1
|
Zhu J, Fu Q, Shao J, Jinhui Peng, Qian Q, Zhou Y, Yi Chen. Regulating effect of Circ_ATRNL1 on the promotion of SOX9 expression to promote chondrogenic differentiation of hAMSCs mediated by MiR-145-5p. J Tissue Eng Regen Med 2021; 15:487-502. [PMID: 33734580 DOI: 10.1002/term.3189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023]
Abstract
Circ_ATRNL1 is significantly highly expressed in cartilage tissues of patients with osteoarthritis. This study explored the role and mechanism of circ_ATRNL1 in cartilage differentiation of human adipose-derived mesenchymal stem cells (hAMSCs). hAMSCs were isolated and identified by flow cytometry. The degree of chondrocyte and adipogenic differentiation was assessed using Alcian blue staining and Oil Red O staining, respectively. The expressions of cartilage- and adipogenic-related genes, circ_ATRNL1, and SOX9 were detected by reverse transcription quantitative polymerase chain reaction. The correlation between SOX9 and circ_ATRNL1 was analyzed using Pearson test. Bioinformatics and luciferase analysis were used to detect the overlapped target miRNAs of circ_ATRNL1 and SOX9. The role of circ_ATRNL1/miRNA/SOX9 was examined using functional rescue assays. hAMSCs were identified as CD90-, CD105-, and CD44-positive. The degree of cartilage differentiation of hAMSCs was significantly enhanced after 2 weeks. Cartilage-related genes, circ_ATRNL1 and SOX9, were significantly upregulated, and positively correlated with each other. Circ_ATRNL1 overexpression enhanced hAMSC proliferation and differentiation into chondrogenesis, and promoted the expressions of COL2, Aggrecan, and SOX9. Overexpression of circ_ATRNL1 inhibited the adipogenic differentiation of hAMSCs and the expressions of adipogenic-related genes. miR-145-5p was a target miRNA for circ_ATRNL1 and SOX9. miR-145-5p mimic inhibited hAMSC differentiation toward cartilage, and inhibited the expression of cartilage-related factors. miR-145-5p mimic effectively reversed the regulating effect of circ_ATRNL1 on hAMSCs. Circ_ATRNL1 regulates the promotion of SOX9 expression to promote chondrogenic differentiation of hAMSCs mediated by miR-145-5p.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Qiwei Fu
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiahua Shao
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jinhui Peng
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Qirong Qian
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yiqin Zhou
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yi Chen
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Wenderott JK, Flesher CG, Baker NA, Neeley CK, Varban OA, Lumeng CN, Muhammad LN, Yeh C, Green PF, O'Rourke RW. Elucidating nanoscale mechanical properties of diabetic human adipose tissue using atomic force microscopy. Sci Rep 2020; 10:20423. [PMID: 33235234 PMCID: PMC7686328 DOI: 10.1038/s41598-020-77498-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023] Open
Abstract
Obesity-related type 2 diabetes (DM) is a major public health concern. Adipose tissue metabolic dysfunction, including fibrosis, plays a central role in DM pathogenesis. Obesity is associated with changes in adipose tissue extracellular matrix (ECM), but the impact of these changes on adipose tissue mechanics and their role in metabolic disease is poorly defined. This study utilized atomic force microscopy (AFM) to quantify difference in elasticity between human DM and non-diabetic (NDM) visceral adipose tissue. The mean elastic modulus of DM adipose tissue was twice that of NDM adipose tissue (11.50 kPa vs. 4.48 kPa) to a 95% confidence level, with significant variability in elasticity of DM compared to NDM adipose tissue. Histologic and chemical measures of fibrosis revealed increased hydroxyproline content in DM adipose tissue, but no difference in Sirius Red staining between DM and NDM tissues. These findings support the hypothesis that fibrosis, evidenced by increased elastic modulus, is enhanced in DM adipose tissue, and suggest that measures of tissue mechanics may better resolve disease-specific differences in adipose tissue fibrosis compared with histologic measures. These data demonstrate the power of AFM nanoindentation to probe tissue mechanics, and delineate the impact of metabolic disease on the mechanical properties of adipose tissue.
Collapse
Affiliation(s)
- J K Wenderott
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60201, USA
| | - Carmen G Flesher
- Department of Surgery, Section of General Surgery, University of Michigan Medical School, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA
| | - Nicki A Baker
- Department of Surgery, Section of General Surgery, University of Michigan Medical School, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA
| | - Christopher K Neeley
- Department of Surgery, Section of General Surgery, University of Michigan Medical School, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA
| | - Oliver A Varban
- Department of Surgery, Section of General Surgery, University of Michigan Medical School, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA
| | - Carey N Lumeng
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lutfiyya N Muhammad
- Division of Biostatistics, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Chen Yeh
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60201, USA
| | - Peter F Green
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Robert W O'Rourke
- Department of Surgery, Section of General Surgery, University of Michigan Medical School, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA.
