox activity, yet its coupling with enzyme catalysis is complex. Here, the study reports a flexible-modular approach to modify npAu with functional enzymes by combined material and protein engineering and use a tailored assortment of surface and in-solution methodologies for characterization. Self-assembled monolayer (SAM) of mercaptoethanesulfonic acid primes the npAu surface for electrostatic adsorption of the target enzyme (flavocytochrome P450 BM3; CYT102A1) that is specially equipped with a cationic protein module for directed binding to anionic surfaces. Modulation of the SAM surface charge is achieved by electrochemistry. The electrode-adsorbed enzyme retains well the activity (33%) and selectivity (complete) from in-solution. Electrochemically triggered nanoscale stirring in the internal porous network of npAu-SAM enhances speed (2.5-fold) and yield (3.0-fold) of the enzyme immobilization. Biocatalytic reaction is fueled from the electrode via regeneration of its reduced coenzyme (NADPH). Collectively, the study presents a modular design of npAu-based enzyme electrode that can support flexible bioelectrochemistry applications.
Collapse
Affiliation(s)
- Elisabeth Hengge
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Eva-Maria Steyskal
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
| | - Manfred Nachtnebel
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, Graz, 8010, Austria
| | - Harald Fitzek
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, Graz, 8010, Austria
| | - Roland Würschum
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, Graz, 8010, Austria
| |
Collapse
|
3
|
Wang Y, Shi HD, Zhang HL, Yu Chen Y, Ren B, Tang Q, Sun Q, Zhang QL, Liu JG. A Multifunctional Nanozyme with NADH Dehydrogenase-Like Activity and Nitric Oxide Release under Near-Infrared Light Irradiation as an Efficient Therapeutic for Antimicrobial Resistance Infection and Wound Healing. Adv Healthc Mater 2023; 12:e2300568. [PMID: 37326411 DOI: 10.1002/adhm.202300568] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Indexed: 06/17/2023]
Abstract
In recent years, antimicrobial resistance (AMR) has become one of the greatest threats to human health. There is an urgent need to develop new antibacterial agents to effectively treat AMR infection. Herein, a novel nanozyme platform (Cu,N-GQDs@Ru-NO) is prepared, where Cu,N-doped graphene quantum dots (Cu,N-GQDs) are covalently functionalized with a nitric oxide (NO) donor, ruthenium nitrosyl (Ru-NO). Under 808 nm near-infrared (NIR) light irradiation, Cu,N-GQDs@Ru-NO demonstrates nicotinamide adenine dinucleotide (NADH) dehydrogenase-like activity for photo-oxidizing NADH to NAD+ , thus disrupting the redox balance in bacterial cells and resulting in bacterial death; meanwhile, the onsite NIR light-delivered NO effectively eradicates the methicillin-resistant Staphylococcus aureus (MRSA) bacterial and biofilms, and promotes wound healing; furthermore, the nanozyme shows excellent photothermal effect that enhances the antibacterial efficacy as well. With the combination of NADH dehydrogenase activity, photothermal therapy, and NO gas therapy, the Cu,N-GQDs@Ru-NO nanozyme displays both in vitro and in vivo excellent efficacy for MRSA infection and biofilm eradication, which provides a new therapeutic modality for effectively treating MRSA inflammatory wounds.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hong-Dong Shi
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, 650500, P. R. China
| | - Hai-Lin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu- Yu Chen
- Shenzhen Key Lab of Functional Polymer, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Bing Ren
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, P. R. China
| | - Qian-Ling Zhang
- Shenzhen Key Lab of Functional Polymer, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
4
|
Maureira D, Romero O, Illanes A, Wilson L, Ottone C. Industrial bioelectrochemistry for waste valorization: State of the art and challenges. Biotechnol Adv 2023; 64:108123. [PMID: 36868391 DOI: 10.1016/j.biotechadv.2023.108123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Bioelectrochemistry has gained importance in recent years for some of its applications on waste valorization, such as wastewater treatment and carbon dioxide conversion, among others. The aim of this review is to provide an updated overview of the applications of bioelectrochemical systems (BESs) for waste valorization in the industry, identifying current limitations and future perspectives of this technology. BESs are classified according to biorefinery concepts into three different categories: (i) waste to power, (ii) waste to fuel and (iii) waste to chemicals. The main issues related to the scalability of bioelectrochemical systems are discussed, such as electrode construction, the addition of redox mediators and the design parameters of the cells. Among the existing BESs, microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) stand out as the more advanced technologies in terms of implementation and R&D investment. However, there has been little transfer of such achievements to enzymatic electrochemical systems. It is necessary that enzymatic systems learn from the knowledge reached with MFC and MEC to accelerate their development to achieve competitiveness in the short term.
Collapse
Affiliation(s)
- Diego Maureira
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Oscar Romero
- Bioprocess Engineering and Applied Biocatalysis Group, Departament of Chemical, Biological and Enviromental Engineering, Universitat Autònoma de Barcelona, 08193, Spain.
