1
|
Hoyos LV, Vasquez-Muñoz LE, Osorio Y, Valencia-Revelo D, Devia-Cometa D, Große M, Charria-Girón E, Caicedo-Ortega NH. Tailored culture strategies to promote antimicrobial secondary metabolite production in Diaporthe caliensis: a metabolomic approach. Microb Cell Fact 2024; 23:328. [PMID: 39639292 PMCID: PMC11619134 DOI: 10.1186/s12934-024-02567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND In the search for new antimicrobial secondary metabolites of fungi, optimizing culture conditions remains a critical challenge, as standard laboratory approaches often result in low yields. While non-selective methods, such as modifying culture media, have been effective in expanding the chemical diversity of fungal metabolites, they have not yet established a direct link to key process parameters crucial for further optimization. This study investigates the capacity of Diaporthe caliensis as a biofactory for biologically active secondary metabolites, employing tailored culture media to explore the relationship between chemical diversity and critical process variables. RESULTS The metabolomic profiles, antibacterial activities, and production yields of the extracts were analyzed to progressively adjust the culture conditions. This study was conducted in five steps, evaluating carbon and nitrogen source concentration, nitrogen source type, salt supplementation, and pH adjustment. Altering the rice starch concentration affected biomass yield per unit of oxygen consumed, while modifications to the nitrogen source concentration influenced both the bioactivity and chemical space by Diaporthe caliensis. Despite changes at the metabolome level, the extracts consistently exhibited potent antibacterial activities, influenced by the nitrogen source, added salts and pH adjustments. For instance, when using corn steep liquor and rice starch, supplemented with micronutrients, different metabolites were produced depending on whether buffer or water was used, though both conditions showed similar antibacterial activities (IC50 ≈ 0.10 mg mL- 1 against Staphylococcus aureus and ≈ 0.14 mg mL- 1 against Escherichia coli). In the treatment where buffer was used to stabilize pH change, there was an increase in the production of phomol-like compounds which are associated with known antibiotic properties. In contrast, in the treatments using water, the drop in pH stimulated the production of previously unidentified metabolites with potential antimicrobial activity. CONCLUSIONS This study proposes a strategic methodology for the tailored formulation of culture media aiming to promote the biosynthesis of diverse secondary metabolites. This approach revealed the critical role of nutrient limitation and pH regulation in stimulating the production of polyketide-lactone derivatives, including the antibiotic phomol. Ultimately, the systematic, custom-designed culture conditions developed in this work offer a promising strategy for expanding the chemical diversity of Diaporthe caliensis, while providing valuable insights into the key parameters needed for optimizing this fungal biofactory.
Collapse
Affiliation(s)
- Laura V Hoyos
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología. Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Colombia
| | - Luis E Vasquez-Muñoz
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología. Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Colombia
| | - Yuliana Osorio
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología. Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Colombia
| | - Daniela Valencia-Revelo
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología. Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Colombia
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Daiana Devia-Cometa
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología. Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Colombia
| | - Miriam Große
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.
| | - Nelson H Caicedo-Ortega
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología. Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Colombia.
- Centro BioInc, Universidad Icesi, Cali, Colombia.
| |
Collapse
|
2
|
Yu Z, Li W, Ge C, Sun X, Wang J, Shen X, Yuan Q. Functional expansion of the natural inorganic phosphorus starvation response system in Escherichia coli. Biotechnol Adv 2023; 66:108154. [PMID: 37062526 DOI: 10.1016/j.biotechadv.2023.108154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
Phosphorus, an indispensable nutrient, plays an essential role in cell composition, metabolism, and signal transduction. When inorganic phosphorus (Pi) is scarce, the Pi starvation response in E. coli is activated to increase phosphorus acquisition and drive the cells into a non-growing state to reduce phosphorus consumption. In the six decades of research history, the initiation, output, and shutdown processes of the Pi starvation response have been extensively studied. Simultaneously, Pi starvation has been used in biosensor development, recombinant protein production, and natural product biosynthesis. In this review, we focus on the output process and the applications of the Pi starvation response that have not been summarized before. Meanwhile, based on the current status of mechanistic studies and applications, we propose practical strategies to develop the natural Pi starvation response into a multifunctional and standardized regulatory system in four aspects, including response threshold, temporal expression, intensity range, and bifunctional regulation, which will contribute to its broader application in more fields such as industrial production, medical analysis, and environmental protection.