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Shi Q, Lei Z, Cheng G, Li D, Wang Q, Luo S, Yang H, Jia H. Mitochondrial ROS activate interleukin-1β expression in allergic rhinitis. Oncol Lett 2018; 16:3193-3200. [PMID: 30127914 DOI: 10.3892/ol.2018.8984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2018] [Indexed: 01/15/2023] Open
Abstract
Allergic rhinitis (AR) is the most common cause of inflammation of the nasal mucosa. It is also the most common form of non-infectious rhinitis associated with an immunoglobulin E (IgE)-mediated immune response against allergens. Previous studies have indicated that interleukin-1β (IL-1β) has a pathological role in the development of allergic asthma. The present study was designed to assess whether IL-1β participates in the pathogenesis of AR. A total of 45 patients with AR were enrolled in the present study and were identified to have increased IL-1β expression expressed by peripheral blood mononuclear cells (PBMCs), and the mitochondrial reactive oxygen species (ROS) and NLRP3 are required for IL-1β synthesis in monocytes/macrophages and PBMCs from patients with AR. The levels of IL-1β and interleukin-17 (IL-17) were increased in patients with AR and were positively correlated with each other. The results of the present study suggested that patients with AR have raised mitochondrial ROS levels, which may upregulate the expression of IL-1β, affecting IL-17-production and serving a role in the pathogenesis of AR.
Collapse
Affiliation(s)
- Qiping Shi
- Endocrine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhiwei Lei
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Gui Cheng
- Endocrine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dehai Li
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qian Wang
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Simin Luo
- Endocrine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Hengwen Yang
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Haiying Jia
- Endocrine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
4
|
Bhansali S, Kumar V, Saikia UN, Medhi B, Jha V, Bhansali A, Dutta P. Effect of mesenchymal stem cells transplantation on glycaemic profile & their localization in streptozotocin induced diabetic Wistar rats. Indian J Med Res 2016; 142:63-71. [PMID: 26261168 PMCID: PMC4557252 DOI: 10.4103/0971-5916.162116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND & OBJECTIVES Bone marrow is a rich source of adult stem cells that can differentiate into various cell types. Administration of mesenchymal stem cells (MSCs) in irradiated diabetic rat model has transiently shown to decrease blood glucose level. This study examines the effect of high dose and multiple injections of MSCs on glycemic profile, their localization and regeneration of islet in diabetic Wistar rat. METHODS The study was carried out in male Wistar rats categorized into three groups (n=6, in each group): Group 1 as control, group 2 streptozotocin (STZ) (50 mg/kg) induced diabetic group and group 3 experimental group; 5-bromo-2-deoxyuridine (BrdU) labelled allogenic MSCs were injected in the non-irradiated diabetic rat of the experimental group through tail vein. The blood glucose profile was subsequently monitored at regular intervals. Rats were sacrificed on day 45 and pancreas was examined for localization of BrdU labelled stem cells by immunofluorescence and islet-neogenesis by immunohistochemistry . RESULTS There was a significant reduction in blood glucose level after administration of MSCs in the experimental group (P<0.001). The presence of BrdU labelled MSCs in islet suggested their localization in the pancreas. Co-expression of anti-BrdU and anti-insulin antibody indicated trans-differentiation / fusion into insulin producing cells evidenced by significant increase in total number of islet (P=0.004) and insulin positive cells ( P<0.0001) in experimental group. INTERPRETATION & CONCLUSIONS Our results showed that the MSCs administration in non-irradiated diabetic Wistar rat reduced hyperglycaemia and was accompanied by increased islet-neogenesis, possibly through trans-differentiation/fusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
5
|
Shi Q, Luo S, Jia H, Feng L, Lu X, Zhou L, Cai J. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. NANOSCALE RESEARCH LETTERS 2013; 8:90. [PMID: 23421382 PMCID: PMC3585706 DOI: 10.1186/1556-276x-8-90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/13/2013] [Indexed: 05/04/2023]
Abstract
OBJECTIVE The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. METHODS The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. RESULTS IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. CONCLUSIONS Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells.
Collapse
Affiliation(s)
- Qiping Shi
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Simin Luo
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Haiying Jia
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Lie Feng
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Xiaohua Lu
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Lixin Zhou
- Institute for Nano-Chemistry, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jiye Cai
- Institute for Nano-Chemistry, Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Chang KC, Chiang YW, Yang CH, Liou JW. Atomic force microscopy in biology and biomedicine. Tzu Chi Med J 2012. [DOI: 10.1016/j.tcmj.2012.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|