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Lorena Wilson
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Carminna Ottone
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile.
| |
Collapse
|
5
|
Oh C, Park B, Sundaresan V, Schaefer JL, Bohn PW. Closed Bipolar Electrode-Enabled Electrochromic Sensing of Multiple Metabolites in Whole Blood. ACS Sens 2023; 8:270-279. [PMID: 36547518 DOI: 10.1021/acssensors.2c02140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report a closed bipolar electrode (CBE)-based sensing platform for the detection of diagnostic metabolites in undiluted whole human blood. The sensor is enabled by electrode chemistry based on: (1) a mixed layer of blood-compatible adsorption-resistant phosphorylcholine (PPC) and phenylbutyric acid (PBA), (2) ferrocene (Fc) redox mediators, and (3) immobilized redox-active enzymes. This scheme is designed to overcome nonspecific protein adsorption and amplify sensing currents in whole human fluids. The scheme also incorporates a diffusing mediator to increase electronic communication between the immobilized redox enzyme and the working electrode. The use of both bound and freely diffusing mediators is synergistic in producing the electrochemical response. The sensor is realized by linking the analyte cell, containing the specific electrode surface architecture, through a CBE to a reporter cell containing the electrochromic reporter, methyl viologen (MV). The colorless-to-purple color change accompanying the 1e- reduction of MV2+ is captured using a smartphone camera. Subsequent red-green-blue analysis is performed on the acquired images to determine cholesterol, glucose, and lactate concentrations in whole blood. The CBE blood metabolite sensor produces a linear color change at clinically relevant concentration ranges for all metabolites with good reproducibility (∼5% or better) and with limits of detection of 79 μM for cholesterol, 59 μM for glucose, and 86 μM for lactate. Finally, metabolite concentration measurements from the CBE blood metabolite sensor are compared with results from commercially available FDA-approved blood cholesterol, glucose, and lactate meters, with an average difference of ∼3.5% across all three metabolites in the ranges studied.
Collapse
Affiliation(s)
- Christiana Oh
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Bumjun Park
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Jennifer L Schaefer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Paul W Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| |
Collapse
|
6
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
7
|
Gemünde A, Lai B, Pause L, Krömer J, Holtmann D. Redox mediators in microbial electrochemical systems. ChemElectroChem 2022. [DOI: 10.1002/celc.202200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- André Gemünde
- Technische Hochschule Mittelhessen Institute of Bioprocess Engineering and Pharmaceutical Technology Wiesenstraße 14 35390 Gießen GERMANY
| | - Bin Lai
- Helmholtz Centre for Environmental Research UFZ Department of Environmental Microbiology: Helmholtz-Zentrum fur Umweltforschung UFZ Abteilung Umweltmikrobiologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Laura Pause
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Jens Krömer
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Dirk Holtmann
- Technische Hochschule Mittelhessen IBPT Wiesenstrasse 14 35390 Giessen GERMANY
| |
Collapse
|
8
|
Burnett JWH, Chen H, Li J, Li Y, Huang S, Shi J, McCue AJ, Howe RF, Minteer SD, Wang X. Supported Pt Enabled Proton-Driven NAD(P) + Regeneration for Biocatalytic Oxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20943-20952. [PMID: 35482431 DOI: 10.1021/acsami.2c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The utilization of biocatalytic oxidations has evolved from the niche applications of the early 21st century to a widely recognized tool for general chemical synthesis. One of the major drawbacks that hinders commercialization is the dependence on expensive nicotinamide adenine dinucleotide (NAD(P)+) cofactors, and so, their regeneration is essential. Here, we report the design of carbon-supported Pt catalysts that can regenerate NAD(P)+ by proton-driven NAD(P)H oxidation with concurrent hydrogen formation. The carbon support was modified to tune the electronic nature of the Pt nanoparticles, and it was found that the best catalyst for NAD(P)+ regeneration (TOF = 581 h-1) was electron-rich Pt on carbon. Finally, the heterogeneous Pt catalyst was applied in the biocatalytic oxidation of a variety of alcohols catalyzed by different alcohol dehydrogenases. The Pt catalyst exhibited good compatibility with the biocatalytic system. Its NAD(P)+ regeneration function successfully supported biocatalytic conversion from alcohols to corresponding ketone or lactone products. This work provides a promising strategy for chemical synthesis via NAD(P)+-dependent pathways utilizing a cooperative inorganic-enzymatic catalytic system.
Collapse
Affiliation(s)
- Joseph W H Burnett
- Chemical Engineering, Department of Engineering, Lancaster University, Lancaster LA1 4YW, United Kingdom
- Chemical and Materials Engineering, School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Hui Chen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jianwei Li
- Chemical Engineering, Department of Engineering, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China
| | - Shouying Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Alan J McCue
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Russell F Howe
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Xiaodong Wang
- Chemical Engineering, Department of Engineering, Lancaster University, Lancaster LA1 4YW, United Kingdom
| |
Collapse
|
9
|
Le TXH, Gajdar J, Vilà N, Celzard A, Fierro V, Walcarius A, Lapicque F, Etienne M. Improved Productivity of NAD
+
Reduction under Forced Convection in Aerated Solutions. ChemElectroChem 2022. [DOI: 10.1002/celc.202101225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Julius Gajdar
- Université de Lorraine CNRS, LCPME 54000 Nancy France
| | - Neus Vilà
- Université de Lorraine CNRS, LCPME 54000 Nancy France
| | - Alain Celzard
- Université de Lorraine CNRS, IJL 88000 Epinal France
| | | | | | | | | |
Collapse
|
10
|
Mengele AK, Weixler D, Chettri A, Maurer M, Huber FL, Seibold GM, Dietzek B, Eikmanns BJ, Rau S. Switching the Mechanism of NADH Photooxidation by Supramolecular Interactions. Chemistry 2021; 27:16840-16845. [PMID: 34547151 PMCID: PMC9298348 DOI: 10.1002/chem.202103029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/03/2022]
Abstract
A series of three Ru(II) polypyridine complexes was investigated for the selective photocatalytic oxidation of NAD(P)H to NAD(P)+ in water. A combination of (time‐resolved) spectroscopic studies and photocatalysis experiments revealed that ligand design can be used to control the mechanism of the photooxidation: For prototypical Ru(II) complexes a 1O2 pathway was found. Rudppz ([(tbbpy)2Ru(dppz)]Cl2, tbbpy=4,4'‐di‐tert‐butyl‐2,2'‐bipyridine, dppz=dipyrido[3,2‐a:2′,3′‐c]phenazine), instead, initiated the cofactor oxidation by electron transfer from NAD(P)H enabled by supramolecular binding between substrate and catalyst. Expulsion of the photoproduct NAD(P)+ from the supramolecular binding site in Rudppz allowed very efficient turnover. Therefore, Rudppz permits repetitive selective assembly and oxidative conversion of reduced naturally occurring nicotinamides by recognizing the redox state of the cofactor under formation of H2O2 as additional product. This photocatalytic process can fuel discontinuous photobiocatalysis.
