1
|
Vander Elst N. Bacteriophage-derived endolysins as innovative antimicrobials against bovine mastitis-causing streptococci and staphylococci: a state-of-the-art review. Acta Vet Scand 2024; 66:20. [PMID: 38769566 PMCID: PMC11106882 DOI: 10.1186/s13028-024-00740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.
Collapse
Affiliation(s)
- Niels Vander Elst
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, Solnavägen 9, 17165, Solna, Stockholm, Sweden.
| |
Collapse
|
2
|
Zheng T, Zhang C. Engineering strategies and challenges of endolysin as an antibacterial agent against Gram-negative bacteria. Microb Biotechnol 2024; 17:e14465. [PMID: 38593316 PMCID: PMC11003714 DOI: 10.1111/1751-7915.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Bacteriophage endolysin is a novel antibacterial agent that has attracted much attention in the prevention and control of drug-resistant bacteria due to its unique mechanism of hydrolysing peptidoglycans. Although endolysin exhibits excellent bactericidal effects on Gram-positive bacteria, the presence of the outer membrane of Gram-negative bacteria makes it difficult to lyse them extracellularly, thus limiting their application field. To enhance the extracellular activity of endolysin and facilitate its crossing through the outer membrane of Gram-negative bacteria, researchers have adopted physical, chemical, and molecular methods. This review summarizes the characterization of endolysin targeting Gram-negative bacteria, strategies for endolysin modification, and the challenges and future of engineering endolysin against Gram-negative bacteria in clinical applications, to promote the application of endolysin in the prevention and control of Gram-negative bacteria.
Collapse
Affiliation(s)
- Tianyu Zheng
- Bathurst Future Agri‐Tech InstituteQingdao Agricultural UniversityQingdaoChina
| | - Can Zhang
- College of Veterinary MedicineQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
3
|
Roehrig C, Huemer M, Lorgé D, Arn F, Heinrich N, Selvakumar L, Gasser L, Hauswirth P, Chang CC, Schweizer TA, Eichenseher F, Lehmann S, Zinkernagel AS, Schmelcher M. MEndoB, a chimeric lysin featuring a novel domain architecture and superior activity for the treatment of staphylococcal infections. mBio 2024; 15:e0254023. [PMID: 38275913 PMCID: PMC10865858 DOI: 10.1128/mbio.02540-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Bacterial infections are a growing global healthcare concern, as an estimated annual 4.95 million deaths are associated with antimicrobial resistance (AMR). Methicillin-resistant Staphylococcus aureus is one of the deadliest pathogens and a high-priority pathogen according to the World Health Organization. Peptidoglycan hydrolases (PGHs) of phage origin have been postulated as a new class of antimicrobials for the treatment of bacterial infections, with a novel mechanism of action and no known resistances. The modular architecture of PGHs permits the creation of chimeric PGH libraries. In this study, the chimeric enzyme MEndoB was selected from a library of staphylococcal PGHs based on its rapid and sustained activity against staphylococci in human serum. The benefit of the presented screening approach was illustrated by the superiority of MEndoB in a head-to-head comparison with other PGHs intended for use against staphylococcal bacteremia. MEndoB displayed synergy with antibiotics and rapid killing in human whole blood with complete inhibition of re-growth over 24 h at low doses. Successful treatment of S. aureus-infected zebrafish larvae with MEndoB provided evidence for its in vivo effectiveness. This was further confirmed in a lethal systemic mouse infection model in which MEndoB significantly reduced S. aureus loads and tumor necrosis factor alpha levels in blood in a dose-dependent manner, which led to increased survival of the animals. Thus, the thorough lead candidate selection of MEndoB resulted in an outstanding second-generation PGH with in vitro, ex vivo, and in vivo results supporting further development.IMPORTANCEOne of the most pressing challenges of our era is the rising occurrence of bacteria that are resistant to antibiotics. Staphylococci are prominent pathogens in humans, which have developed multiple strategies to evade the effects of antibiotics. Infections caused by these bacteria have resulted in a high burden on the health care system and a significant loss of lives. In this study, we have successfully engineered lytic enzymes that exhibit an extraordinary ability to eradicate staphylococci. Our findings substantiate the importance of meticulous lead candidate selection to identify therapeutically promising peptidoglycan hydrolases with unprecedented activity. Hence, they offer a promising new avenue for treating staphylococcal infections.
Collapse
Affiliation(s)
- Christian Roehrig
- Micreos Pharmaceuticals AG, Baar, Zug, Switzerland
- Micreos GmbH, Wädenswil, Zurich, Switzerland
| | | | | | | | | | | | - Lynn Gasser
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zurich, Switzerland
| | - Patrick Hauswirth
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tiziano A. Schweizer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Steffi Lehmann
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
Keller AP, Huemer M, Chang CC, Mairpady Shambat S, Bjurnemark C, Oberortner N, Santschi MV, Zinsli LV, Röhrig C, Sobieraj AM, Shen Y, Eichenseher F, Zinkernagel AS, Loessner MJ, Schmelcher M. Systemic application of bone-targeting peptidoglycan hydrolases as a novel treatment approach for staphylococcal bone infection. mBio 2023; 14:e0183023. [PMID: 37768041 PMCID: PMC10653945 DOI: 10.1128/mbio.01830-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE The rising prevalence of antimicrobial resistance in S. aureus has rendered treatment of staphylococcal infections increasingly difficult, making the discovery of alternative treatment options a high priority. Peptidoglycan hydrolases, a diverse group of bacteriolytic enzymes, show high promise as such alternatives due to their rapid and specific lysis of bacterial cells, independent of antibiotic resistance profiles. However, using these enzymes for the systemic treatment of local infections, such as osteomyelitis foci, needs improvement, as the therapeutic distributes throughout the whole host, resulting in low concentrations at the actual infection site. In addition, the occurrence of intracellularly persisting bacteria can lead to relapsing infections. Here, we describe an approach using tissue-targeting to increase the local concentration of therapeutic enzymes in the infected bone. The enzymes were modified with a short targeting moiety that mediated accumulation of the therapeutic in osteoblasts and additionally enables targeting of intracellularly surviving bacteria.
Collapse
Affiliation(s)
- Anja P. Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Nicole Oberortner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Léa V. Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christian Röhrig
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Anna M. Sobieraj
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Alreja AB, Linden SB, Lee HR, Chao KL, Herzberg O, Nelson DC. Understanding the Molecular Basis for Homodimer Formation of the Pneumococcal Endolysin Cpl-1. ACS Infect Dis 2023; 9:1092-1104. [PMID: 37126660 PMCID: PMC10577085 DOI: 10.1021/acsinfecdis.2c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The rise of multi-drug-resistant bacteria that cannot be treated with traditional antibiotics has prompted the search for alternatives to combat bacterial infections. Endolysins, which are bacteriophage-derived peptidoglycan hydrolases, are attractive tools in this fight. Several studies have already demonstrated the efficacy of endolysins in targeting bacterial infections. Endolysins encoded by bacteriophages that infect Gram-positive bacteria typically possess an N-terminal catalytic domain and a C-terminal cell-wall binding domain (CWBD). In this study, we have uncovered the molecular mechanisms that underlie formation of a homodimer of Cpl-1, an endolysin that targets Streptococcus pneumoniae. Here, we use site-directed mutagenesis, analytical size exclusion chromatography, and analytical ultracentrifugation to disprove a previous suggestion that three residues at the N-terminus of the CWBD are involved in the formation of a Cpl-1 dimer in the presence of choline in solution. We conclusively show that the C-terminal tail region of Cpl-1 is involved in formation of the dimer. Alanine scanning mutagenesis generated various tail mutant constructs that allowed identification of key residues that mediate Cpl-1 dimer formation. Finally, our results allowed identification of a consensus sequence (FxxEPDGLIT) required for choline-dependent dimer formation─a sequence that occurs frequently in pneumococcal autolysins and endolysins. These findings shed light on the mechanisms of Cpl-1 and related enzymes and can be used to inform future engineering efforts for their therapeutic development against S. pneumoniae.
Collapse
Affiliation(s)
- Adit B Alreja
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Biological Sciences Graduate Program - Molecular and Cellular Biology Concentration, University of Maryland, College Park, Maryland 20742, USA
| | - Sara B Linden
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Harrison R Lee
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Department of Biochemistry and Chemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
6
|
Keller AP, Ly S, Daetwyler S, Eichenseher F, Loessner MJ, Schmelcher M. Chimeric Peptidoglycan Hydrolases Kill Staphylococcal Mastitis Isolates in Raw Milk and within Bovine Mammary Gland Epithelial Cells. Viruses 2022; 14:v14122801. [PMID: 36560804 PMCID: PMC9781970 DOI: 10.3390/v14122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a major causative agent of bovine mastitis, a disease considered one of the most economically devastating in the dairy sector. Considering the increasing prevalence of antibiotic-resistant strains, novel therapeutic approaches efficiently targeting extra- and intracellular bacteria and featuring high activity in the presence of raw milk components are needed. Here, we have screened a library of eighty peptidoglycan hydrolases (PGHs) for high activity against S. aureus in raw bovine milk, twelve of which were selected for further characterization and comparison in time-kill assays. The bacteriocins lysostaphin and ALE-1, and the chimeric PGH M23LST(L)_SH3b2638 reduced bacterial numbers in raw milk to the detection limit within 10 min. Three CHAP-based PGHs (CHAPGH15_SH3bAle1, CHAPK_SH3bLST_H, CHAPH5_LST_H) showed gradually improving activity with increasing dilution of the raw milk. Furthermore, we demonstrated synergistic activity of CHAPGH15_SH3bAle1 and LST when used in combination. Finally, modification of four PGHs (LST, M23LST(L)_SH3b2638, CHAPK_SH3bLST, CHAPGH15_SH3bAle1) with the cell-penetrating peptide TAT significantly enhanced the eradication of intracellular S. aureus in bovine mammary alveolar cells compared to the unmodified parentals in a concentration-dependent manner.