Collapse
Affiliation(s)
- Zheng Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chang Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Rajpurohit H, Eiteman MA. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals. Microorganisms 2022; 10:2226. [PMID: 36363817 PMCID: PMC9695796 DOI: 10.3390/microorganisms10112226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 08/24/2023] Open
Abstract
Limiting an essential nutrient has a profound impact on microbial growth. The notion of growth under limited conditions was first described using simple Monod kinetics proposed in the 1940s. Different operational modes (chemostat, fed-batch processes) were soon developed to address questions related to microbial physiology and cell maintenance and to enhance product formation. With more recent developments of metabolic engineering and systems biology, as well as high-throughput approaches, the focus of current engineers and applied microbiologists has shifted from these fundamental biochemical processes. This review draws attention again to nutrient-limited processes. Indeed, the sophisticated gene editing tools not available to pioneers offer the prospect of metabolic engineering strategies which leverage nutrient limited processes. Thus, nutrient- limited processes continue to be very relevant to generate microbially derived biochemicals.
Collapse
Affiliation(s)
| | - Mark A. Eiteman
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. Nat Commun 2021; 12:4976. [PMID: 34404790 PMCID: PMC8371096 DOI: 10.1038/s41467-021-25243-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
To construct a superior microbial cell factory for chemical synthesis, a major challenge is to fully exploit cellular potential by identifying and engineering beneficial gene targets in sophisticated metabolic networks. Here, we take advantage of CRISPR interference (CRISPRi) and omics analyses to systematically identify beneficial genes that can be engineered to promote free fatty acids (FFAs) production in Escherichia coli. CRISPRi-mediated genetic perturbation enables the identification of 30 beneficial genes from 108 targets related to FFA metabolism. Then, omics analyses of the FFAs-overproducing strains and a control strain enable the identification of another 26 beneficial genes that are seemingly irrelevant to FFA metabolism. Combinatorial perturbation of four beneficial genes involving cellular stress responses results in a recombinant strain ihfAL−-aidB+-ryfAM−-gadAH−, producing 30.0 g L−1 FFAs in fed-batch fermentation, the maximum titer in E. coli reported to date. Our findings are of help in rewiring cellular metabolism and interwoven intracellular processes to facilitate high-titer production of biochemicals. Identification of gene targets is one of the major challenges to construct superior microbial cell factory for chemical synthesis. Here, the authors employ CRISPRi and omics analyses for genome-scale target genes identification for high-titer production of free fatty acids in E. coli.
Collapse
|
5
|
Wong PS, Tamano K, Aburatani S. Improvement of Free Fatty Acid Secretory Productivity in Aspergillus oryzae by Comprehensive Analysis on Time-Series Gene Expression. Front Microbiol 2021; 12:605095. [PMID: 33897630 PMCID: PMC8062725 DOI: 10.3389/fmicb.2021.605095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Aspergillus oryzae is a filamentous fungus that has historically been utilized in the fermentation of food products. In recent times, it has also been introduced as a component in the industrial biosynthesis of consumable compounds, including free fatty acids (FFAs), which are valuable and versatile products that can be utilized as feedstocks in the production of other commodities, such as pharmaceuticals and dietary supplements. To improve the FFA secretory productivity of A. oryzae in the presence of Triton X-100, we analyzed the gene expression of a wild-type control strain and a disruptant strain of an acyl-CoA synthetase gene, faaA, in a time-series experiment. We employed a comprehensive analysis strategy using the baySeq, DESeq2, and edgeR algorithms to clarify the vital pathways for FFA secretory productivity and select genes for gene modification. We found that the transport and metabolism of inorganic ions are crucial in the initial stages of FFA production and revealed 16 candidate genes to be modified in conjunction with the faaA disruption. These genes were verified through the construction of overexpression strains, and showed that the manipulation of reactions closer to the FFA biosynthesis step led to a higher increase in FFA secretory productivity. This resulted in the most successful overexpression strains to have an FFA secretory productivity more than two folds higher than that of the original faaA disruptant. Our study provides guidance for further gene modification for FFA biosynthesis in A. oryzae and for enhancing the productivity of other metabolites in other microorganisms through metabolic engineering.