Collapse
Affiliation(s)
- Alexander K Mengele
- Institute of Inorganic Chemistry I, Materials and Catalysis, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dominik Weixler
- Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Avinash Chettri
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Allee 9, 07745, Jena, Germany.,Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Maite Maurer
- Institute of Inorganic Chemistry I, Materials and Catalysis, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fabian Lukas Huber
- Institute of Inorganic Chemistry I, Materials and Catalysis, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Gerd M Seibold
- Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,Section of Synthetic Biology, Department of Biotechnology and Bioengineering, Technical University of Denmark, Søltoftsplads, 2800, Kongens, Lyngby, Denmark
| | - Benjamin Dietzek
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Allee 9, 07745, Jena, Germany.,Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Materials and Catalysis, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
11
|
Lee YS, Gerulskis R, Minteer SD. Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches. Curr Opin Biotechnol 2021; 73:14-21. [PMID: 34246871 DOI: 10.1016/j.copbio.2021.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022]
Abstract
Nicotinamide adenine dinucleotide(NAD(P)H) is a metabolically interconnected redox cofactor serving as a hydride source for the majority of oxidoreductases, and consequently constituting a significant cost factor for bioprocessing. Much research has been devoted to the development of efficient, affordable, and sustainable methods for the regeneration of these cofactors through chemical, electrochemical, and photochemical approaches. However, the enzymatic approach using formate dehydrogenase is still the most abundantly employed in industrial applications, even though it suffers from system complexity and product purity issues. In this review, we summarize non-enzymatic and enzymatic electrochemical approaches for cofactor regeneration, then discuss recent developments to solve major issues. Issues discussed include Rh-catalyst mediated enzyme mutual inactivation, electron-transfer rates, catalyst sustainability, product selectivity and simplifying product purification. Recently reported remedies are discussed, such as heterogeneous metal catalysts generating H+ as the sole byproduct or high activity and stability redox-polymer immobilized enzymatic systems for sustainable organic synthesis.
Collapse
Affiliation(s)
- Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Rokas Gerulskis
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Liao HX, Jia HY, Dai JR, Zong MH, Li N. Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations. CHEMSUSCHEM 2021; 14:1687-1691. [PMID: 33559949 DOI: 10.1002/cssc.202100184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Inspired by water-forming NAD(P)H oxidases, a cooperative photobiocatalytic system has been designed to aerobically regenerate the oxidized nicotinamide cofactors. Photocatalysts enable NAD(P)H oxidation with O2 under visible-light irradiation, producing H2 O2 as a byproduct, which is subsequently used as an oxidant by the horseradish peroxidase mediator system (PMS) to oxidize NAD(P)H. The photobiocatalytic system shows a turnover frequency of 8800 min-1 in the oxidation of NAD(P)H. Photobiocatalytic NAD(P)H oxidation proceeds smoothly at pH 6-9. In addition to natural NAD(P)H, synthetic biomimetics are also good substrates for this regeneration system. Total turnover numbers of up to 180000 are obtained for the cofactor when the photobiocatalytic regeneration system is coupled with dehydrogenase-catalyzed oxidations. It may be a promising protocol to recycle the oxidized cofactors for catalytic oxidations.
Collapse
Affiliation(s)
- Huan-Xin Liao
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Hao-Yu Jia
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Jian-Rong Dai
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| |
Collapse
|
13
|
Lim K, Lee YS, Simoska O, Dong F, Sima M, Stewart RJ, Minteer SD. Rapid Entrapment of Phenazine Ethosulfate within a Polyelectrolyte Complex on Electrodes for Efficient NAD + Regeneration in Mediated NAD +-Dependent Bioelectrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10942-10951. [PMID: 33646753 DOI: 10.1021/acsami.0c22302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Over the past two decades, the designs of redox polymers have become critical to the field of mediated bioelectrocatalysis and are used in commercial glucose biosensors, as well as other bioelectrochemical applications (e.g., energy harvesting). These polymers are specifically used to immobilize redox mediators on electrode surfaces, allowing for self-exchange-based conduction of electrons from enzymes far from the electrode to the electrode surface. However, the synthesis of redox polymers is challenging and results in large batch-to-batch variability. Herein, we report a rapid entrapment of mediators for NAD+-dependent bioelectrocatalysis within reverse ionically condensed polyelectrolytes. A high ionic strength aqueous solution of oppositely charged polyelectrolytes, composed of cationic polyguanidinium (PG) chloride and anionic sodium hexametaphosphate (P6), undergoes phase inversion into a solid microporous polyelectrolyte complex (PEC) when introduced into a low ionic strength aqueous solution. The ionic strength-triggered phase inversion of PGP6 solutions was investigated as a means to entrap mediators on the surface of electrodes for mediated bioelectrocatalysis. Compared to the traditional cross-linked immobilizations using redox polymers, this phase inversion takes place within seconds and requires up to 60 min for complete stabilization. In this work, redox mediator phenazine ethosulfate (PES) was entrapped within PGP6 on electrode surfaces for nicotinamide adenine dinucleotide (NAD+)-dependent bioelectrocatalysis. In the bulk solution, NAD+-dependent dehydrogenase enzymes catalyze the oxidation of the substrate while reducing NAD to reduced nicotinamide adenine dinucleotide (NADH). The resulting NADH is reoxidized to NAD+ by the entrapped PES that gets reduced on the electrode, completing the NAD+-regeneration-based bioelectrocatalysis. To show the use of these new materials in an application, biofuel cells were evaluated using four different anodic enzyme systems (alcohol dehydrogenase, lactate hydrogenase, glycerol dehydrogenase, and glucose dehydrogenase).
