1
|
Cavuzic MT, de Sousa AS, Lohman JR, Waldrop GL. Kinetic characterization of the C-terminal domain of Malonyl-CoA reductase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141033. [PMID: 39019246 DOI: 10.1016/j.bbapap.2024.141033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Malonyl-CoA reductase utilizes two equivalents of NADPH to catalyze the reduction of malonyl-CoA to 3-hydroxypropionic acid (3HP). This reaction is part of the carbon fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. The enzyme is composed of two domains. The C-terminal domain catalyzes the reduction of malonyl-CoA to malonic semialdehyde, while the N-terminal domain catalyzes the reduction of the aldehyde to 3HP. The two domains can be produced independently and retain their enzymatic activity. This report focuses on the kinetic characterization of the C-terminal domain. Initial velocity patterns and inhibition studies showed the kinetic mechanism is ordered with NADPH binding first followed by malonyl-CoA. Malonic semialdehyde is released first, while CoA and NADP+ are released randomly. Analogs of malonyl-CoA showed that the thioester carbon is reduced, while the carboxyl group is needed for proper positioning. The enzyme transfers the pro-S hydrogen of NADPH to malonyl-CoA and pH rate profiles revealed that a residue with a pKa value of about 8.8 must be protonated for activity. Kinetic isotope effects indicated that NADPH is not sticky (that is, NADPH dissociates from the enzyme faster than the rate of product formation) and product release is partially rate-limiting. Moreover, the mechanism is stepwise with the pH dependent step occurring before or after hydride transfer. The findings from this study will aid in the development of an eco-friendly biosynthesis of 3HP which is an industrial chemical used in the production of plastics and adhesives.
Collapse
Affiliation(s)
- Mirela Tkalcic Cavuzic
- Department of Biological Sciences, Louisiana State University; Baton Rouge, LA 70803, USA.
| | - Amanda Silva de Sousa
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA.
| | - Jeremy R Lohman
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA.
| | - Grover L Waldrop
- Department of Biological Sciences, Louisiana State University; Baton Rouge, LA 70803, USA.
| |
Collapse
|
2
|
Cavuzic MT, Waldrop GL. Kinetic characterization of the N-terminal domain of Malonyl-CoA reductase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140986. [PMID: 38122963 DOI: 10.1016/j.bbapap.2023.140986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Climate change is driving a search for environmentally safe methods to produce chemicals used in ordinary life. One such molecule is 3-hydroxypropionic acid, which is a platform industrial chemical used as a precursor for a variety of other chemical end products. The biosynthesis of 3-hydroxypropionic acid can be achieved in recombinant microorganisms via malonyl-CoA reductase in two separate reactions. The reduction of malonyl-CoA by NADPH to form malonic semialdehyde is catalyzed in the C-terminal domain of malonyl-CoA reductase, while the subsequent reduction of malonic semialdehyde to 3-hydroxypropionic acid is accomplished in the N-terminal domain of the enzyme. A new assay for the reverse reaction of the N-terminal domain of malonyl-CoA reductase from Chloroflexus aurantiacus activity has been developed. This assay was used to determine the kinetic mechanism and for isotope effect studies. Kinetic characterization using initial velocity patterns revealed random binding of the substrates NADP+ and 3-hydroxypropionic acid. Isotope effects showed substrates react to give products faster than they dissociate and that the products of the reverse reaction, NADPH and malonic semialdehyde, have a low affinity for the enzyme. Multiple isotope effects suggest proton and hydride transfer occur in a concerted fashion. This detailed kinetic characterization of the reaction catalyzed by the N-terminal domain of malonyl-CoA reductase could aid in engineering of the enzyme to make the biosynthesis of 3-hydroxypropionic acid commercially competitive with its production from fossil fuels.