Collapse
|
7
|
Razew A, Schwarz JN, Mitkowski P, Sabala I, Kaus-Drobek M. One fold, many functions-M23 family of peptidoglycan hydrolases. Front Microbiol 2022; 13:1036964. [PMID: 36386627 PMCID: PMC9662197 DOI: 10.3389/fmicb.2022.1036964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2023] Open
Abstract
Bacterial cell walls are the guards of cell integrity. They are composed of peptidoglycan that provides rigidity to sustain internal turgor and ensures isolation from the external environment. In addition, they harbor the enzymatic machinery to secure cell wall modulations needed throughout the bacterial lifespan. The main players in this process are peptidoglycan hydrolases, a large group of enzymes with diverse specificities and different mechanisms of action. They are commonly, but not exclusively, found in prokaryotes. Although in most cases, these enzymes share the same molecular function, namely peptidoglycan hydrolysis, they are leveraged to perform a variety of physiological roles. A well-investigated family of peptidoglycan hydrolases is M23 peptidases, which display a very conserved fold, but their spectrum of lytic action is broad and includes both Gram- positive and Gram- negative bacteria. In this review, we summarize the structural, biochemical, and functional studies concerning the M23 family of peptidases based on literature and complement this knowledge by performing large-scale analyses of available protein sequences. This review has led us to gain new insight into the role of surface charge in the activity of this group of enzymes. We present relevant conclusions drawn from the analysis of available structures and indicate the main structural features that play a crucial role in specificity determination and mechanisms of latency. Our work systematizes the knowledge of the M23 family enzymes in the context of their unique antimicrobial potential against drug-resistant pathogens and presents possibilities to modulate and engineer their features to develop perfect antibacterial weapons.
Collapse
Affiliation(s)
| | | | | | - Izabela Sabala
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Kaus-Drobek
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Pinto D, Gonçalo R, Louro M, Silva MS, Hernandez G, Cordeiro TN, Cordeiro C, São-José C. On the Occurrence and Multimerization of Two-Polypeptide Phage Endolysins Encoded in Single Genes. Microbiol Spectr 2022; 10:e0103722. [PMID: 35876588 PMCID: PMC9430671 DOI: 10.1128/spectrum.01037-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages (phages) and other viruses are extremely efficient in packing their genetic information, with several described cases of overlapping genes encoded in different open reading frames (ORFs). While less frequently reported, specific cases exist in which two overlapping ORFs are in frame and share the stop codon. Here, we studied the occurrence of this genetic arrangement in endolysins, the phage enzymes that cut the bacterial cell wall peptidoglycan to release the virion progeny. After screening over 3,000 endolysin sequences of phages infecting Gram-positive bacteria, we found evidence that this coding strategy is frequent in endolysin genes. Our bioinformatics predictions were experimentally validated by demonstrating that two polypeptides are indeed produced from these genes. Additionally, we show that in some cases the two polypeptides need to interact and multimerize to generate the active endolysin. By studying in detail one selected example, we uncovered a heteromeric endolysin with a 1:5 subunit stoichiometry that has never been described before. Hence, we conclude that the occurrence of endolysin genes encoding two polypeptide isoforms by in-frame overlapping ORFs, as well as their organization as enzymatic complexes, appears more common than previously thought, therefore challenging the established view of endolysins being mostly formed by single, monomeric polypeptide chains. IMPORTANCE Bacteriophages use endolysins to cleave the host bacteria cell wall, a crucial event underlying cell lysis for virion progeny release. These bacteriolytic enzymes are generally thought to work as single, monomeric polypeptides, but a few examples have been described in which a single gene produces two endolysin isoforms. These are encoded by two in-frame overlapping ORFs, with a shorter ORF being defined by an internal translation start site. This work shows evidence that this endolysin coding strategy is frequent in phages infecting Gram-positive bacteria, and not just an eccentricity of a few phages. In one example studied in detail, we show that the two isoforms are inactive until they assemble to generate a multimeric active endolysin, with a 1:5 subunit stoichiometry never described before. This study challenges the established view of endolysins, with possible implications in their current exploration and design as alternative antibacterials.
Collapse
Affiliation(s)
- Daniela Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| | - Raquel Gonçalo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| | - Mariana Louro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Marta Sousa Silva
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Carlos São-José
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Zhang B, Sun H, Zhao F, Wang Q, Pan Q, Tong Y, Ren H. Characterization and Genomic Analysis of a Novel Jumbo Bacteriophage vB_StaM_SA1 Infecting Staphylococcus aureus With Two Lysins. Front Microbiol 2022; 13:856473. [PMID: 35572667 PMCID: PMC9096886 DOI: 10.3389/fmicb.2022.856473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
The development of new antimicrobial agents is critically needed due to the alarming increase in antibiotic resistance in bacterial pathogens. Phages have been widely considered as effective alternatives to antibiotics. A novel phage vB_StaM_SA1 (hereinafter as SA1) that can infect multiple Staphylococcus strains was isolated from untreated sewage of a pig farm, which belonged to Myoviridae family. At MOI of 0.1, the latent period of phage SA1 was 55 min, and the final titer reached about 109 PFU/mL. The genome of phage SA1 was 260,727 bp, indicating that it can be classified as a jumbo phage. The genome of SA1 had 258 ORFs and a serine tRNA, while only 53 ORFs were annotated with functions. Phage SA1 contained a group of core genes that was characterized by multiple RNA polymerase subunits and also found in phiKZ-related jumbo phages. The phylogenetic tree showed that phage SA1 was a phiKZ-related phage and was closer to jumbo phages compared with Staphylococcus phages with small genome. Three proteins (lys4, lys210, and lys211) were predicted to be associated with lysins, and two proteins with lytic function were verified by recombinant expression and bacterial survival test. Both lys210 and lys211 possessed efficient bactericidal ability, and lys210 could lyse all test strains. The results show that phage SA1 and lys210/lys211 could be potentially used as antibiotic agents to treat Staphylococcus infection.
Collapse
Affiliation(s)
- Bingyan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-tech Co., Ltd., Qingdao, China
| | - Feiyang Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-tech Co., Ltd., Qingdao, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Eichenseher F, Herpers BL, Badoux P, Leyva-Castillo JM, Geha RS, van der Zwart M, McKellar J, Janssen F, de Rooij B, Selvakumar L, Röhrig C, Frieling J, Offerhaus M, Loessner MJ, Schmelcher M. Linker-Improved Chimeric Endolysin Selectively Kills Staphylococcus aureus In Vitro, on Reconstituted Human Epidermis, and in a Murine Model of Skin Infection. Antimicrob Agents Chemother 2022; 66:e0227321. [PMID: 35416713 PMCID: PMC9112974 DOI: 10.1128/aac.02273-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus causes a broad spectrum of diseases in humans and animals. It is frequently associated with inflammatory skin disorders such as atopic dermatitis, where it aggravates symptoms. Treatment of S. aureus-associated skin infections with antibiotics is discouraged due to their broad-range deleterious effect on healthy skin microbiota and their ability to promote the development of resistance. Thus, novel S. aureus-specific antibacterial agents are desirable. We constructed two chimeric cell wall-lytic enzymes, Staphefekt SA.100 and XZ.700, which are composed of functional domains from the bacteriophage endolysin Ply2638 and the bacteriocin lysostaphin. Both enzymes specifically killed S. aureus and were inactive against commensal skin bacteria such as Staphylococcus epidermidis, with XZ.700 proving more active than SA.100 in multiple in vitro activity assays. When surface-attached mixed staphylococcal cultures were exposed to XZ.700 in a simplified microbiome model, the enzyme selectively removed S. aureus and retained S. epidermidis. Furthermore, XZ.700 did not induce resistance in S. aureus during repeated rounds of exposure to sublethal concentrations. Finally, we demonstrated that XZ.700 formulated as a cream is effective at killing S. aureus on reconstituted human epidermis and that an XZ.700-containing gel significantly reduces bacterial numbers compared to an untreated control in a mouse model of S. aureus-induced skin infection.
Collapse
Affiliation(s)
- Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Micreos GmbH, Wädenswil, Switzerland
| | - Bjorn L. Herpers
- Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands
| | - Paul Badoux
- Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands
| | | | - Raif S. Geha
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Ferd Janssen
- Micreos Human Health B.V., Bilthoven, The Netherlands
| | - Bob de Rooij
- Micreos Human Health B.V., Bilthoven, The Netherlands
| | | | | | | | | | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Micreos GmbH, Wädenswil, Switzerland
| |
Collapse
|
11
|
Balaban CL, Suárez CA, Boncompain CA, Peressutti-Bacci N, Ceccarelli EA, Morbidoni HR. Evaluation of factors influencing expression and extraction of recombinant bacteriophage endolysins in Escherichia coli. Microb Cell Fact 2022; 21:40. [PMID: 35292023 PMCID: PMC8922839 DOI: 10.1186/s12934-022-01766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endolysins are peptidoglycan hydrolases with promising use as environment-friendly antibacterials mainly when used topically. However, in general, endolysin expression is hampered by its low solubility. Thus, a critical point in endolysin industrial production is optimizing their expression, including improvement of solubility and recovery from cell extracts. RESULTS We report the expression of two endolysins encoded in the genome of phages infecting Staphylococcus aureus. Expression was optimized through changes in the concentration of the inducer and growth temperature during the expression. Usually, only 30-40% of the total endolysin was recovered in the soluble fraction. Co-expression of molecular chaperones (DnaK, GroEL) or N-term fusion tags endowed with increased solubility (DsbC, Trx, Sumo) failed to improve that yield substantially. Inclusion of osmolytes (NaCl, CaCl2, mannitol, glycine betaine, glycerol and trehalose) or tensioactives (Triton X-100, Tween 20, Nonidet P-40, CHAPS, N-lauroylsarcosine) in the cell disruption system (in the absence of any molecular chaperone) gave meager improvements excepted by N-lauroylsarcosine which increased recovery to 54% of the total endolysin content. CONCLUSION This is the first attempt to systematically analyze methods for increasing yields of recombinant endolysins. We herein show that neither solubility tags nor molecular chaperones co-expression are effective to that end, while induction temperature, (His)6-tag location and lysis buffer additives (e.g. N-lauroylsarcosine), are sensible strategies to obtain higher levels of soluble S. aureus endolysins.