Collapse
Affiliation(s)
- Koun Lim
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Monika Sima
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Russell J Stewart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Kinyua Muthuri L, Nagy L, Nagy G. Chronopotentiometric method for assessing antioxidant activity: A reagentless measuring technique. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Abstract
Biocatalysts provide a number of advantages such as high selectivity, the ability to operate under mild reaction conditions and availability from renewable resources that are of interest in the development of bioreactors for applications in the pharmaceutical and other sectors. The use of oxidoreductases in biocatalytic reactors is primarily focused on the use of NAD(P)-dependent enzymes, with the recycling of the cofactor occurring via an additional enzymatic system. The use of electrochemically based systems has been limited. This review focuses on the development of electrochemically based biocatalytic reactors. The mechanisms of mediated and direct electron transfer together with methods of immobilising enzymes are briefly reviewed. The use of electrochemically based batch and flow reactors is reviewed in detail with a focus on recent developments in the use of high surface area electrodes, enzyme engineering and enzyme cascades. A future perspective on electrochemically based bioreactors is presented.
Collapse
|
16
|
Porfireva AV, Goida AI, Rogov AM, Evtugyn GA. Impedimetric DNA Sensor Based on Poly(proflavine) for Determination of Anthracycline Drugs. ELECTROANAL 2020. [DOI: 10.1002/elan.201900653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Anna V. Porfireva
- Analytical Chemistry Department of Kazan Federal University Kremlevskaya, 18 420008 Kazan Russian Federation
| | - Anastasia I. Goida
- Analytical Chemistry Department of Kazan Federal University Kremlevskaya, 18 420008 Kazan Russian Federation
| | - Alexey M. Rogov
- Interdisciplinary Center of Analytical Microscopy of Kazan Federal University 18 Kremlevskaya Street Kazan 420008 Russian Federation
| | - Gennady A. Evtugyn
- Analytical Chemistry Department of Kazan Federal University Kremlevskaya, 18 420008 Kazan Russian Federation
| |
Collapse
|
17
|
Pilas J, Selmer T, Keusgen M, Schöning MJ. Screen-Printed Carbon Electrodes Modified with Graphene Oxide for the Design of a Reagent-Free NAD +-Dependent Biosensor Array. Anal Chem 2019; 91:15293-15299. [PMID: 31674761 DOI: 10.1021/acs.analchem.9b04481] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A facile approach for the construction of reagent-free electrochemical dehydrogenase-based biosensors is presented. Enzymes and cofactors (NAD+ and Fe(CN)63-) were immobilized by modification of screen-printed carbon electrodes with graphene oxide (GO) and an additional layer of cellulose acetate. The sensor system was exemplarily optimized for an l-lactate electrode in terms of GO concentration, working potential, and pH value. The biosensor exhibited best characteristics at pH 7.5 in 100 mM potassium phosphate buffer at an applied potential of +0.250 V versus an internal pseudo Ag reference electrode. Thereby, sensor performance was characterized by a linear working range from 0.25 to 4 mM and a sensitivity of 0.14 μA mM-1. The detection principle was additionally evaluated with three other dehydrogenases (d-lactate dehydrogenase, alcohol dehydrogenase, and formate dehydrogenase, respectively). The developed reagentless biosensor array enabled simultaneous and cross-talk free determination of l-lactate, d-lactate, ethanol, and formate.
Collapse
Affiliation(s)
- Johanna Pilas
- Institute of Nano- and Biotechnologies (INB) , FH Aachen, Jülich , Germany.,Institute of Pharmaceutical Chemistry , Philipps-Universität Marburg , Marburg , Germany
| | - Thorsten Selmer
- Institute of Nano- and Biotechnologies (INB) , FH Aachen, Jülich , Germany
| | - Michael Keusgen
- Institute of Pharmaceutical Chemistry , Philipps-Universität Marburg , Marburg , Germany
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB) , FH Aachen, Jülich , Germany.,Institute of Complex Systems 8 (ICS-8) , Forschungszentrum Jülich , Jülich , Germany
| |
Collapse
|
18
|
Yuan M, Kummer MJ, Milton RD, Quah T, Minteer SD. Efficient NADH Regeneration by a Redox Polymer-Immobilized Enzymatic System. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00513] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mengwei Yuan
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Matthew J. Kummer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ross D. Milton
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Timothy Quah
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
19
|
Jia HY, Zong MH, Zheng GW, Li N. Myoglobin-Catalyzed Efficient In Situ Regeneration of NAD(P)+ and Their Synthetic Biomimetic for Dehydrogenase-Mediated Oxidations. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao-Yu Jia
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
20
|