Collapse
Affiliation(s)
- Mirela Tkalcic Cavuzic
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Grover L Waldrop
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
3
|
Jiang N, Wang M, Song L, Yu D, Zhou S, Li Y, Li H, Han X. Polyhydroxybutyrate production by recombinant Escherichia coli based on genes related to synthesis pathway of PHB from Massilia sp. UMI-21. Microb Cell Fact 2023; 22:129. [PMID: 37452345 PMCID: PMC10347839 DOI: 10.1186/s12934-023-02142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Polyhydroxybutyrate (PHB) is currently the most common polymer produced by natural bacteria and alternative to conventional petrochemical-based plastics due to its similar material properties and biodegradability. Massilia sp. UMI-21, a newly found bacterium, could produce PHB from starch, maltotriose, or maltose, etc. and could serve as a candidate for seaweed-degrading bioplastic producers. However, the genes involved in PHB metabolism in Massilia sp. UMI-21 are still unclear. RESULTS In the present study, we assembled and annotated the genome of Massilia sp. UMI-21, identified genes related to the metabolism of PHB, and successfully constructed recombinant Escherichia coli harboring PHB-related genes (phaA2, phaB1 and phaC1) of Massilia sp. UMI-21, which showed up to 139.41% more product. Also, the vgb gene (encoding Vitreoscilla hemoglobin) was introduced into the genetically engineered E. coli and gained up to 117.42% more cell dry weight, 213.30% more PHB-like production and 44.09% more product content. Fermentation products extracted from recombinant E. coli harboring pETDuet1-phaA2phaB1-phaC1 and pETDuet1-phaA2phaB1-phaC1-vgb were identified as PHB by Fourier Transform Infrared and Proton nuclear magnetic resonance spectroscopy analysis. Furthermore, the decomposition temperature at 10% weight loss of PHB extracted from Massilia sp. UMI-21, recombinant E. coli DH5α-pETDuet1-phaA2phaB1-phaC1 and DH5α-pETDuet1-phaA2phaB1-phaC1-vgb was 276.5, 278.7 and 286.3 °C, respectively, showing good thermal stability. CONCLUSIONS Herein, we presented the whole genome information of PHB-producing Massilia sp. UMI-21 and constructed novel recombinant strains using key genes in PHB synthesis of strain UMI-21 and the vgb gene. This genetically engineered E. coli strain can serve as an effective novel candidate in E. coli cell factory for PHB production by the rapid cell growth and high PHB production.
Collapse
Affiliation(s)
- Nan Jiang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
| | - Ming Wang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Linxin Song
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
| | - Dengbin Yu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
| | - Shuangzi Zhou
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haiyan Li
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xuerong Han
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China.
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China.
| |
Collapse
|
4
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Chek MF, Kim SY, Mori T, Tan HT, Sudesh K, Hakoshima T. Asymmetric Open-Closed Dimer Mechanism of Polyhydroxyalkanoate Synthase PhaC. iScience 2020; 23:101084. [PMID: 32388399 PMCID: PMC7214940 DOI: 10.1016/j.isci.2020.101084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Biodegradable polyester polyhydroxyalkanoate (PHA) is a promising bioplastic material for industrial use as a replacement for petroleum-based plastics. PHA synthase PhaC forms an active dimer to polymerize acyl moieties from the substrate acyl-coenzyme A (CoA) into PHA polymers. Here we present the crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, bound to CoA. The structure reveals an asymmetric dimer, in which one protomer adopts an open conformation bound to CoA, whereas the other adopts a closed conformation in a CoA-free form. The open conformation is stabilized by the asymmetric dimerization and enables PhaC to accommodate CoA and also to create the product egress path. The bound CoA molecule has its β-mercaptoethanolamine moiety extended into the active site with the terminal SH group close to active center Cys291, enabling formation of the reaction intermediate by acylation of Cys291. Crystal structure of PhaCCs-CAT bound to coenzyme A A unique asymmetric open-closed dimer Restructuring of the CAP subdomain provides a cleft toward the active site The cleft enables the substrate entry and the product egress
Collapse
Affiliation(s)
- Min Fey Chek
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Sun-Yong Kim
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tomoyuki Mori
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hua Tiang Tan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
6
|
Construction of a "nutrition supply-detoxification" coculture consortium for medium-chain-length polyhydroxyalkanoate production with a glucose-xylose mixture. J Ind Microbiol Biotechnol 2020; 47:343-354. [PMID: 32140930 DOI: 10.1007/s10295-020-02267-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
In this study, we constructed a coculture consortium comprising engineered Pseudomonas putida KT2440 and Escherichia coli MG1655. Provision of "related" carbon sources and synthesis of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were separately assigned to these strains via a modular construction strategy. To avoid growth competition, a preference for the use of a carbon source was constructed. Further, the main intermediate metabolite acetate played an important role in constructing the expected "nutrition supply-detoxification" relationship between these strains. The coculture consortium showed a remarkable increase in the mcl-PHA titer (0.541 g/L) with a glucose-xylose mixture (1:1). Subsequently, the titer of mcl-PHA produced by the coculture consortium when tested with actual lignocellulosic hydrolysate (0.434 g/L) was similar to that achieved with laboratory sugars' mixture (0.469 g/L). These results indicate a competitive potential of the engineered E. coli-P. putida coculture consortium for mcl-PHA production with lignocellulosic hydrolysate.