Collapse
Affiliation(s)
- Cecilia Lucía Balaban
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cristian Alejandro Suárez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carina Andrea Boncompain
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Peressutti-Bacci
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eduardo Augusto Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Héctor Ricardo Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
12
|
Yu JH, Park DW, Lim JA, Park JH. Characterization of staphylococcal endolysin LysSAP33 possessing untypical domain composition. J Microbiol 2021; 59:840-847. [PMID: 34383247 DOI: 10.1007/s12275-021-1242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/21/2023]
Abstract
Endolysin, a peptidoglycan hydrolase derived from bacteriophage, has been suggested as an alternative antimicrobial agent. Many endolysins on staphylococcal phages have been identified and applied extensively against Staphylococcus spp. Among them, LysK-like endolysin, a well-studied staphylococcal endolysin, accounts for most of the identified endolysins. However, relatively little interest has been paid to LysKunlike endolysin and a few of them has been characterized. An endolysin LysSAP33 encoded on bacteriophage SAP33 shared low homology with LysK-like endolysin in sequence by 41% and domain composition (CHAP-unknown CBD). A green fluorescence assay using a fusion protein for LysSAP33_CBD indicated that the CBD domain (157-251 aa) was bound to the peptidoglycan of S. aureus. The deletion of LysSAP33_CBD at the C-terminal region resulted in a significant decrease in lytic activity and efficacy. Compared to LysK-like endolysin, LysSAP33 retained its lytic activity in a broader range of temperature, pH, and NaCl concentrations. In addition, it showed a higher activity against biofilms than LysK-like endolysin. This study could be a helpful tool to develop our understanding of staphylococcal endolysins not belonging to LysK-like endolysins and a potential biocontrol agent against biofilms.
Collapse
Affiliation(s)
- Jun-Hyeok Yu
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Korea
- School of Microbiology, University College Cork, Cork, T12 K8AF, Ireland
| | - Do-Won Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Korea
| | - Jeong-A Lim
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju, 55365, Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Korea.
| |
Collapse
|
13
|
Nie T, Meng F, Zhou L, Lu F, Bie X, Lu Z, Lu Y. In Silico Development of Novel Chimeric Lysins with Highly Specific Inhibition against Salmonella by Computer-Aided Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3751-3760. [PMID: 33565867 DOI: 10.1021/acs.jafc.0c07450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Four novel chimeric lysins (P361, P362, P371, and P372), which were the fusion of Salmonella phage lysins and novel antimicrobial peptide LeuA-P, were obtained using bioinformatics analysis and in silico design. The recombinant chimeric lysins were expressed in E. coli BL21(DE3) strain and showed highly specific inhibition against Salmonella. The minimal inhibitory concentrations (MICs) of P362 and P372 to S. typhi CMCC 50071 were 8 and 16 μg/mL, respectively. Both 1 × MIC P362 and P372 could increase the outer membrane permeability and cleave the cell wall peptidoglycan, causing the leakage of intracellular nucleic acids and proteins and ultimately killing Salmonella efficiently without drug resistance. The combination of P362, P372, and potassium sorbate reduced more than 3 log CFU/g counts of microorganisms in contaminated chilled chicken and extended the shelf life by 7 days. The strategy of antimicrobial peptide (AMP)-lysin chimera inspired the inability of phage lysin to specifically inhibit Gram-negative bacteria with dense outer membranes in vitro.
Collapse
Affiliation(s)
- Ting Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
14
|
Kuiper JWP, Hogervorst JMA, Herpers BL, Bakker AD, Klein-Nulend J, Nolte PA, Krom BP. The novel endolysin XZ.700 effectively treats MRSA biofilms in two biofilm models without showing toxicity on human bone cells in vitro. BIOFOULING 2021; 37:184-193. [PMID: 33615928 DOI: 10.1080/08927014.2021.1887151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
In this in vitro study the effect of XZ.700, a new endolysin, on methicillin resistant Staphylococcus aureus (MRSA) biofilms grown on titanium was evaluated. Biofilms of S. aureus USA300 were grown statically and under flow, and treatment with XZ.700 was compared with povidone-iodine (PVP-I) and gentamicin. To evaluate the cytotoxic effects of XZ.700 and derived biofilm lysates, human osteocyte-like cells were exposed to biofilm supernatants, and metabolism and proliferation were quantified. XZ.700 showed a significant, concentration dependent reduction in biofilm viability, compared with carrier controls. Metabolism and proliferation of human osteocyte-like cells were not affected by XZ.700 or lysates, unlike PVP-I and gentamicin lysates which significantly inhibited proliferation. Using time-lapse microscopy, rapid biofilm killing and removal was observed for XZ.700. In comparison, PVP-I and gentamicin showed slower biofilm killing, with no apparent biofilm removal. In conclusion, XZ.700 reduced MRSA biofilms, especially under flow condition, without toxicity for surrounding bone cells.
Collapse
Affiliation(s)
- Jesse W P Kuiper
- Department of Orthopedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Jolanda M A Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Bjorn L Herpers
- Department of Medical Microbiology, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Peter A Nolte
- Department of Orthopedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Engineering of Long-Circulating Peptidoglycan Hydrolases Enables Efficient Treatment of Systemic Staphylococcus aureus Infection. mBio 2020; 11:mBio.01781-20. [PMID: 32963004 PMCID: PMC7512550 DOI: 10.1128/mbio.01781-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a human pathogen causing life-threatening diseases. The increasing prevalence of multidrug-resistant S. aureus infections is a global health concern, requiring development of novel therapeutic options. Peptidoglycan-degrading enzymes (peptidoglycan hydrolases, PGHs) have emerged as a highly effective class of antimicrobial proteins against S. aureus and other pathogens. When applied to Gram-positive bacteria, PGHs hydrolyze bonds within the peptidoglycan layer, leading to rapid bacterial death by lysis. This activity is highly specific and independent of the metabolic activity of the cell or its antibiotic resistance patterns. However, systemic application of PGHs is limited by their often low activity in vivo and by an insufficient serum circulation half-life. To address this problem, we aimed to extend the half-life of PGHs selected for high activity against S. aureus in human serum. Half-life extension and increased serum circulation were achieved through fusion of PGHs to an albumin-binding domain (ABD), resulting in high-affinity recruitment of human serum albumin and formation of large protein complexes. Importantly, the ABD-fused PGHs maintained high killing activity against multiple drug-resistant S. aureus strains, as determined by ex vivo testing in human blood. The top candidate, termed ABD_M23, was tested in vivo to treat S. aureus-induced murine bacteremia. Our findings demonstrate a significantly higher efficacy of ABD_M23 than of the parental M23 enzyme. We conclude that fusion with ABD represents a powerful approach for half-life extension of PGHs, expanding the therapeutic potential of these enzybiotics for treatment of multidrug-resistant bacterial infections.IMPORTANCE Life-threatening infections with Staphylococcus aureus are often difficult to treat due to the increasing prevalence of antibiotic-resistant bacteria and their ability to persist in protected niches in the body. Bacteriolytic enzymes are promising new antimicrobials because they rapidly kill bacteria, including drug-resistant and persisting cells, by destroying their cell wall. However, when injected into the bloodstream, these enzymes are not retained long enough to clear an infection. Here, we describe a modification to increase blood circulation time of the enzymes and enhance treatment efficacy against S. aureus-induced bloodstream infections. This was achieved by preselecting enzyme candidates for high activity in human blood and coupling them to serum albumin, thereby preventing their elimination by kidney filtration and blood vessel cells.
Collapse
|
16
|
Bao H, Zhang H, Zhou Y, Zhu S, Pang M, Shahin K, Olaniran A, Schmidt S, Wang R. Transient carriage and low-level colonization of orally administrated lytic and temperate phages in the gut of mice. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-00029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Many studies have shown the efficacy of phage therapy in reducing gastrointestinal pathogens. However, it is unclear whether phages can successfully colonize the gut when administered in an adequate amount for a long time. About 1 × 108 PFU/mL of purified lytic phage PA13076 or temperate phage BP96115 were fed daily to mice via drinking water over 31 days, to elucidate the distribution of phages in the gastrointestinal tract. At day 16 and 31, six different segments of the gastrointestinal tract with their contents, including stomach, duodenum, jejunum, ileum, cecum, colon, and fresh feces, were aseptically collected. The phage titers were determined using the double-layered plate method with S. Enteritidis ATCC 13076 or S. Pullorum SPu-109 used as host cells. The results indicated that a small portion of administered phages survived exposure to gastric acid and entered the intestinal tract. The prevalence of phages in the gastrointestinal tract was lower than 1% of the primary phage count. Highest phage titers were detected in the cecum with 104 ~ 105 PFU/g, and most of the phages were eliminated from the body via feces with 106 PFU/g. On day 16 and day 31, the same level of phage titers in different segments of the gastrointestinal tract indicated that the colonization of phages had reached saturation at day 16. These results demonstrate transient phage carriage and low-level colonization of orally administrated lytic and temperate gut phages in mice.