da Silva LV, de Almeida AK, Xavier JA, Lopes CB, Silva FDADS, Lima PR, dos Santos ND, Kubota LT, Goulart MO. Phenol based redox mediators in electroanalysis. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Zhang L, Etienne M, Vilà N, Le TXH, Kohring GW, Walcarius A. Electrocatalytic Biosynthesis using a Bucky Paper Functionalized by [Cp*Rh(bpy)Cl]+
and a Renewable Enzymatic Layer. ChemCatChem 2018. [DOI: 10.1002/cctc.201800681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lin Zhang
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement; Université de Lorraine, CNRS; 405 rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Mathieu Etienne
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement; Université de Lorraine, CNRS; 405 rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement; Université de Lorraine, CNRS; 405 rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Thi Xuan Huong Le
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement; Université de Lorraine, CNRS; 405 rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Gert-Wieland Kohring
- Microbiology; Saarland University; Campus, Geb. A1.5 D-66123 Saarbruecken Germany
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement; Université de Lorraine, CNRS; 405 rue de Vandoeuvre 54600 Villers-lès-Nancy France
| |
Collapse
|
22
|
Wilson TA, Musameh M, Kyratzis IL, Zhang J, Bond AM, Hearn MTW. Variation of Carbon Based Materials on the Electropolymerization of Tyramine. ELECTROANAL 2018. [DOI: 10.1002/elan.201800047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Thomas A. Wilson
- School of Chemistry; Monash University; Clayton VIC 3800 Australia
- CSIRO Manufacturing; Clayton VIC 3168 Australia
| | | | | | - Jie Zhang
- School of Chemistry; Monash University; Clayton VIC 3800 Australia
| | - Alan M. Bond
- School of Chemistry; Monash University; Clayton VIC 3800 Australia
| | | |
Collapse
|
23
|
Kang J, Shin J, Yang H. Rapid and Sensitive Detection of NADH and Lactate Dehydrogenase Using Thermostable DT-Diaphorase Immobilized on Electrode. ELECTROANAL 2018. [DOI: 10.1002/elan.201800119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Juyeon Kang
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Korea
| | - Jeonghwa Shin
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Korea
| |
Collapse
|
24
|
V T F, T S C. Effect of neutral red incorporation on Al-doped ZnO thin films and its bio-electrochemical interaction with NAD +/NADP + dependent enzymes. Enzyme Microb Technol 2018; 116:57-63. [PMID: 29887017 DOI: 10.1016/j.enzmictec.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/06/2018] [Accepted: 05/10/2018] [Indexed: 10/16/2022]
Abstract
A new approach to deposition of electroactive ZnO thin films have been carried out, by one-pot chemical bath deposition with Al dopant and incorporation of neutral red as organic mediator. The morphological, structural and functional characterization of the neutral red incorporated, Al-doped ZnO (NR-AZO) film was carried out using electron microscopy, FTIR, XRD and EIS respectively. The incorporated neutral red was found to induce strain in the crystal of AZO proportional to the concentration used in depositing solution which further affected the charge transfer resistance of the films in solution. One mM neutral red was found to be the optimum concentration for both conductivity and response to NADH/NADPH. The response of the films was further validated by immobilizing NAD+ dependent alcohol dehydrogenase (ADH) and NADP+ dependent glucose dehydrogenase (GDH) independently. The ADH/NR-AZO showed a sensitivity of 3.2 μA cm-2 mM-1 with a LoD of 1.7 μM of ethanol in the range 5.6 μM-7 mM, whereas GDH/NR-AZO showed a sensitivity of 4.33 μA cm-2 mM-1 with a LoD of 27 μM of glucose in the range 90 μM-4 mM. This method serves as a simple alternative to immobilize the organic redox dyes into the inorganic thin films in a single step making it electroactive towards specific biomolecules.
Collapse
Affiliation(s)
- Fidal V T
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Chandra T S
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
25
|
Rudroff F, Mihovilovic MD, Gröger H, Snajdrova R, Iding H, Bornscheuer UT. Opportunities and challenges for combining chemo- and biocatalysis. Nat Catal 2018. [DOI: 10.1038/s41929-017-0010-4] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Ni Y, Hollmann F. Artificial Photosynthesis: Hybrid Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 158:137-158. [PMID: 26987806 DOI: 10.1007/10_2015_5010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidoreductases are promising catalysts for organic synthesis. To sustain their catalytic cycles they require efficient supply with redox equivalents. Today classical biomimetic approaches utilizing natural electron supply chains prevail but artificial regeneration approaches bear the promise of simpler and more robust reaction schemes. Utilizing visible light can accelerate such artificial electron transport chains and even enable thermodynamically unfeasible reactions such as the use of water as reductant.This contribution critically summarizes the current state of the art in photoredoxbiocatalysis (i.e. light-driven biocatalytic oxidation and reduction reactions).