Collapse
|
7
|
Zhuang Q, Qi Q. Engineering the pathway in Escherichia coli for the synthesis of medium-chain-length polyhydroxyalkanoates consisting of both even- and odd-chain monomers. Microb Cell Fact 2019; 18:135. [PMID: 31409350 PMCID: PMC6693092 DOI: 10.1186/s12934-019-1186-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) containing various chain length monomers from C6 to C14 have more applications besides sustainable and environmental-friendly biomaterials owing to their superior physical and mechanical properties. We engineered a reversed fatty acid β-oxidation pathway in Escherichia coli that can synthesize mcl-PHA directly from glucose and achieved high yield. However, there were only even-chain monomers in the biosynthetic polymers. The need for mcl-PHA harboring both even- and odd-chain monomers with better and wider utility impels us to develop the biosynthetic routes for the production of the novel and unnatural mcl-PHA through rewiring the basic metabolism. Results In the present study, a propionate assimilation and metabolic route was integrated into the reversed fatty acid β-oxidation in order to produce mcl-PHA consisting of both even- and odd-numbered monomers. The content of odd-numbered monomers in mcl-PHA was improved with the increased propionate addition. After further deletion of pyruvate oxidase (PoxB) and pyruvate formate-lyase (PflB), the metabolically engineered chassis E. coli LZ08 harboring pQQ05 and pZQ06 (overexpression of prpP and prpE genes from Ralstonia eutropha H16) innovatively accumulated 6.23 wt% mcl-PHA containing odd-chain monomers ranging from 7 to 13 carbon atoms about 20.03 mol%. Conclusions This is the first successful report on production of mcl-PHA harboring both even- and odd-chain monomers (C6–C14) synthesized from glucose and propionate in recombinant E. coli. This present study achieved the highest yield of de novo production of mcl-PHA containing odd-numbered monomers in E. coli at shake-flask fermentation level. Continued engineering of host strains and pathway enzymes will ultimately lead to more economical production of odd-chain monomers based on market demand. The synthetic pathway can provide a promising platform for production of other value-added chemicals and biomaterials that use acetyl-CoA and propionyl-CoA as versatile precursors and can be extended to other microorganisms as intelligent cell factories. Electronic supplementary material The online version of this article (10.1186/s12934-019-1186-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qianqian Zhuang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China. .,Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| |
Collapse
|
8
|
Scale Up Studies for Polyhydroxyalkanoate Production by a Bacillus flexus Strain with Industrial Potential. Indian J Microbiol 2019; 59:383-386. [PMID: 31388219 DOI: 10.1007/s12088-019-00807-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/22/2019] [Indexed: 12/28/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are synthesized by bacteria under unfavourable growth conditions like excess of carbon over nitrogen, coupled with oxygen limitation. The PHA polymers of microbial origin are diverse in chemical composition and material properties. A bioprocess for PHA production by indigenously isolated Bacillus flexus MTCC 12841 was devised and optimized at a laboratory fermentor scale. Fermentation strategies that involved modifications in some parameters like aeration, agitation, temperature, nutrient feeding or changes in C:N ratio led to substantial improvement of 59% in PHA production reaching highest concentration of 9.73 g/L. Biomass too was enhanced to 15.70 g/L equivalent to 126% increase over the optimized shake flask runs. PHA (Yp/s) and biomass (Yx/s) yields were found to be 0.32 and 0.51 g/g respectively, indicating good carbon utilization efficiency. The characterization of polymer by GC-MS revealed that the culture produced poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) as a co-polymer. The novelty of the research findings lies in the demonstration of increased production of PHA at lab fermentor level coupled with the identification of the natural ability of the strain to also produce PHBV without any need for exogenous addition of precursors. The fermentation process as well as the strain may be subjected to further optimization to increase the PHA production as well as to increase the % of HV content in the co-polymer.
Collapse
|
9
|
Uribe Acosta M, Villa Restrepo AF. In silico analysis of phag-like protein in Ralstonia Euthropa H16, potentially involved in polyhydroxyalkanoates synthesis. REVISTA POLITÉCNICA 2019. [DOI: 10.33571/rpolitec.v15n29a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are synthesised by bacteria as carbon storage material. The protein PhaG directs carbon from non-related carbon sources such as glycerol, metabolised through fatty acid de novo synthesis (FAS) pathway, with PHA synthesis. The gene that codifies for this protein has not yet been found in the genome of Ralstonia eutropha H16, a model organism. By bioinformatic comparison to already known PhaG proteins, a PhaG-like protein was found codified by gene H16_A0147 and presence of the gene was preliminary confirmed by PCR. This is the first study that shows the presence and characteristics of a PhaG-like protein in R. eutropha H16 and represents the first step for the identification of a connection between FAS and PHA pathways in this model bacterium. Further gene deletion and enzymatic activity studies are necessary to confirm this potential relationship, which could improve industrial PHA production and utilisation of agro-industrial residues such as glycerol.