Graphical abstract
Collapse
|
17
|
Schulz M, Calabrese S, Hausladen F, Wurm H, Drossart D, Stock K, Sobieraj AM, Eichenseher F, Loessner MJ, Schmelcher M, Gerhardts A, Goetz U, Handel M, Serr A, Haecker G, Li J, Specht M, Koch P, Meyer M, Tepper P, Rother R, Jehle M, Wadle S, Zengerle R, von Stetten F, Paust N, Borst N. Point-of-care testing system for digital single cell detection of MRSA directly from nasal swabs. LAB ON A CHIP 2020; 20:2549-2561. [PMID: 32568322 DOI: 10.1039/d0lc00294a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present an automated point-of-care testing (POCT) system for rapid detection of species- and resistance markers in methicillin-resistant Staphylococcus aureus (MRSA) at the level of single cells, directly from nasal swab samples. Our novel system allows clear differentiation between MRSA, methicillin-sensitive S. aureus (MSSA) and methicillin-resistant coagulase-negative staphylococci (MR-CoNS), which is not the case for currently used real-time quantitative PCR based systems. On top, the novel approach outcompetes the culture-based methods in terms of its short time-to-result (1 h vs. up to 60 h) and reduces manual labor. The walk-away test is fully automated on the centrifugal microfluidic LabDisk platform. The LabDisk cartridge comprises the unit operations swab-uptake, reagent pre-storage, distribution of the sample into 20 000 droplets, specific enzymatic lysis of Staphylococcus spp. and recombinase polymerase amplification (RPA) of species (vicK) - and resistance (mecA) -markers. LabDisk actuation, incubation and multi-channel fluorescence detection is demonstrated with a clinical isolate and spiked nasal swab samples down to a limit of detection (LOD) of 3 ± 0.3 CFU μl-1 for MRSA. The novel approach of the digital single cell detection is suggested to improve hospital admission screening, timely decision making, and goal-oriented antibiotic therapy. The implementation of a higher degree of multiplexing is required to translate the results into clinical practice.
Collapse
Affiliation(s)
- Martin Schulz
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Röhrig C, Huemer M, Lorgé D, Luterbacher S, Phothaworn P, Schefer C, Sobieraj AM, Zinsli LV, Mairpady Shambat S, Leimer N, Keller AP, Eichenseher F, Shen Y, Korbsrisate S, Zinkernagel AS, Loessner MJ, Schmelcher M. Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus. mBio 2020; 11:e00209-20. [PMID: 32291298 PMCID: PMC7157818 DOI: 10.1128/mbio.00209-20] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/17/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureusIMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections.
Collapse
Affiliation(s)
- Christian Röhrig
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dominique Lorgé
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Samuel Luterbacher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Anna M Sobieraj
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Léa V Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nadja Leimer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anja P Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Rahimzadeh G, Gill P, Rezai MS. Cysteine/Histidine-Dependent Amidohydrolase/Peptidase (CHAP)-Displayed Nano Phages: Antimicrobial Function against Methicillin-Resistant Staphylococcus aureus (MRSA). Avicenna J Med Biotechnol 2020; 12:85-90. [PMID: 32431792 PMCID: PMC7229455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Emergence and prevalence of multi drug resistance strains such as Methicillin-Resistant Staphylococcus aureus (MRSA) call for new antibacterial option. Endolysins as a new option is suggested. The phage display technique is suggested for production of recombinant endolysins. The recombinant endolysins displayed nano phages specifically lysis bacteria, which penetrate to the depth of tissue and the effective dose is reduced. METHODS CHAPK gene was ligated in T7Select vector arms in T7Select10-3b cloning kit. To produce recombinant nano phages, ligation reaction was added directly to the packaging extract. Recombinant nano phages were amplified by Double Layer Agar assay (DLA). The recombinant nano phages were characterized using TEM. Size of recombinant nano phages was determined using DLS. The spot test was performed to confirm CHAPk -displayed on the surface of nano phages. The turbidimetry was used to investigate lytic activity of recombinant nano phages against MRSA ATCC No. 33591. RESULTS The results showed recombinant nano phages belonged to order Caudovirales and family Podoviridae with titer 2×107 PFU/ml. According to the results of DLS, size of recombinant nano phages was 71 nm. Formation inhibition zone confirmed the presence of CHAPk on the surface of nano phage phenotypically. The turbidimetry showed lytic activity recombinant nano phages against MRSA after 5 min. CONCLUSION This study suggests that CHAPk -displayed nano phages can be effective in MRSA infections.
Collapse
Affiliation(s)
- Golnar Rahimzadeh
- Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pooria Gill
- Nanomedicine Group, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Sadegh Rezai
- Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
20
|
Zhou B, Zhen X, Zhou H, Zhao F, Fan C, Perčulija V, Tong Y, Mi Z, Ouyang S. Structural and functional insights into a novel two-component endolysin encoded by a single gene in Enterococcus faecalis phage. PLoS Pathog 2020; 16:e1008394. [PMID: 32176738 PMCID: PMC7098653 DOI: 10.1371/journal.ppat.1008394] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/26/2020] [Accepted: 02/10/2020] [Indexed: 11/18/2022] Open
Abstract
Using bacteriophage-derived endolysins as an alternative strategy for fighting drug-resistant bacteria has recently been garnering renewed interest. However, their application is still hindered by their narrow spectra of activity. In our previous work, we demonstrated that the endolysin LysIME-EF1 possesses efficient bactericidal activity against multiple strains of Enterococcus faecalis (E. faecalis). Herein, we observed an 8 kDa fragment and hypothesized that it contributes to LysIME-EF1 lytic activity. To examine our hypothesis, we determined the structure of LysIME-EF1 at 1.75 Å resolution. LysIME-EF1 exhibits a unique architecture in which one full-length LysIME-EF1 forms a tetramer with three additional C-terminal cell-wall binding domains (CBDs) that correspond to the abovementioned 8 kDa fragment. Furthermore, we identified an internal ribosomal binding site (RBS) and alternative start codon within LysIME-EF1 gene, which are demonstrated to be responsible for the translation of the truncated CBD. To elucidate the molecular mechanism for the lytic activity of LysIME-EF1, we combined mutagenesis, lytic activity assays and in vivo animal infection experiments. The results confirmed that the additional LysIME-EF1 CBDs are important for LysIME-EF1 architecture and its lytic activity. To our knowledge, this is the first determined structure of multimeric endolysin encoded by a single gene in E. faecalis phages. As such, it may provide valuable insights into designing potent endolysins against the opportunistic pathogen E. faecalis. LysIME-EF1, an endolysin that lyses E. faecalis, displays the prospect of treating E. faecalis infection. We find that the C-terminal cell-wall binding domain (CBD) is important for the lytic activity of LysIME-EF1. By determining the crystal structures of wild type (WT) LysIME-EF1 and its C-terminal CBD, this study reveals how the holoenzyme is organized to carry out its highly efficient lytic activity. Our finding provides structural and functional evidence that LysIME-EF1 belongs to a unique two-component multimeric endolysin encoded by a single gene.
Collapse
Affiliation(s)
- Biao Zhou
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xiangkai Zhen
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Feiyang Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Chenpeng Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Vanja Perčulija
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (ZM); (SO)
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- * E-mail: (ZM); (SO)
| |
Collapse
|
21
|
Zeman M, Bárdy P, Vrbovská V, Roudnický P, Zdráhal Z, Růžičková V, Doškař J, Pantůček R. New Genus Fibralongavirus in Siphoviridae Phages of Staphylococcus pseudintermedius. Viruses 2019; 11:E1143. [PMID: 31835553 PMCID: PMC6950010 DOI: 10.3390/v11121143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages of the significant veterinary pathogen Staphylococcus pseudintermedius are rarely described morphologically and genomically in detail, and mostly include phages of the Siphoviridae family. There is currently no taxonomical classification for phages of this bacterial species. Here we describe a new phage designated vB_SpsS_QT1, which is related to phage 2638A originally described as a Staphylococcus aureus phage. Propagating strain S. aureus 2854 of the latter was reclassified by rpoB gene sequencing as S. pseudintermedius 2854 in this work. Both phages have a narrow but different host range determined on 54 strains. Morphologically, both of them belong to the family Siphoviridae, share the B1 morphotype, and differ from other staphylococcal phage genera by a single long fibre at the terminus of the tail. The complete genome of phage vB_SpsS_QT1 was sequenced with the IonTorrent platform and expertly annotated. Its linear genome with cohesive ends is 43,029 bp long and encodes 60 predicted genes with the typical modular structure of staphylococcal siphophages. A global alignment found the genomes of vB_SpsS_QT1 and 2638A to share 84% nucleotide identity, but they have no significant similarity of nucleotide sequences with other phage genomes available in public databases. Based on the morphological, phylogenetic, and genomic analyses, a novel genus Fibralongavirus in the family Siphoviridae is described with phage species vB_SpsS_QT1 and 2638A.
Collapse
Affiliation(s)
- Michal Zeman
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Pavol Bárdy
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Veronika Vrbovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Pavel Roudnický
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vladislava Růžičková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jiří Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
22
|
Gondil VS, Harjai K, Chhibber S. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents 2019; 55:105844. [PMID: 31715257 DOI: 10.1016/j.ijantimicag.2019.11.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/02/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
Endolysins are the lytic products of bacteriophages which play a specific role in the release of phage progeny by degrading the peptidoglycan of the host bacterium. In the light of antibiotic resistance, endolysins are being considered as alternative therapeutic agents because of their exceptional ability to target bacterial cells when applied externally. Endolysins have been studied against a number of drug-resistant pathogens to assess their therapeutic ability. This review focuses on the structure of endolysins in terms of cell binding and catalytic domains, lytic ability, resistance, safety, immunogenicity and future applications. It primarily reviews recent advancements made in evaluation of the therapeutic potential of endolysins, including their origin, host range, applications, and synergy with conventional and non-conventional antimicrobial agents.