Collapse
Affiliation(s)
- Yan Ni
- Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
27
|
Wilson TA, Musameh M, Kyratzis IL, Zhang J, Bond AM, Hearn MTW. Enhanced NADH Oxidation Using Polytyramine/Carbon Nanotube Modified Electrodes for Ethanol Biosensing. ELECTROANAL 2017. [DOI: 10.1002/elan.201700146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Thomas A. Wilson
- School of Chemistry; Monash University; Clayton VIC 3800 Australia
- CSIRO; Manufacturing Flagship; Clayton VIC 3168 Australia
| | | | | | - Jie Zhang
- School of Chemistry; Monash University; Clayton VIC 3800 Australia
| | - Alan M. Bond
- School of Chemistry; Monash University; Clayton VIC 3800 Australia
| | | |
Collapse
|
28
|
Rodríguez-Hinestroza RA, López C, López-Santín J, Kane C, Dolors Benaiges M, Tzedakis T. HLADH-catalyzed synthesis of β-amino acids, assisted by continuous electrochemical regeneration of NAD + in a filter press microreactor. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
V T F, T S C. New approach to biosensing of co-enzyme nicotinamide adenine dinucleotide (NADH) by incorporation of neutral red in aluminum doped nanostructured ZnO thin films. Biochim Biophys Acta Gen Subj 2017; 1861:1559-1565. [PMID: 28062235 DOI: 10.1016/j.bbagen.2017.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 12/01/2022]
Abstract
Biosensing of NADH on bare electrodes has drawbacks such as high over-potential and poisoning during the oxidation reaction. To overcome this challenge a different approach has been undertaken by incorporating neutral red (NR) in Al doped ZnO (AZO) thin films using one-pot chemical bath deposition (CBD). The surface morphology of the films was hexagonal nanorods along the c-axis, perpendicular to the substrate. The thickness of the thin films were ranging from 400 to 3000nm varying dependent on time of deposition (30 to 150min). The average diameter of the nanorods was larger in the presence of neutral red (NR-AZO) with ~300nm in contrast to its absence (AZO) with ~200nm. The density of the packing of nanorods was dependent on the citrate concentration used during deposition. Control over the dopant concentration in the films was achieved by varying the area of Al foil used in the deposition solution. The selected area diffraction (SAED) and X-ray diffraction (XRD) indicated 002 plane of orientation in the nanorods. FTIR and FT-Raman analysis revealed conserved structure of NR and AZO. Chronoamperometric (CA) analysis showed a sensitivity of 0.45μAcm-2mM-1 and LoD of 22μM within the range 0.075-4mM of NADH. The biological sensing of NADH was validated by physical adsorption of NAD+ dependent-lactate dehydrogenase (LDH) on NR-AZO. CA showed sensitivity of 0.56μAcm-2mM-1 and LoD for lactate was 27μM in the range of 0.1-1mM of lactate. Further validation with real-time serum sample shows that LDH/NR-AZO correlates with the clinical values. The distinction in this study is that the organic mediator like neutral red has been incorporated into the grain structure of the ZnO thin film whereas other study with the mediators have only attempted surface functionalization. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- Fidal V T
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Chandra T S
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
30
|
Belsare KD, Horn T, Ruff AJ, Martinez R, Magnusson A, Holtmann D, Schrader J, Schwaneberg U. Directed evolution of P450cin for mediated electron transfer. Protein Eng Des Sel 2016; 30:119-127. [PMID: 28007937 DOI: 10.1093/protein/gzw072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 11/13/2022] Open
Abstract
Directed evolution is a powerful method to optimize enzyme properties for application demands. Interesting targets are P450 monooxygenases which catalyze the stereo- and regiospecific hydroxylation of chemically inert C-H bonds. Synthesis employing P450s under cell-free reaction conditions is limited by low total turnover numbers, enzyme instability, low product yields and the requirement of the expensive co-factor NADPH. Bioelectrocatalysis is an alternative to replace NADPH in cell-free P450-catalyzed reactions. However, natural enzymes are often not suitable for using non-natural electron delivery systems. Here we report the directed evolution of a previously engineered P450 CinA-10aa-CinC fusion protein (named P450cin-ADD-CinC) to use zinc/cobalt(III)sepulchrate as electron delivery system for an increased hydroxylation activity of 1,8-cineole. Two rounds of Sequence Saturation Mutagenesis (SeSaM) each followed by one round of multiple site-saturation mutagenesis of the P450 CinA-10aa-CinC fusion protein generated a variant (Gln385His, Val386Ser, Thr77Asn, Leu88Arg; named KB8) with a 3.8-fold increase in catalytic efficiency (28 µM-1 min-1) compared to P450cin-ADD-CinC (7 µM-1 min-1). Furthermore, variant KB8 exhibited a 1.5-fold higher product formation (500 µM µM-1 P450) compared to the equimolar mixture of CinA, CinC and Fpr using NADPH as co-factor (315 µM µM-1 P450). In addition, electrochemical experiments with the electron delivery system platinum/cobalt(III)sepulchrate showed that the KB8 variant had a 4-fold higher product formation rate (0.16 nmol (nmol) P450-1 min-1 cm-2) than the P450cin-ADD-CinC (0.04 nmol (nmol) P450-1 min-1 cm-2). In summary, the current work shows prospects of using directed evolution to generate P450 enzymes suitable for use with alternative electron delivery systems.
Collapse
Affiliation(s)
- Ketaki D Belsare
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Thomas Horn
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ronny Martinez
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Anders Magnusson
- Biochemical Engineering Group, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Dirk Holtmann
- Biochemical Engineering Group, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Jens Schrader
- Biochemical Engineering Group, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany .,DWI-Leibniz-Institut für Interaktive Materialien e. V., Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
31
|
Lalaoui N, Means N, Walgama C, Le Goff A, Holzinger M, Krishnan S, Cosnier S. Enzymatic versus Electrocatalytic Oxidation of NADH at Carbon-Nanotube Electrodes Modified with Glucose Dehydrogenases: Application in a Bucky-Paper-Based Glucose Enzymatic Fuel Cell. ChemElectroChem 2016. [DOI: 10.1002/celc.201600545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noémie Lalaoui
- Université Grenoble Alpes; CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Nicolas Means
- Université Grenoble Alpes; CNRS, DCM UMR 5250; 38000 Grenoble France
- Department of Chemistry; Oklahoma State University; Stillwater OK 74078 USA
| | - Charuksha Walgama
- Department of Chemistry; Oklahoma State University; Stillwater OK 74078 USA
| | - Alan Le Goff
- Université Grenoble Alpes; CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Michael Holzinger
- Université Grenoble Alpes; CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Sadagopan Krishnan
- Department of Chemistry; Oklahoma State University; Stillwater OK 74078 USA