Collapse
|
10
|
Wang J, Ma W, Fang Y, Yang J, Zhan J, Chen S, Wang X. Increasing L-threonine production in Escherichia coli by overexpressing the gene cluster phaCAB. J Ind Microbiol Biotechnol 2019; 46:1557-1568. [PMID: 31312942 DOI: 10.1007/s10295-019-02215-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
L-Threonine is an important branched-chain amino acid and could be applied in feed, drugs, and food. In this study, L-threonine production in an L-threonine-producing Escherichia coli strain TWF001 was significantly increased by overexpressing the gene cluster phaCAB from Ralstonia eutropha. TWF001/pFW01-phaCAB could produce 96.4-g/L L-threonine in 3-L fermenter and 133.5-g/L L-threonine in 10-L fermenter, respectively. In addition, TWF001/pFW01-phaCAB produced 216% more acetyl-CoA, 43% more malate, and much less acetate than the vector control TWF001/pFW01, and meanwhile, TWF001/pFW01-phaCAB produced poly-3-hydroxybutyrate, while TWF001/pFW01 did not. Transcription analysis showed that the key genes in the L-threonine biosynthetic pathway were up-regulated, the genes relevant to the acetate formation were down-regulated, and the gene acs encoding the enzyme which converts acetate to acetyl-CoA was up-regulated. The results suggested that overexpression of the gene cluster phaCAB in E. coli benefits the enhancement of L-threonine production.
Collapse
Affiliation(s)
- Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Jun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jie Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shangwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Zhao F, Liu X, Kong A, Zhao Y, Fan X, Ma T, Gao W, Wang S, Yang C. Screening of endogenous strong promoters for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Sci Rep 2019; 9:1798. [PMID: 30755729 PMCID: PMC6372614 DOI: 10.1038/s41598-019-39321-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/21/2019] [Indexed: 01/02/2023] Open
Abstract
Polyhydroxyalkanoate (PHA) can be produced by microorganisms from renewable resources and is regarded as a promising bioplastic to replace petroleum-based plastics. Pseudomonas mendocina NK-01 is a medium-chain-length PHA (mcl-PHA)-producing strain and its whole-genome sequence is currently available. The yield of mcl-PHA in P. mendocina NK-01 is expected to be improved by applying a promoter engineering strategy. However, a limited number of well-characterized promoters has greatly restricted the application of promoter engineering for increasing the yield of mcl-PHA in P. mendocina NK-01. In this work, 10 endogenous promoters from P. mendocina NK-01 were identified based on RNA-seq and promoter prediction results. Subsequently, 10 putative promoters were characterized for their strength through the expression of a reporter gene gfp. As a result, five strong promoters designated as P4, P6, P9, P16 and P25 were identified based on transcriptional level and GFP fluorescence intensity measurements. To evaluate whether the screened promoters can be used to enhance transcription of PHA synthase gene (phaC), the three promoters P4, P6 and P16 were separately integrated into upstream of the phaC operon in the genome of P. mendocina NK-01, resulting in the recombinant strains NKU-4C1, NKU-6C1 and NKU-16C1. As expected, the transcriptional levels of phaC1 and phaC2 in the recombinant strains were increased as shown by real-time quantitative RT-PCR. The phaZ gene encoding PHA depolymerase was further deleted to construct the recombinant strains NKU-∆phaZ-4C1, NKU-∆phaZ-6C1 and NKU-∆phaZ-16C1. The results from shake-flask fermentation indicated that the mcl-PHA titer of recombinant strain NKU-∆phaZ-16C1 was increased from 17 to 23 wt% compared with strain NKU-∆phaZ. This work provides a feasible method to discover strong promoters in P. mendocina NK-01 and highlights the potential of the screened endogenous strong promoters for metabolic engineering of P. mendocina NK-01 to increase the yield of mcl-PHA.