Collapse
Affiliation(s)
- Vijay Singh Gondil
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
23
|
Escobedo S, Campelo AB, Wegmann U, García P, Rodríguez A, Martínez B. Insight into the Lytic Functions of the Lactococcal Prophage TP712. Viruses 2019; 11:v11100881. [PMID: 31546996 PMCID: PMC6832245 DOI: 10.3390/v11100881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 01/16/2023] Open
Abstract
The lytic cassette of Lactococcus lactis prophage TP712 contains a putative membrane protein of unknown function (Orf54), a holin (Orf55), and a modular endolysin with a N-terminal glycoside hydrolase (GH_25) catalytic domain and two C-terminal LysM domains (Orf56, LysTP712). In this work, we aimed to study the mode of action of the endolysin LysTP712. Inducible expression of the holin-endolysin genes seriously impaired growth. The growth of lactococcal cells overproducing the endolysin LysTP712 alone was only inhibited upon the dissipation of the proton motive force by the pore-forming bacteriocin nisin. Processing of a 26-residues signal peptide is required for LysTP712 activation, since a truncated version without the signal peptide did not impair growth after membrane depolarization. Moreover, only the mature enzyme displayed lytic activity in zymograms, while no lytic bands were observed after treatment with the Sec inhibitor sodium azide. LysTP712 might belong to the growing family of multimeric endolysins. A C-terminal fragment was detected during the purification of LysTP712. It is likely to be synthesized from an alternative internal translational start site located upstream of the cell wall binding domain in the lysin gene. Fractions containing this fragment exhibited enhanced activity against lactococcal cells. However, under our experimental conditions, improved in vitro inhibitory activity of the enzyme was not observed upon the supplementation of additional cell wall binding domains in. Finally, our data pointed out that changes in the lactococcal cell wall, such as the degree of peptidoglycan O-acetylation, might hinder the activity of LysTP712. LysTP712 is the first secretory endolysin from a lactococcal phage described so far. The results also revealed how the activity of LysTP712 might be counteracted by modifications of the bacterial peptidoglycan, providing guidelines to exploit the biotechnological potential of phage endolysins within industrially relevant lactococci and, by extension, other bacteria.
Collapse
Affiliation(s)
- Susana Escobedo
- Dairy Safe group, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain
| | - Ana Belén Campelo
- Dairy Safe group, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain
| | - Udo Wegmann
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Pilar García
- Dairy Safe group, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain
| | - Ana Rodríguez
- Dairy Safe group, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain
| | - Beatriz Martínez
- Dairy Safe group, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain.
| |
Collapse
|
24
|
Kovalskaya NY, Herndon EE, Foster-Frey JA, Donovan DM, Hammond RW. Antimicrobial activity of bacteriophage derived triple fusion protein against Staphylococcus aureus. AIMS Microbiol 2019; 5:158-175. [PMID: 31384710 PMCID: PMC6642909 DOI: 10.3934/microbiol.2019.2.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022] Open
Abstract
The increasing spread of antibiotic-resistant microorganisms has led to the necessity of developing alternative antimicrobial treatments. The use of peptidoglycan hydrolases is a promising approach to combat bacterial infections. In our study, we constructed a 2 kb-triple-acting fusion gene (TF) encoding the N-terminal amidase-5 domain of streptococcal LambdaSA2 prophage endolysin (D-glutamine-L-lysin endopeptidase), a mid-protein amidase-2 domain derived from the staphylococcal phage 2638A endolysin (N-acetylmuramoyl-L-alanine amidase) and the mature version (246 residues) of the Staphylococcus simulans Lysostaphin bacteriocin (glycyl-glycine endopeptidase) at the C-terminus. The TF gene was expressed in Nicotiana benthamiana plants using the non-replicating Cowpea mosaic virus (CPMV)-based vector pEAQ-HT and the replicating Alternanthera mosaic virus (AltMV)-based pGD5TGB1L8823-MCS-CP3 vector, and in Escherichia coli using pET expression vectors pET26b+ and pET28a+. The resulting poor expression of this fusion protein in plants prompted the construction of a TF gene codon-optimized for expression in tobacco plants, resulting in an improved codon adaptation index (CAI) from 0.79 (TF gene) to 0.93 (TFnt gene). Incorporation of the TFnt gene into the pEAQ-HT vector, followed by transient expression in N. benthamiana, led to accumulation of TFnt to an approximate level of 0.12 mg/g of fresh leaf weight. Antimicrobial activity of purified plant- and bacterial-produced TFnt proteins was assessed against two strains of Gram-positive Staphylococcus aureus 305 and Newman. The results showed that plant-produced TFnt protein was preferentially active against S. aureus 305, showing 14% of growth inhibition, while the bacterial-produced TFnt revealed significant antimicrobial activity against both strains, showing 68 (IC50 25 µg/ml) and 60% (IC50 71 µg/ml) growth inhibition against S. aureus 305 and Newman, respectively. Although the combination of codon optimization and transient expression using the non-replicating pEAQ-HT expression vector facilitated production of the TFnt protein in plants, the most functionally active antimicrobial protein was obtained using the prokaryotic expression system.
Collapse
Affiliation(s)
- Natalia Y Kovalskaya
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, Agricultural Research Service, ORISE - U.S. Department of Agriculture, Beltsville, MD, USA
| | | | - Juli A Foster-Frey
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - David M Donovan
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Rosemarie W Hammond
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| |
Collapse
|
25
|
Giau VV, Lee H, An SSA, Hulme J. Recent advances in the treatment of C. difficile using biotherapeutic agents. Infect Drug Resist 2019; 12:1597-1615. [PMID: 31354309 PMCID: PMC6579870 DOI: 10.2147/idr.s207572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile (C. difficile) is rapidly becoming one of the most prevalent health care–associated bacterial infections in the developed world. The emergence of new, more virulent strains has led to greater morbidity and resistance to standard therapies. The bacterium is readily transmitted between people where it can asymptomatically colonize the gut environment, and clinical manifestations ranging from frequent watery diarrhea to toxic megacolon can arise depending on the age of the individual or their state of gut dysbiosis. Several inexpensive approaches are shown to be effective against virulent C. difficile in research settings such as probiotics, fecal microbiota transfer and immunotherapies. This review aims to highlight the current advantages and limitations of the aforementioned approaches with an emphasis on recent studies.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of BioNano Technology, Gachon University, Seongnam-si 461-701, Republic of Korea
| | - Hyon Lee
- Department of Neurology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Seongnam-si 461-701, Republic of Korea
| | - John Hulme
- Department of BioNano Technology, Gachon University, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
26
|
Oliveira H, Sampaio M, Melo LDR, Dias O, Pope WH, Hatfull GF, Azeredo J. Staphylococci phages display vast genomic diversity and evolutionary relationships. BMC Genomics 2019; 20:357. [PMID: 31072320 PMCID: PMC6507118 DOI: 10.1186/s12864-019-5647-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
Background Bacteriophages are the most abundant and diverse entities in the biosphere, and this diversity is driven by constant predator–prey evolutionary dynamics and horizontal gene transfer. Phage genome sequences are under-sampled and therefore present an untapped and uncharacterized source of genetic diversity, typically characterized by highly mosaic genomes and no universal genes. To better understand the diversity and relationships among phages infecting human pathogens, we have analysed the complete genome sequences of 205 phages of Staphylococcus sp. Results These are predicted to encode 20,579 proteins, which can be sorted into 2139 phamilies (phams) of related sequences; 745 of these are orphams and possess only a single gene. Based on shared gene content, these phages were grouped into four clusters (A, B, C and D), 27 subclusters (A1-A2, B1-B17, C1-C6 and D1-D2) and one singleton. However, the genomes have mosaic architectures and individual genes with common ancestors are positioned in distinct genomic contexts in different clusters. The staphylococcal Cluster B siphoviridae are predicted to be temperate, and the integration cassettes are often closely-linked to genes implicated in bacterial virulence determinants. There are four unusual endolysin organization strategies found in Staphylococcus phage genomes, with endolysins predicted to be encoded as single genes, two genes spliced, two genes adjacent and as a single gene with inter-lytic-domain secondary translational start site. Comparison of the endolysins reveals multi-domain modularity, with conservation of the SH3 cell wall binding domain. Conclusions This study provides a high-resolution view of staphylococcal viral genetic diversity, and insights into their gene flux patterns within and across different phage groups (cluster and subclusters) providing insights into their evolution. Electronic supplementary material The online version of this article (10.1186/s12864-019-5647-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| | - Marta Sampaio
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Welkin H Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
27
|
Filatova L, Donovan D, Swift S, Pugachev V, Emelianov G, Chubar T, Klaychko N. Kinetics of inactivation of staphylolytic enzymes: Qualitative and quantitative description. Biochimie 2019; 162:77-87. [PMID: 30965078 DOI: 10.1016/j.biochi.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/04/2019] [Indexed: 01/07/2023]
Abstract
Lysin 2638aR and chimeric Ply187AN-KSH3b fusion protein are capable of lysing antibiotic-resistant strains of Staphylococcus aureus and are promising alternatives to antibiotics. Studies on the stability and structure of lysins 2638aR and Ply187AN-KSH3b are important for assessing the feasibility of their practical use. Both lysins are highly active at physiological pH (7.5) and at low salt content (the concentration of NaCl in the reaction medium is not more than 250 mM). Lysins are inactivated by a monomolecular mechanism and have high stability at 4 °C (storage temperature). The maximum value of the half-inactivation time for lysin 2638aR is 190-200 days (500-1000 mM NaCl, pH 6.0-7.5), for lysin Ply187AN-KSH3b is 320-340 days (10-1000 mM NaCl, pH 6.0). The lysins are pretty stable in human blood serum (the half-inactivation time is 0.5-2 h) at 37 °C. The lysins undergo denaturation in large part due to the destruction of the α-helices at temperatures above 40 °C.