| | - Serge Cosnier
- Université Grenoble Alpes; CNRS, DCM UMR 5250; 38000 Grenoble France
| |
Collapse
|
32
|
Şcoban AG, Maria G. Model-based optimization of the feeding policy of a fluidized bed bioreactor for mercury uptake by immobilized Pseudomonas putidacells. ASIA-PAC J CHEM ENG 2016. [DOI: 10.1002/apj.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andreea Georgiana Şcoban
- Department of Chemical and Biochemical Engineering; University Politehnica of Bucharest; Bucharest Romania
| | - Gheorghe Maria
- Department of Chemical and Biochemical Engineering; University Politehnica of Bucharest; Bucharest Romania
| |
Collapse
|
33
|
Selvam S, Sarkar I. Bile salt induced solubilization of methylene blue: Study on methylene blue fluorescence properties and molecular mechanics calculation. J Pharm Anal 2016; 7:71-75. [PMID: 29404020 PMCID: PMC5686871 DOI: 10.1016/j.jpha.2016.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/25/2016] [Accepted: 07/20/2016] [Indexed: 11/22/2022] Open
Abstract
Methylene blue (MB) is a hydrophobic drug molecule, having importance both as a staining reagent and pharmaceutical agent. MB is strongly fluorescent, with an emission peak at 686 nm (λex 665 nm). In the study, the possibility of MB as an extrinsic fluorophore to study the micellization behavior of bile salts (BSs) was carried out. Since BSs are drug delivery systems, the solubilization of hydrophobic MB drug molecule by BSs was achieved and the nature of association of MB with BS media, namely sodium cholate (NaC) and sodium deoxycholate (NaDC) was evaluated. Change in the photophysical properties of MB is monitored through fluorescence intensity and fluorescence anisotropy at emission peak, 686 nm of MB. Molecular mechanics calculations were carried out to evaluate the MB–BS association. The estimated heat of formation, ΔHf values are –625.19 kcal/mol for MB–NaC and –757.48 kcal/mol for MB–NaDC. The photophysical study also revealed that MB reports the step-wise aggregation pattern of BSs media, as an extrinsic fluorescence probe.
Collapse
Affiliation(s)
- Susithra Selvam
- Department of Chemistry, Vel Tech University, Avadi, Chennai 600062, Tamilnadu, India
| | - Ivy Sarkar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| |
Collapse
|
34
|
Feng L, Li HP, Galatsis K, Monbouquette HG. Effective NADH sensing by electrooxidation on carbon-nanotube-coated platinum electrodes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Wang CC, Hennek JW, Ainla A, Kumar AA, Lan WJ, Im J, Smith B, Zhao M, Whitesides GM. A Paper-Based "Pop-up" Electrochemical Device for Analysis of Beta-Hydroxybutyrate. Anal Chem 2016; 88:6326-33. [PMID: 27243791 PMCID: PMC5633928 DOI: 10.1021/acs.analchem.6b00568] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper describes the design and fabrication of a "pop-up" electrochemical paper-based analytical device (pop-up-EPAD) to measure beta-hydroxybutyrate (BHB)-a biomarker for diabetic ketoacidosis-using a commercial combination BHB/glucometer. Pop-up-EPADs are inspired by pop-up greeting cards and children's books. They are made from a single sheet of paper folded into a three-dimensional (3D) device that changes shape, and fluidic and electrical connectivity, by simply folding and unfolding the structure. The reconfigurable 3D structure makes it possible to change the fluidic path and to control timing; it also provides mechanical support for the folded and unfolded structures that enables good registration and repeatability on folding. A pop-up-EPAD designed to detect BHB shows performance comparable to commercially available plastic test strips over the clinically relevant range of BHB in blood when used with a commercial glucometer that integrates the ability to measure glucose and BHB (combination BHB/glucometer). With simple modifications of the electrode and the design of the fluidic path, the pop-up-EPAD also detects BHB in buffer using a simple glucometer-a device that is more available than the combination BHB/glucometer. Strategies that use a "3D pop-up"-that is, large-scale changes in 3D structure and fluidic paths-by folding/unfolding add functionality to EPADs (e.g., controlled timing, fluidic handling and path programming, control over complex sequences of steps, and alterations in electrical connectivity) and should enable the development of new classes of paper-based diagnostic devices.
Collapse
Affiliation(s)
- Chien-Chung Wang
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Jonathan W. Hennek
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Alar Ainla
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Ashok A. Kumar
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Wen-Jie Lan
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Judy Im
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Barbara Smith
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Mengxia Zhao
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - George M. Whitesides
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
- Kavli Institute for Bionano Science & Technology, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
36
|
|
37
|
Holec C, Neufeld K, Pietruszka J. P450 BM3 Monooxygenase as an Efficient NAD(P)H-Oxidase for Regeneration of Nicotinamide Cofactors in ADH-Catalysed Preparative Scale Biotransformations. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
de Camargo MN, Santhiago M, Maroneze CM, Silva CC, Timm RA, Kubota LT. Tuning the electrochemical reduction of graphene oxide: structural correlations towards the electrooxidation of nicotinamide adenine dinucleotide hydride. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Sabir N, Khan N, Völkner J, Widdascheck F, del Pino P, Witte G, Riedel M, Lisdat F, Konrad M, Parak WJ. Photo-electrochemical Bioanalysis of Guanosine Monophosphate Using Coupled Enzymatic Reactions at a CdS/ZnS Quantum Dot Electrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5844-5850. [PMID: 26395754 DOI: 10.1002/smll.201501883] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/10/2015] [Indexed: 06/05/2023]
Abstract
A photo-electrochemical sensor for the specific detection of guanosine monophosphate (GMP) is demonstrated, based on three enzymes combined in a coupled reaction assay. The first reaction involves the adenosine triphosphate (ATP)-dependent conversion of GMP to guanosine diphosphate (GDP) by guanylate kinase, which warrants substrate specificity. The reaction products ADP and GDPare co-substrates for the enzymatic conversion of phosphoenolpyruvate to pyruvate in a second reaction mediated by pyruvate kinase. Pyruvate in turn is the co-substrate for lactate dehydrogenase that generates lactate via oxidation of nicotinamide adenine dinucleotide (reduced form) NADH to NAD(+). This third enzymatic reaction is electrochemically detected. For this purpose a CdS/ZnS quantum dot (QD) electrode is illuminated and the photocurrent response under fixed potential conditions is evaluated. The sequential enzyme reactions are first evaluated in solution. Subsequently, a sensor for GMP is constructed using polyelectrolytes for enzyme immobilization.