Collapse
Affiliation(s)
- Fengjie Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiangsheng Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Annie Kong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yuxin Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xu Fan
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Weixia Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
12
|
Raza ZA, Riaz S, Banat IM. Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization. Biotechnol Prog 2017; 34:29-41. [PMID: 28960792 DOI: 10.1002/btpr.2565] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/23/2017] [Indexed: 01/08/2023]
Abstract
Polyhydroxyalkanoates (PHAs) have become an attractive biomaterial in research in the past few years due to their extensive potential industrial applications. Being long chain hydroxyl fatty acid molecules, the PHAs are hydrophobic in nature, and have less functional groups. These features limit their applications in various areas. To enhance their usage, these polymers may need to be modified including surface and chemical modifications. Such modifications may alter their mechanical properties, surface structure, amphiphilic character and rate of degradation to fulfil the requirements for their future applications. Chemical modifications allow incorporation of functional groups to PHAs that could not be introduced through biotechnological methods. These chemically reformed PHAs, with enhanced properties, could be used for broad range of applications. This review aims to introduce different chemical modification approaches including some recent methods that had not been explored or discussed so far for PHAs as possible technologies for widening the range of product and application potentials. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:29-41, 2018.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Dept. of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| | - Shahina Riaz
- Dept. of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| | - Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, U.K
| |
Collapse
|
13
|
Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics. Sci Rep 2017; 7:5312. [PMID: 28706283 PMCID: PMC5509742 DOI: 10.1038/s41598-017-05509-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/05/2017] [Indexed: 11/08/2022] Open
Abstract
Polyhydroxyalkanoate (PHA) is a promising candidate for use as an alternative bioplastic to replace petroleum-based plastics. Our understanding of PHA synthase PhaC is poor due to the paucity of available three-dimensional structural information. Here we present a high-resolution crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, PhaC Cs -CAT. The structure shows that PhaC Cs -CAT forms an α/β hydrolase fold comprising α/β core and CAP subdomains. The active site containing Cys291, Asp447 and His477 is located at the bottom of the cavity, which is filled with water molecules and is covered by the partly disordered CAP subdomain. We designated our structure as the closed form, which is distinct from the recently reported catalytic domain from Cupriavidus necator (PhaC Cn -CAT). Structural comparison showed PhaC Cn -CAT adopting a partially open form maintaining a narrow substrate access channel to the active site, but no product egress. PhaC Cs -CAT forms a face-to-face dimer mediated by the CAP subdomains. This arrangement of the dimer is also distinct from that of the PhaC Cn -CAT dimer. These findings suggest that the CAP subdomain should undergo a conformational change during catalytic activity that involves rearrangement of the dimer to facilitate substrate entry and product formation and egress from the active site.
Collapse
|
14
|
Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli. Metab Eng 2016; 38:264-273. [PMID: 27663752 DOI: 10.1016/j.ymben.2016.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/17/2016] [Accepted: 09/19/2016] [Indexed: 01/03/2023]
Abstract
To address climate change and environmental problems, it is becoming increasingly important to establish biorefineries for the production of chemicals from renewable non-food biomass. Here we report the development of Escherichia coli strains capable of overproducing a four-carbon platform chemical 4-hybroxybutyric acid (4-HB). Because 4-HB production is significantly affected by aeration level, genome-scale metabolic model-based engineering strategies were designed under aerobic and microaerobic conditions with emphasis on oxidative/reductive TCA branches and glyoxylate shunt. Several different metabolic engineering strategies were employed to develop strains suitable for fermentation both under aerobic and microaerobic conditions. It was found that microaerobic condition was more efficient than aerobic condition in achieving higher titer and productivity of 4-HB. The final engineered strain produced 103.4g/L of 4-HB by microaerobic fed-batch fermentation using glycerol. The aeration-dependent optimization strategy of TCA cycle will be useful for developing microbial strains producing other reduced derivative chemicals of TCA cycle intermediates.
Collapse
|
15
|
Chen GQ, Hajnal I, Wu H, Lv L, Ye J. Engineering Biosynthesis Mechanisms for Diversifying Polyhydroxyalkanoates. Trends Biotechnol 2016; 33:565-574. [PMID: 26409776 DOI: 10.1016/j.tibtech.2015.07.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/15/2022]
Abstract
Polyhydroxyalkanoates (PHA) are a family of diverse biopolyesters synthesized by bacteria. PHA diversity, as reflected by its monomers, homopolymers, random and block copolymers, as well as functional polymers, can now be generated by engineering the three basic synthesis pathways including the acetoacetyl-CoA pathway, in situ fatty acid synthesis, and/or β-oxidation cycles, as well as PHA synthase specificity. It is now possible to tailor the PHA structures via genome editing or process engineering. The increasing PHA diversity and maturing PHA production technology should lead to more focused research into their low-cost and/or high-value applications.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Protein Therapeutics, Tsinghua University, Beijing 100084, China.