Collapse
Affiliation(s)
- Lyubov Filatova
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia.
| | - David Donovan
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, NEA, ARS, USDA, Beltsville, MD, USA
| | - Steven Swift
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, NEA, ARS, USDA, Beltsville, MD, USA
| | - Vladimir Pugachev
- Federal Budget Institution of Science, State Research Center of Virology & Bioengineering "Vector", Novosibirsk, Russia
| | - Georgy Emelianov
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Chubar
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Klaychko
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia; Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
28
|
Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan. Front Microbiol 2019; 10:331. [PMID: 30873139 PMCID: PMC6403190 DOI: 10.3389/fmicb.2019.00331] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
The cell wall (CW) of bacteria is an intricate arrangement of macromolecules, at least constituted of peptidoglycan (PG) but also of (lipo)teichoic acids, various polysaccharides, polyglutamate and/or proteins. During bacterial growth and division, there is a constant balance between CW degradation and biosynthesis. The CW is remodeled by bacterial hydrolases, whose activities are carefully regulated to maintain cell integrity or lead to bacterial death. Each cell wall hydrolase (CWH) has a specific role regarding the PG: (i) cell wall amidase (CWA) cleaves the amide bond between N-acetylmuramic acid and L-alanine residue at the N-terminal of the stem peptide, (ii) cell wall glycosidase (CWG) catalyses the hydrolysis of the glycosidic linkages, whereas (iii) cell wall peptidase (CWP) cleaves amide bonds between amino acids within the PG chain. After an exhaustive overview of all known conserved catalytic domains responsible for CWA, CWG, and CWP activities, this review stresses that the CWHs frequently display a modular architecture combining multiple and/or different catalytic domains, including some lytic transglycosylases as well as CW binding domains. From there, direct physiological and collateral roles of CWHs in bacterial cells are further discussed.
Collapse
Affiliation(s)
- Aurore Vermassen
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | - Régine Talon
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | | | - Magdalena Popowska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| |
Collapse
|
29
|
Catalão MJ, Pimentel M. Mycobacteriophage Lysis Enzymes: Targeting the Mycobacterial Cell Envelope. Viruses 2018; 10:E428. [PMID: 30110929 PMCID: PMC6116114 DOI: 10.3390/v10080428] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 01/18/2023] Open
Abstract
Mycobacteriophages are viruses that specifically infect mycobacteria, which ultimately culminate in host cell death. Dedicated enzymes targeting the complex mycobacterial cell envelope arrangement have been identified in mycobacteriophage genomes, thus being potential candidates as antibacterial agents. These comprise lipolytic enzymes that target the mycolic acid-containing outer membrane and peptidoglycan hydrolases responsive to the atypical mycobacterial peptidoglycan layer. In the recent years, a remarkable progress has been made, particularly on the comprehension of the mechanisms of bacteriophage lysis proteins activity and regulation. Notwithstanding, information about mycobacteriophages lysis strategies is limited and is mainly represented by the studies performed with mycobacteriophage Ms6. Since mycobacteriophages target a specific group of bacteria, which include Mycobacterium tuberculosis responsible for one of the leading causes of death worldwide, exploitation of the use of these lytic enzymes demands a special attention, as they may be an alternative to tackle multidrug resistant tuberculosis. This review focuses on the current knowledge of the function of lysis proteins encoded by mycobacteriophages and their potential applications, which may contribute to increasing the effectiveness of antimycobacterial therapy.
Collapse
Affiliation(s)
- Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
30
|
Phage-Derived Peptidoglycan Degrading Enzymes: Challenges and Future Prospects for In Vivo Therapy. Viruses 2018; 10:v10060292. [PMID: 29844287 PMCID: PMC6024856 DOI: 10.3390/v10060292] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023] Open
Abstract
Peptidoglycan degrading enzymes are of increasing interest as antibacterial agents, especially against multi-drug resistant pathogens. Herein we present a review about the biological features of virion-associated lysins and endolysins, phage-derived enzymes that have naturally evolved to compromise the bacterial peptidoglycan from without and from within, respectively. These natural features may determine the adaptability of the enzymes to kill bacteria in different environments. Endolysins are by far the most studied group of peptidoglycan-degrading enzymes, with several studies showing that they can exhibit potent antibacterial activity under specific conditions. However, the lytic activity of most endolysins seems to be significantly reduced when tested against actively growing bacteria, something that may be related to fact that these enzymes are naturally designed to degrade the peptidoglycan from within dead cells. This may negatively impact the efficacy of the endolysin in treating some infections in vivo. Here, we present a critical view of the methods commonly used to evaluate in vitro and in vivo the antibacterial performance of PG-degrading enzymes, focusing on the major hurdles concerning in vitro-to-in vivo translation.
Collapse
|
31
|
Son B, Kong M, Ryu S. The Auxiliary Role of the Amidase Domain in Cell Wall Binding and Exolytic Activity of Staphylococcal Phage Endolysins. Viruses 2018; 10:v10060284. [PMID: 29799482 PMCID: PMC6024855 DOI: 10.3390/v10060284] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 12/16/2022] Open
Abstract
In response to increasing concern over antibiotic-resistant Staphylococcus aureus, the development of novel antimicrobials has been called for, with bacteriophage endolysins having received considerable attention as alternatives to antibiotics. Most staphylococcal phage endolysins have a modular structure consisting of an N-terminal cysteine, histidine-dependent amidohydrolases/peptidase domain (CHAP), a central amidase domain, and a C-terminal cell wall binding domain (CBD). Despite extensive studies using truncated staphylococcal endolysins, the precise function of the amidase domain has not been determined. Here, a functional analysis of each domain of two S. aureus phage endolysins (LysSA12 and LysSA97) revealed that the CHAP domain conferred the main catalytic activity, while the central amidase domain showed no enzymatic activity in degrading the intact S. aureus cell wall. However, the amidase-lacking endolysins had reduced hydrolytic activity compared to the full-length endolysins. Comparison of the binding affinities of fusion proteins consisting of the green fluorescent protein (GFP) with CBD and GFP with the amidase domain and CBD revealed that the major function of the amidase domain was to enhance the binding affinity of CBD, resulting in higher lytic activity of endolysin. These results suggest an auxiliary binding role of the amidase domain of staphylococcal endolysins, which can be useful information for designing effective antimicrobial and diagnostic agents against S. aureus.
Collapse
Affiliation(s)
- Bokyung Son
- Laboratory of Molecular Food Microbiology, Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 08826, Korea.
| | - Minsuk Kong
- Laboratory of Molecular Food Microbiology, Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 08826, Korea.
| | - Sangryeol Ryu
- Laboratory of Molecular Food Microbiology, Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
32
|
Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. Recombinant Endolysins as Potential Therapeutics against Antibiotic-Resistant Staphylococcus aureus: Current Status of Research and Novel Delivery Strategies. Clin Microbiol Rev 2018; 31:e00071-17. [PMID: 29187396 PMCID: PMC5740972 DOI: 10.1128/cmr.00071-17] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is one of the most common pathogens of humans and animals, where it frequently colonizes skin and mucosal membranes. It is of major clinical importance as a nosocomial pathogen and causative agent of a wide array of diseases. Multidrug-resistant strains have become increasingly prevalent and represent a leading cause of morbidity and mortality. For this reason, novel strategies to combat multidrug-resistant pathogens are urgently needed. Bacteriophage-derived enzymes, so-called endolysins, and other peptidoglycan hydrolases with the ability to disrupt cell walls represent possible alternatives to conventional antibiotics. These lytic enzymes confer a high degree of host specificity and could potentially replace or be utilized in combination with antibiotics, with the aim to specifically treat infections caused by Gram-positive drug-resistant bacterial pathogens such as methicillin-resistant S. aureus. LysK is one of the best-characterized endolysins with activity against multiple staphylococcal species. Various approaches to further enhance the antibacterial efficacy and applicability of endolysins have been demonstrated. These approaches include the construction of recombinant endolysin derivatives and the development of novel delivery strategies for various applications, such as the production of endolysins in lactic acid bacteria and their conjugation to nanoparticles. These novel strategies are a major focus of this review.
Collapse
Affiliation(s)
- Hamed Haddad Kashani
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Seyed Hosseini
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Immunology and Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
33
|
Corrected and Republished from: Identification of Peptidoglycan Hydrolase Constructs with Synergistic Staphylolytic Activity in Cow's Milk. Appl Environ Microbiol 2017; 84:AEM.02134-17. [PMID: 29320762 DOI: 10.1128/aem.02134-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 01/21/2023] Open
Abstract
Peptidoglycan hydrolases (PGHs) have been suggested as novel therapeutics for the treatment of bovine mastitis. However, activity in the presence of cow's milk is an important requirement for drugs administered into the bovine udder. We have used a microtiter plate-based protocol to screen a library of >170 recombinant PGHs, including engineered bacteriophage endolysins, for enzymes with activity against Staphylococcus aureus in milk. Eight suitable PGH constructs were identified by this approach, and their efficacies against S. aureus in heat-treated milk were compared by time-kill assays. The two most active enzymes (lysostaphin and CHAPK_CWT-LST) reduced S. aureus numbers in milk to undetectable levels within minutes at nanomolar concentrations. Due to their different peptidoglycan cleavage sites, these PGH constructs revealed synergistic activity, as demonstrated by checkerboard assays, spot assays, and time-kill experiments. Furthermore, they proved active against a selection of staphylococcal mastitis isolates from different geographical regions when applied individually or in synergistic combination. The PGH combination completely eradicated S. aureus from milk: no more bacteria were detected within 24 h after the addition of the enzymes, corresponding to a reduction of >9 log units from the level in the control. Efficacy was also retained at different inoculum levels (3 log versus 6 log CFU/ml) and when S. aureus was grown in milk as opposed to broth prior to the experiments. In raw cow's milk, CHAPK_CWT-LST showed reduced efficacy, whereas lysostaphin retained its activity, reducing bacterial numbers by >3.5 log units within 3 h.IMPORTANCE Staphylococci, and S. aureus in particular, are a major cause of bovine mastitis, an inflammation of the mammary gland in cows that is associated with high costs and risks for consumers of milk products. S. aureus-induced mastitis, commonly treated by intramammary infusion of antibiotics, is characterized by low cure rates and increasing antibiotic resistance in bacteria. Therefore, alternative treatment options are highly desirable. PGHs, including bacteriophage endolysins, rapidly and specifically kill selected pathogens by degrading their cell walls and are refractory to resistance development; thus, they have promise as novel antibacterial agents. This study employed a screening approach to identify PGH constructs with high staphylolytic activity in cow's milk among a large collection of enzymes. Our results suggest that the most promising enzymes identified by this strategy hold potential as novel mastitis therapeutics and thus support their further characterization in animal models.