Collapse
Affiliation(s)
- Nadeem Sabir
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 5, D-35032, Marburg, Germany
| | - Nazimuddin Khan
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Johannes Völkner
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 5, D-35032, Marburg, Germany
| | - Felix Widdascheck
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 5, D-35032, Marburg, Germany
| | - Pablo del Pino
- CIC biomaGUNE, Parque Tecnológico de San Sebastián, P° Miramón 182 - Ed. Empresarial C, 20009, San Sebastian, Spain
| | - Gregor Witte
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 5, D-35032, Marburg, Germany
| | - Marc Riedel
- Biosystems Technology, Institute of Applied Life Sciences, Technical University Wildau, Hochschulring 1, D-15745, Wildau, Germany
| | - Fred Lisdat
- Biosystems Technology, Institute of Applied Life Sciences, Technical University Wildau, Hochschulring 1, D-15745, Wildau, Germany
| | - Manfred Konrad
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 5, D-35032, Marburg, Germany
- CIC biomaGUNE, Parque Tecnológico de San Sebastián, P° Miramón 182 - Ed. Empresarial C, 20009, San Sebastian, Spain
| |
Collapse
|
40
|
|
41
|
Reuillard B, Le Goff A, Cosnier S. Non-covalent double functionalization of carbon nanotubes with a NADH oxidation Ru(II)-based molecular catalyst and a NAD-dependent glucose dehydrogenase. Chem Commun (Camb) 2015; 50:11731-4. [PMID: 25144602 DOI: 10.1039/c4cc04758c] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the double functionalization of multiwalled carbon nanotube electrodes by two functional pyrene molecules. In combination, an immobilized Ru(II)-based NADH oxidation catalyst and glucose dehydrogenase achieve highly efficient glucose oxidation with low overpotential of -0.10 V and high current densities of 6 mA cm(-2).
Collapse
Affiliation(s)
- B Reuillard
- Univ. Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France.
| | | | | |
Collapse
|
42
|
Electrocatalytic activity of activated niclosamide on multi-walled carbon nanotubes glassy carbon electrode toward NADH oxidation. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2862-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Ryu GM, Lee M, Choi DS, Park CB. A hematite-based photoelectrochemical platform for visible light-induced biosensing. J Mater Chem B 2015; 3:4483-4486. [DOI: 10.1039/c5tb00478k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first hematite-based PEC biosensor platform is developed and applied for the detection of NADH under visible-light irradiation.
Collapse
Affiliation(s)
- Gyeong Min Ryu
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Yuseong-gu
- Republic of Korea
| | - Minah Lee
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Yuseong-gu
- Republic of Korea
| | - Da Som Choi
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Yuseong-gu
- Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Yuseong-gu
- Republic of Korea
| |
Collapse
|
44
|
|
45
|
Brondani PB, Dudek HM, Martinoli C, Mattevi A, Fraaije MW. Finding the switch: turning a baeyer-villiger monooxygenase into a NADPH oxidase. J Am Chem Soc 2014; 136:16966-9. [PMID: 25423359 DOI: 10.1021/ja508265b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
By a targeted enzyme engineering approach, we were able to create an efficient NADPH oxidase from a monooxygenase. Intriguingly, replacement of only one specific single amino acid was sufficient for such a monooxygenase-to-oxidase switch-a complete transition in enzyme activity. Pre-steady-state kinetic analysis and elucidation of the crystal structure of the C65D PAMO mutant revealed that the mutation introduces small changes near the flavin cofactor, resulting in a rapid decay of the peroxyflavin intermediate. The engineered biocatalyst was shown to be a thermostable, solvent tolerant, and effective cofactor-regenerating biocatalyst. Therefore, it represents a valuable new biocatalytic tool.
Collapse
Affiliation(s)
- Patrícia B Brondani
- Molecular Enzymology Group, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Kochius S, Ni Y, Kara S, Gargiulo S, Schrader J, Holtmann D, Hollmann F. Light-Accelerated Biocatalytic Oxidation Reactions. Chempluschem 2014. [DOI: 10.1002/cplu.201402152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Inzelt G, Róka A. Cyclic voltammetric and nanogravimetric studies of NADP+ redox transformations on a yeast-modified platinum electrode. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
Maria G, Crisan M. Evaluation of optimal operation alternatives of reactors used ford-glucose oxidation in a bi-enzymatic system with a complex deactivation kinetics. ASIA-PAC J CHEM ENG 2014. [DOI: 10.1002/apj.1825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gheorghe Maria
- Department of Chemical and Biochemical Engineering; University Politehnica of Bucharest; P.O. 35-107, Polizu Str. 1 011061 Bucharest Romania
| | - Mara Crisan
- Department of Chemical and Biochemical Engineering; University Politehnica of Bucharest; P.O. 35-107, Polizu Str. 1 011061 Bucharest Romania
| |
Collapse
|
49
|
Kochius S, Park JB, Ley C, Könst P, Hollmann F, Schrader J, Holtmann D. Electrochemical regeneration of oxidised nicotinamide cofactors in a scalable reactor. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Development of a high performance electrochemical cofactor regeneration module and its application to the continuous reduction of FAD. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|