| | - Ivan Hajnal
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hong Wu
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Li Lv
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianwen Ye
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Gao C, Qi Q, Madzak C, Lin CSK. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica. J Ind Microbiol Biotechnol 2015; 42:1255-62. [PMID: 26153503 DOI: 10.1007/s10295-015-1649-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022]
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are a large class of biopolymers that have attracted extensive attention as renewable and biodegradable bio-plastics. They are naturally synthesized via fatty acid de novo biosynthesis pathway or β-oxidation pathway from Pseudomonads. The unconventional yeast Yarrowia lipolytica has excellent lipid/fatty acid catabolism and anabolism capacity depending of the mode of culture. Nevertheless, it cannot naturally synthesize PHA, as it does not express an intrinsic PHA synthase. Here, we constructed a genetically modified strain of Y. lipolytica by heterologously expressing PhaC1 gene from P. aeruginosa PAO1 with a PTS1 peroxisomal signal. When in single copy, the codon optimized PhaC1 allowed the synthesis of 0.205 % DCW of PHA after 72 h cultivation in YNBD medium containing 0.1 % oleic acid. By using a multi-copy integration strategy, PHA content increased to 2.84 % DCW when the concentration of oleic acid in YNBD was 1.0 %. Furthermore, when the recombinant yeast was grown in the medium containing triolein, PHA accumulated up to 5.0 % DCW with as high as 21.9 g/L DCW, which represented 1.11 g/L in the culture. Our results demonstrated the potential use of Y. lipolytica as a promising microbial cell factory for PHA production using food waste, which contains lipids and other essential nutrients.
Collapse
Affiliation(s)
- Cuijuan Gao
- School of Life Science, Linyi University, Linyi, 276005, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Peña C, Castillo T, García A, Millán M, Segura D. Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 2015; 7:278-93. [PMID: 24898500 PMCID: PMC4241722 DOI: 10.1111/1751-7915.12129] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/13/2014] [Indexed: 11/27/2022] Open
Abstract
Poly-(3-hydroxybutyrate) [P(3HB)] is a polyester synthesized as a carbon and energy reserve material by a wide number of bacteria. This polymer is characterized by its thermo-plastic properties similar to plastics derived from petrochemical industry, such as polyethylene and polypropylene. Furthermore, P(3HB) is an inert, biocompatible and biodegradable material which has been proposed for several uses in medical and biomedical areas. Currently, only few bacterial species such as Cupriavidus necator, Azohydromonas lata and recombinant Escherichia coli have been successfully used for P(3HB) production at industrial level. Nevertheless, in recent years, several fermentation strategies using other microbial models such as Azotobacter vinelandii, A. chroococcum, as well as some methane-utilizing species, have been developed in order to improve the P(3HB) production and also its mean molecular weight.
Collapse
Affiliation(s)
- C Peña
- Departamento de Ingeniería Celular y Biocatálisis
| | | | | | | | | |
Collapse
|
18
|
Engineering of Escherichia coli for the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from glucose. Appl Microbiol Biotechnol 2015; 99:2593-602. [PMID: 25586585 DOI: 10.1007/s00253-015-6380-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/28/2014] [Accepted: 12/31/2014] [Indexed: 12/28/2022]
Abstract
The copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] has the potential to serve as a biodegradable tissue engineering material. However, the production of this kind of copolymer still suffers from high cost and uncertainty. We describe here the design of metabolic pathways to synthesize P(HB-co-HHx) directly from glucose using recombinant Escherichia coli. By combining the BktB-dependent condensation pathway with the inverted β-oxidation cycle pathway, we were able to synthesize a P(HB-co-HHx) copolymer with a 10 mol% HHx fraction in recombinant E. coli. After optimizing the host strain and employing thioesterase mutant strains, the engineered E. coli produced 12.9 wt% P(HB-co-HHx) with a 13.2 mol% 3HHx fraction.