Collapse
|
34
|
Endolysins of Bacteriophages as an Anti-Methicillin Resistant Staphylococcus aureus Infection in Children: A Narrative Review. JOURNAL OF PEDIATRICS REVIEW 2017. [DOI: 10.5812/jpr.11562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
35
|
Haddad Kashani H, Fahimi H, Dasteh Goli Y, Moniri R. A Novel Chimeric Endolysin with Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus. Front Cell Infect Microbiol 2017; 7:290. [PMID: 28713777 PMCID: PMC5491540 DOI: 10.3389/fcimb.2017.00290] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/14/2017] [Indexed: 01/21/2023] Open
Abstract
Cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) and amidase are known as catalytic domains of the bacteriophage-derived endolysin LysK and were previously reported to show lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). In the current study, the in silico design and analysis of chimeric CHAP-amidase model was applied to enhance the stability and solubility of protein, which was achieved through improving the properties of primary, secondary and tertiary structures. The coding gene sequence of the chimeric CHAP-amidase was synthesized and subcloned into the pET-22(+) expression vector, and the recombinant protein was expressed in E. coli BL21 (DE3) strain. Subsequent affinity-based purification yielded ~12 mg soluble protein per liter of E. coli culture. Statistical analysis indicated that concentrations of ≥1 μg/mL of the purified protein have significant antibacterial activity against S. aureus MRSA252 cells. The engineered chimeric CHAP-amidase exhibited 3.2 log reduction of MRSA252 cell counts at the concentration of 10 μg/mL. A synergistic interaction between CHAP-amidase and vancomycin was detected by using checkerboard assay and calculating the fractional inhibitory concentration (FIC) index. This synergistic effect was shown by 8-fold reduction in the minimum inhibitory concentration of vancomycin. The chimeric CHAP-amidase displayed strong antibacterial activity against S. aureus, S. epidermidis, and enterococcus. However, it did not indicate any significant antibacterial activity against E. coli and Lactococcus lactis. Taken together, these findings suggest that our chimeric CHAP-amidase might represent potential to be used for the development of efficient antibacterial therapies targeting MRSA and certain Gram-positive bacteria.
Collapse
Affiliation(s)
- Hamed Haddad Kashani
- Anatomical Sciences Research Center, Kashan University of Medical SciencesKashan, Iran
| | - Hossein Fahimi
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad UniversityTehran, Iran
| | - Yasaman Dasteh Goli
- Department of Biology, University of MarylandCollege Park, MD, United States
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical SciencesKashan, Iran
| |
Collapse
|
36
|
Identification of Peptidoglycan Hydrolase Constructs with Synergistic Staphylolytic Activity in Cow's Milk. Appl Environ Microbiol 2017; 83:AEM.03445-16. [PMID: 28159785 DOI: 10.1128/aem.03445-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 01/21/2023] Open
Abstract
Peptidoglycan hydrolases (PGHs) have been suggested as novel therapeutics for the treatment of bovine mastitis. However, activity in the presence of cow's milk is an important requirement for drugs administered into the bovine udder. We have screened a library of >170 recombinant PGHs, including engineered bacteriophage endolysins, for enzymes with activity against Staphylococcus aureus in milk, using a microtiter plate-based protocol. Nine suitable PGH constructs were identified by this approach and further compared in time-kill assays for their efficacy against S. aureus in heat-treated milk. The three most active enzymes (lysostaphin, Ami2638A, and CHAPK_CWT-LST) reduced S. aureus in milk to undetectable numbers within minutes at nanomolar concentrations. Due to their different peptidoglycan cleavage sites, these PGH constructs revealed synergistic activity in most combinations, as demonstrated by checkerboard assays, spot assays, and time-kill experiments. Furthermore, they proved active against a selection of staphylococcal mastitis isolates from different geographical regions when applied individually or in synergistic combination. The most effective PGH combination completely eradicated S. aureus from milk, with no more bacteria being detected within 24 h after addition of the enzymes, corresponding to a reduction of >9 log units compared to the control. Efficacy was also retained at different inoculum levels (3 versus 6 log CFU/ml) and when S. aureus was grown in milk as opposed to broth prior to the experiments. In raw cow's milk, CHAPK_CWT-LST showed reduced efficacy, whereas both Ami2638A and lysostaphin retained their activity, reducing bacterial numbers by >3.5 log units within 3 h.IMPORTANCE Staphylococci and S. aureus in particular are a major cause of bovine mastitis, an inflammation of the mammary gland in cows associated with high costs and risks for consumers of milk products. S. aureus-induced mastitis, commonly treated by intramammary infusion of antibiotics, is characterized by low cure rates and increasing antibiotic resistance in bacteria. Therefore, alternative treatment options are highly desirable. PGHs, including bacteriophage endolysins, rapidly and specifically kill selected pathogens by degrading their cell wall and are refractory to resistance development, therefore holding promise as novel antibacterial agents. This study employed a screening approach to identify PGH constructs with high staphylolytic activity in cow's milk within a large collection of enzymes. Our results suggest that the most promising enzymes identified by this strategy hold potential as novel mastitis therapeutics and support their further characterization in animal models.
Collapse
|
37
|
Endolysin LysSA97 is synergistic with carvacrol in controlling Staphylococcus aureus in foods. Int J Food Microbiol 2016; 244:19-26. [PMID: 28063330 DOI: 10.1016/j.ijfoodmicro.2016.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/26/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022]
Abstract
LysSA97 is an endolysin encoded by the bacteriophage SA97, the genome sequence of which has been recently revealed. LysSA97 has lytic activity against a variety of Staphylococcus strains that cause foodborne illness. In order to improve its potential as a biocontrol agent against Staphylococcus, various types of essential oil-derived active compounds were tested in combination with LysSA97; carvacrol exhibited significant synergistic effects when combined with LysSA97. The synergistic antimicrobial activity between endolysin and carvacrol in food products, including milk and beef, were investigated. While LysSA97 (376nM) and carvacrol (3.33mM) showed 0.8±0.2 and 1.0±0.0logCFU/mL reduction in Staphylococcus aureus cells, respectively; when applied alone in bacterial culture, the cocktail containing both at the same concentrations exhibited a bacterial decrease of 4.5±0.2logCFU/mL. The synergistic activity of carvacrol was also reproduced in combination with other endolysins, and their cooperative bactericidal effects were validated in ten additional S. aureus strains, including two methicillin-resistant S. aureus (MRSA), suggesting the wide application of carvacrol as a bactericidal agent coupled with endolysin. When LysSA97 and carvacrol were used in combination in foods, the synergistic activity appeared to be influenced by the total lipid content of foods, and bacteria in skim milk were more drastically inactivated than those in whole milk. Therefore, this is the first report demonstrating that endolysin and carvacrol act synergistically to inactivate S. aureus in food products.
Collapse
|
38
|
Ajuebor J, McAuliffe O, O'Mahony J, Ross RP, Hill C, Coffey A. Bacteriophage endolysins and their applications. Sci Prog 2016; 99:183-199. [PMID: 28742472 PMCID: PMC10365499 DOI: 10.3184/003685016x14627913637705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endolysins (lysins) are bacteriophage-encoded enzymes that have evolved to degrade specific bonds within the bacterial cell wall. These enzymes represent a novel class of antibacterial agents against infectious pathogens, especially in light of multidrug-resistant bacteria, which have made antibiotic therapy increasingly redundant. Lysins have been used successfully to eliminate/control bacterial pathogens in various anatomical locations in mouse and other animal models. Engineering tactics have also been successfully applied to improve lysin function. This review discusses the structure and function of lysins. It highlights protein-engineering tactics utilised to improve lysin activity. It also reviews the applications of lysins towards food biopreservation, therapeutics, biofilm elimination and diagnostics.
Collapse
Affiliation(s)
| | | | - Jim O'Mahony
- Cork Institute of Technology (CIT) at the Department of Biological Sciences
| | - R. Paul Ross
- Dean of the College of Science Engineering and Food Science at University College Cork
| | - Colin Hill
- University College Cork and a Principal Investigator in the Alimentary Pharmabiotic Centre
| | - Aidan Coffey
- Cork Institute of Technology at the Department of Biological Sciences and Head of the BioExplore Research Centre
| |
Collapse
|
39
|
Dunne M, Leicht S, Krichel B, Mertens HDT, Thompson A, Krijgsveld J, Svergun DI, Gómez-Torres N, Garde S, Uetrecht C, Narbad A, Mayer MJ, Meijers R. Crystal Structure of the CTP1L Endolysin Reveals How Its Activity Is Regulated by a Secondary Translation Product. J Biol Chem 2016; 291:4882-93. [PMID: 26683375 PMCID: PMC4777826 DOI: 10.1074/jbc.m115.671172] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/16/2015] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages produce endolysins, which lyse the bacterial host cell to release newly produced virions. The timing of lysis is regulated and is thought to involve the activation of a molecular switch. We present a crystal structure of the activated endolysin CTP1L that targets Clostridium tyrobutyricum, consisting of a complex between the full-length protein and an N-terminally truncated C-terminal cell wall binding domain (CBD). The truncated CBD is produced through an internal translation start site within the endolysin gene. Mutants affecting the internal translation site change the oligomeric state of the endolysin and reduce lytic activity. The activity can be modulated by reconstitution of the full-length endolysin-CBD complex with free CBD. The same oligomerization mechanism applies to the CD27L endolysin that targets Clostridium difficile and the CS74L endolysin that targets Clostridium sporogenes. When the CTP1L endolysin gene is introduced into the commensal bacterium Lactococcus lactis, the truncated CBD is also produced, showing that the alternative start codon can be used in other bacterial species. The identification of a translational switch affecting oligomerization presented here has implications for the design of effective endolysins for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Matthew Dunne
- From the European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Stefan Leicht
- the European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Boris Krichel
- the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Haydyn D T Mertens
- From the European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrew Thompson
- the Synchrotron Soleil, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif sur Yvette, France
| | - Jeroen Krijgsveld
- the European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Dmitri I Svergun
- From the European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Natalia Gómez-Torres
- the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - Sonia Garde
- the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - Charlotte Uetrecht
- the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany, the European XFEL GmbH, Notkestrasse 85, 22607 Hamburg, Germany, and
| | - Arjan Narbad
- the Institute of Food Research, Colney, Norwich NR4 7UA, United Kingdom
| | - Melinda J Mayer
- the Institute of Food Research, Colney, Norwich NR4 7UA, United Kingdom
| | - Rob Meijers
- From the European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany,
| |
Collapse
|
40
|
Schmelcher M, Loessner MJ. Bacteriophage endolysins: applications for food safety. Curr Opin Biotechnol 2015; 37:76-87. [PMID: 26707470 DOI: 10.1016/j.copbio.2015.10.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/12/2015] [Accepted: 10/26/2015] [Indexed: 01/13/2023]
Abstract
Bacteriophage endolysins (peptidoglycan hydrolases) have emerged as a new class of antimicrobial agents useful for controlling bacterial infection or other unwanted contaminations in various fields, particularly in the light of the worldwide increasing frequency of drug-resistant pathogens. This review summarizes and discusses recent developments regarding the use of endolysins for food safety. Besides the use of native and engineered endolysins for controlling bacterial contamination at different points within the food production chain, this also includes the application of high-affinity endolysin-derived cell wall binding domains for rapid detection of pathogenic bacteria. Novel approaches to extend the lytic action of endolysins towards Gram-negative cells will also be highlighted.
Collapse
Affiliation(s)
- Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| |
Collapse
|
41
|
EC300: a phage-based, bacteriolysin-like protein with enhanced antibacterial activity against Enterococcus faecalis. Appl Microbiol Biotechnol 2015; 99:5137-49. [DOI: 10.1007/s00253-015-6483-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
|
42
|
Schmelcher M, Shen Y, Nelson DC, Eugster MR, Eichenseher F, Hanke DC, Loessner MJ, Dong S, Pritchard DG, Lee JC, Becker SC, Foster-Frey J, Donovan DM. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J Antimicrob Chemother 2015; 70:1453-65. [PMID: 25630640 DOI: 10.1093/jac/dku552] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES In the light of increasing drug resistance in Staphylococcus aureus, bacteriophage endolysins [peptidoglycan hydrolases (PGHs)] have been suggested as promising antimicrobial agents. The aim of this study was to determine the antimicrobial activity of nine enzymes representing unique homology groups within a diverse class of staphylococcal PGHs. METHODS PGHs were recombinantly expressed, purified and tested for staphylolytic activity in multiple in vitro assays (zymogram, turbidity reduction assay and plate lysis) and against a comprehensive set of strains (S. aureus and CoNS). PGH cut sites in the staphylococcal peptidoglycan were determined by biochemical assays (Park-Johnson and Ghuysen procedures) and MS analysis. The enzymes were tested for their ability to eradicate static S. aureus biofilms and compared for their efficacy against systemic MRSA infection in a mouse model. RESULTS Despite similar modular architectures and unexpectedly conserved cleavage sites in the peptidoglycan (conferred by evolutionarily divergent catalytic domains), the enzymes displayed varying degrees of in vitro lytic activity against numerous staphylococcal strains, including cell surface mutants and drug-resistant strains, and proved effective against static biofilms. In a mouse model of systemic MRSA infection, six PGHs provided 100% protection from death, with animals being free of clinical signs at the end of the experiment. CONCLUSIONS Our results corroborate the high potential of PGHs for treatment of S. aureus infections and reveal unique antimicrobial and biochemical properties of the different enzymes, suggesting a high diversity of potential applications despite highly conserved peptidoglycan target sites.
Collapse
Affiliation(s)
- Mathias Schmelcher
- Animal Biosciences and Biotechnology Laboratory, ANRI, NEA, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Marcel R Eugster
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Daniela C Hanke
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Shengli Dong
- Department of Biochemistry and Molecular Genetics, MCLM 552, University of Alabama at Birmingham, 1530 3rd Ave., Birmingham, AL 35294-0005, USA
| | - David G Pritchard
- Department of Biochemistry and Molecular Genetics, MCLM 552, University of Alabama at Birmingham, 1530 3rd Ave., Birmingham, AL 35294-0005, USA
| | - Jean C Lee
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Becker
- Animal Biosciences and Biotechnology Laboratory, ANRI, NEA, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA
| | - Juli Foster-Frey
- Animal Biosciences and Biotechnology Laboratory, ANRI, NEA, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA
| | - David M Donovan
- Animal Biosciences and Biotechnology Laboratory, ANRI, NEA, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA
| |
Collapse
|
43
|
Proença D, Velours C, Leandro C, Garcia M, Pimentel M, São-José C. A two-component, multimeric endolysin encoded by a single gene. Mol Microbiol 2014; 95:739-53. [PMID: 25388025 DOI: 10.1111/mmi.12857] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2014] [Indexed: 01/11/2023]
Abstract
Bacteriophage endolysins are bacterial cell wall degrading enzymes whose potential to fight bacterial infections has been intensively studied. Endolysins from Gram-positive systems are typically described as monomeric and as having a modular structure consisting of one or two N-terminal catalytic domains (CDs) linked to a C-terminal region responsible for cell wall binding (CWB). We show here that expression of the endolysin gene lys170 of the enterococcal phage F170/08 results in two products, the expected full length endolysin (Lys170FL) and a C-terminal fragment corresponding to the CWB domain (CWB170). The latter is produced from an in-frame, alternative translation start site. Both polypeptides interact to form the fully active endolysin. Biochemical data strongly support a model where Lys170 is made of one monomer of Lys170FL associated with up to three CWB170 subunits, which are responsible for efficient endolysin binding to its substrate. Bioinformatics analysis indicates that similar secondary translation start signals may be used to produce and add independent CWB170-like subunits to different enzymatic specificities. The particular configuration of endolysin Lys170 uncovers a new mode of increasing the number of CWB motifs associated to CD modules, as an alternative to the tandem repetition typically found in monomeric cell wall hydrolases.
Collapse
Affiliation(s)
- Daniela Proença
- Technophage, SA, Av. Professor Egas Moniz, Ed. Egas Moniz, piso 2, 1649-028, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
44
|
Osipovitch DC, Griswold KE. Fusion with a cell wall binding domain renders autolysin LytM a potent anti-Staphylococcus aureus agent. FEMS Microbiol Lett 2014; 362:1-7. [PMID: 25670705 DOI: 10.1093/femsle/fnu035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite intense efforts by the medical and pharmaceutical communities, Staphylococcus aureus continues to be a pervasive pathogen that causes a myriad of diseases and a high level of morbidity and mortality among infected patients. Thus, discovering or designing novel therapeutics able to kill both drug-resistant and drug-sensitive S. aureus remains a top priority. Bacteriolytic enzymes, mostly from phage, have shown great promise in preclinical studies, but little consideration has been given to cis-acting autolytic enzymes derived from the pathogen itself. Here, we use the S. aureus autolysin LytM as a proof of principal to demonstrate the antibacterial potential of endogenous peptidoglycan-degrading enzymes. While native LytM is only marginally bactericidal, fusion of LytM to the lysostaphin cell wall binding domain enhances its anti-staphylococcal activity approximately 540-fold, placing it on par with many phage lysins currently in preclinical development. The potential to therapeutically co-opt a pathogen's endogenous peptidoglycan recycling machinery opens the door to a previously untapped reservoir of antibacterial drug candidates.
Collapse
Affiliation(s)
- Daniel C Osipovitch
- Program in Experimental and Molecular Medicine, Dartmouth, Hanover, NH 03755, USA
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH 03755, USA Program in Molecular and Cellular Biology, Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
45
|
Staats CC, Junges A, Guedes RLM, Thompson CE, de Morais GL, Boldo JT, de Almeida LGP, Andreis FC, Gerber AL, Sbaraini N, da Paixão RLDA, Broetto L, Landell M, Santi L, Beys-da-Silva WO, Silveira CP, Serrano TR, de Oliveira ES, Kmetzsch L, Vainstein MH, de Vasconcelos ATR, Schrank A. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics 2014; 15:822. [PMID: 25263348 PMCID: PMC4246632 DOI: 10.1186/1471-2164-15-822] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/29/2014] [Indexed: 12/11/2022] Open
Abstract
Background Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins. Results We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity. Conclusions The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-822) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), P, O, Box 15005, Porto Alegre, RS CEP 91501-970, Brazil.
| |
Collapse
|
46
|
Abstract
Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.
Collapse
Affiliation(s)
- Bijan Zakeri
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| | - Timothy K. Lu
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| |
Collapse
|
47
|
Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre AS, Lavigne R. Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci 2012; 13:699-722. [PMID: 23305359 PMCID: PMC3594737 DOI: 10.2174/138920312804871193] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/12/2012] [Accepted: 09/20/2012] [Indexed: 12/18/2022]
Abstract
The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application.
Collapse
Affiliation(s)
- Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | | | | | |
Collapse
|