Collapse
|
19
|
Liang Q, Qi Q. From a co-production design to an integrated single-cell biorefinery. Biotechnol Adv 2014; 32:1328-1335. [DOI: 10.1016/j.biotechadv.2014.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/23/2014] [Accepted: 08/17/2014] [Indexed: 10/24/2022]
|
20
|
Andreessen B, Taylor N, Steinbüchel A. Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials. Appl Environ Microbiol 2014; 80:6574-82. [PMID: 25149521 PMCID: PMC4249027 DOI: 10.1128/aem.02361-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the best-studied PHA, poly(3-hydroxybutyrate) [poly(3HB)], it can be used as a plasticizer in blends to improve their properties. Furthermore, 3-hydroxypropionic acid (3HP) is considered likely to become one of the new industrial building blocks, and it can be obtained from poly(3HP) by simple hydrolysis. Unfortunately, no natural organism is known to accumulate poly(3HP) so far. Thus, several efforts have been made to engineer genetically modified organisms capable of synthesizing the homopolymer or copolymers containing 3HP. In this review, the achievements made so far in efforts to obtain biomass which has accumulated poly(3HP) or 3HP-containing copolymers, as well as the properties of these polyesters and their applications, are compiled and evaluated.
Collapse
Affiliation(s)
- Björn Andreessen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nicolas Taylor
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Insomphun C, Xie H, Mifune J, Kawashima Y, Orita I, Nakamura S, Fukui T. Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha. Metab Eng 2014; 27:38-45. [PMID: 25446974 DOI: 10.1016/j.ymben.2014.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/25/2014] [Accepted: 10/06/2014] [Indexed: 02/06/2023]
Abstract
Poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)], a flexible and practical kind of polyhydroxyalkanoates, is generally produced from plant oils and fatty acids by several wild and recombinant bacteria. This study established an improved artificial pathway for the biosynthesis of P(3HB-co-3HHx) with high 3HHx composition from structurally unrelated fructose in Ralstonia eutropha. Depression of (R)-specific reduction of acetoacetyl-CoA by the deletion of phaB1 was an effective modification for formation of the C6-monomer unit from fructose driven by crotonyl-CoA carboxylase/reductase (Ccr). Co-overexpression of phaJ4a, which encodes medium-chain-length (R)-enoyl-CoA hydratase, with ccr promoted the incorporation of both 3HB and 3HHx units. Further introduction of emdMm, a synthetic gene encoding ethylmalonyl-CoA decarboxylase derived from mouse, was remarkably effective for P(3HB-co-3HHx) biosynthesis, probably by converting ethylmalonyl-CoA generated by the reductive carboxylase activity of Ccr back into butyryl-CoA. A high cellular content of P(3HB-co-3HHx) composed of 22mol% 3HHx could be produced from fructose by the engineered strain of R. eutropha with ΔphaB1 genotype expressing ccr, phaJ4a, and emd.
Collapse
Affiliation(s)
- Chayatip Insomphun
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Huan Xie
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Jun Mifune
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yui Kawashima
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Izumi Orita
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Nakamura
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiaki Fukui
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
22
|
Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Metab Eng 2014; 25:183-93. [DOI: 10.1016/j.ymben.2014.07.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/28/2014] [Accepted: 07/23/2014] [Indexed: 11/20/2022]
|
23
|
Leong YK, Show PL, Ooi CW, Ling TC, Lan JCW. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: Insights from the recombinant Escherichia coli. J Biotechnol 2014; 180:52-65. [DOI: 10.1016/j.jbiotec.2014.03.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/03/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
24
|
Andreeßen B, Johanningmeier B, Burbank J, Steinbüchel A. Influence of the operon structure on poly(3-hydroxypropionate) synthesis in Shimwellia blattae. Appl Microbiol Biotechnol 2014; 98:7409-22. [PMID: 24859521 DOI: 10.1007/s00253-014-5804-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/11/2014] [Accepted: 05/01/2014] [Indexed: 01/17/2023]
Abstract
Glycerol has become a cheap and abundant carbon source due to biodiesel production at a large scale, and it is available for several biotechnological applications. We recently established poly(3-hydroxypropionate) [poly(3HP)] synthesis in a recombinant Shimwellia blattae strain (Heinrich et al. Appl Environ Microbiol 79:3582-3589, 2013). The major drawbacks of the current strains are (i) low poly(3HP) yields, (ii) low plasmid stability and (iii) insufficient conversion rates. In this study, we demonstrated the influence of alterations of the operon structure, consisting of 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate:coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2 and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha H16. It was shown that S. blattae ATCC33430/pBBR1MCS-2::dhaT::pct::aldD::phaC1 synthesized up to 14.5 % (wtPHA/wtCDW) in a 2-L fed-batch fermentation process. Furthermore, we overcame the problem of plasmid losses during the fermentation period by engineering a carbon source-dependent plasmid addiction system in a triose phosphate isomerase knockout mutant. An assumed poly(3-hydroxyalkanoic acid) degrading activity of the lipase/esterase YbfF could not be confirmed.
Collapse
Affiliation(s)
- Björn Andreeßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149, Münster, Germany
| | | | | | | |
Collapse
|
25
|
Zhuang Q, Wang Q, Liang Q, Qi Q. Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metab Eng 2014; 24:78-86. [PMID: 24836703 DOI: 10.1016/j.ymben.2014.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/17/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
Polyhydroxyalkanoates that contain the medium-chain-length monomers (mcl-PHAs) have a wide range of applications owing to their superior physical and mechanical properties. A challenge to synthesize such mcl-PHAs from unrelated and renewable sources is exploiting the efficient metabolic pathways that lead to the formation of precursor (R)-3-hydroxyacyl-CoA. Here, by engineering the reversed fatty acid β-oxidation cycle, we were able to synthesize mcl-PHAs in Escherichia coli directly from glucose. After deletion of the major thioesterases, the engineered E. coli produced 6.62wt% of cell dry weight mcl-PHA heteropolymers. Furthermore, when a low-substrate-specificity PHA synthase from Pseudomonas stutzeri 1317 was employed, recombinant E. coli synthesized 12.10wt% of cell dry weight scl-mcl PHA copolymers, of which 21.18mol% was 3-hydroxybutyrate and 78.82mol% was medium-chain-length monomers. The reversed fatty acid β-oxidation cycle offered an efficient metabolic pathway for mcl-PHA biosynthesis in E. coli and can be further optimized.
Collapse
Affiliation(s)
- Qianqian Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
26
|
Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions. Appl Microbiol Biotechnol 2014; 98:3715-25. [DOI: 10.1007/s00253-013-5490-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
|
27
|
Wang Q, Liu X, Qi Q. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli. Appl Microbiol Biotechnol 2014; 98:3923-31. [PMID: 24425304 DOI: 10.1007/s00253-013-5494-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/20/2013] [Accepted: 12/22/2013] [Indexed: 11/25/2022]
Abstract
The biosynthesis of polyhydroxyalkanoate copolymers in Escherichia coli from unrelated carbon sources becomes attractive nowadays. We previously developed a poly(hydroxybutyrate-co-hydroxyvalerte) (PHBV) biosynthetic pathway from an unrelated carbon source via threonine metabolic route in E. coli (Chen et al., Appl Environ Microbiol 77:4886-4893, 2011). In our study, a citramalate pathway was introduced in recombinant E. coli by cloning a cimA gene from Leptospira interrogans. By blocking the pyruvate and the propionyl-CoA catabolism and replacing the β-ketothiolase gene, the PHBV with 11.5 mol% 3HV fraction was synthesized. Further, the combination of citramalate pathway with the threonine biosynthesis pathway improved the 3HV fraction in PHBV copolymer to 25.4 mol% in recombinant E. coli.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | | | | |
Collapse
|
28
|
Wang Q, Yang P, Xian M, Liu H, Cao Y, Yang Y, Zhao G. Production of Block Copolymer Poly(3-hydroxybutyrate)- block-poly(3-hydroxypropionate) with Adjustable Structure from an Inexpensive Carbon Source. ACS Macro Lett 2013; 2:996-1000. [PMID: 35581867 DOI: 10.1021/mz400446g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The block copolymers poly(3-hydroxybutyrate)-block-poly(3-hydroxypropionate) (P3HB-b-P3HP) with a wide range of 3HP fractions from 7.4 mol % to 75 mol % were biosynthesized from inexpensive carbon sources for the first time, differing from previously reported approaches based on sequential addition of precursors. The engineered Escherichia coli strain carried two parallel synthetic pathways modulated by independent regulatory systems to produce the 3HB and 3HP monomers, respectively. Manipulating the expression levels of 3HB and 3HP pathways resulted in biosynthesis of block copolymers P3HB-b-P3HP with varied compositions. Nuclear magnetic resonance and differential scanning calorimetric studies demonstrated novel microstructure and thermal properties not available in related random copolymers and a blend of P3HB and P3HP homopolymers.
Collapse
Affiliation(s)
- Qi Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute
of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute
of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute
of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hui Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute
of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yujin Cao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute
of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Ying Yang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute
of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute
of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
29
|
OOI T, MATSUMOTO K, KADOYA R, TAGUCHI S. Development of Integrated Process for Microbial Bioplastic Production from Plant Biomass. KOBUNSHI RONBUNSHU 2013. [DOI: 10.1295/koron.70.675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|