Collapse
Affiliation(s)
- Pui Shan Wong
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Sachiyo Aburatani
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
6
|
Awad G, Garnier A. Maximization of saturated fatty acids through the production of P450BM3 monooxygenase in the engineered Escherichia coli. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Hernández Lozada NJ, Simmons TR, Xu K, Jindra MA, Pfleger BF. Production of 1-octanol in Escherichia coli by a high flux thioesterase route. Metab Eng 2020; 61:352-359. [PMID: 32707169 DOI: 10.1016/j.ymben.2020.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
1-octanol is a valuable molecule in the chemical industry, where it is used as a plasticizer, as a precursor in the production of linear low-density polyethylene (LLDPE), and as a growth inhibitor of tobacco plant suckers. Due to the low availability of eight-carbon acyl chains in natural lipid feedstocks and the selectivity challenges in petrochemical routes to medium-chain fatty alcohols,1-octanol sells for the highest price among the fatty alcohol products. As an alternative, metabolic engineers have pursued sustainable 1-octanol production via engineered microbes. Here, we report demonstration of gram per liter titers in the model bacterium Escherichia coli via the development of a pathway composed of a thioesterase, an acyl-CoA synthetase, and an acyl-CoA reductase. In addition, the impact of deleting fermentative pathways was explored E. coli K12 MG1655 strain for production of octanoic acid, a key octanol precursor. In order to overcome metabolic flux barriers, bioprospecting experiments were performed to identify acyl-CoA synthetases with high activity towards octanoic acid and acyl-CoA reductases with high activity to produce 1-octanol from octanoyl-CoA. Titration of expression of key pathway enzymes was performed and a strain with the full pathway integrated on the chromosome was created. The final strain produced 1-octanol at 1.3 g/L titer and a >90% C8 specificity from glycerol. In addition to the metabolic engineering efforts, this work addressed some of the technical challenges that arise when quantifying 1-octanol produced from cultures grown under fully aerobic conditions where evaporation and stripping are prevalent.
Collapse
Affiliation(s)
- Néstor J Hernández Lozada
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Trevor R Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Ke Xu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Michael A Jindra
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Increasing carbon source uptake rates to improve chemical productivity in metabolic engineering. Curr Opin Biotechnol 2018; 53:254-263. [DOI: 10.1016/j.copbio.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/22/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022]
|
9
|
Hernández Lozada NJ, Lai RY, Simmons TR, Thomas KA, Chowdhury R, Maranas CD, Pfleger BF. Highly Active C 8-Acyl-ACP Thioesterase Variant Isolated by a Synthetic Selection Strategy. ACS Synth Biol 2018; 7:2205-2215. [PMID: 30064208 DOI: 10.1021/acssynbio.8b00215] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microbial metabolism is an attractive route for producing medium chain length fatty acids, e.g., octanoic acid, used in the oleochemical industry. One challenge to this strategy is the lack of enzymes that are both highly active in a microbial host and selective toward substrates with desired chain length. Of the many steps in fatty acid biosynthesis, the thioesterase is the most widely used enzyme for controlling chain length. Thioesterases hydrolyze the thioester bond between fatty acids and the acyl-carrier protein (ACP) or coenzyme A (CoA) cofactor. The functional role of thioesterases varies between organisms ( i.e., bacteria vs plant) and therefore so do the substrate specificities. As a result, microbial biocatalysts that utilize a heterologous thioesterase either produce high titers of fatty acids with mixed chain lengths or low titers of products with a narrow chain length distribution. To search for highly active enzymes that selectively hydrolyze octanoyl-ACP, we developed a genetic selection based on the lipoic acid requirement of Escherichia coli. We used the selection to identify variants in a randomly mutagenized library of the C8-specific Cuphea palustris FatB1 thioesterase. After optimizing expression of the thioesterase, E. coli cultures produced 1.7 g/L of octanoic acid with >90% specificity from a single chromosomal copy of this thioesterase. In vitro studies confirmed the mutant thioesterase possessed a 15-fold increase in kcat compared to its native sequence. The high level of specific activity allowed for low levels of expression while maintaining fatty acid titer. The low expression requirement will allow metabolic engineers to use more cellular resources to address other limitations in the pathway and maximize overall productivity.
Collapse
Affiliation(s)
- Néstor J. Hernández Lozada
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Rung-Yi Lai
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Trevor R. Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Kelsey A. Thomas
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Ratul Chowdhury
- Department of Chemical Engineering, Pennsylvania State University, 158 Fenske Laboratory, University Park, Pennsylvania 16802, United States
| | - Costas D. Maranas
- Department of Chemical Engineering, Pennsylvania State University, 158 Fenske Laboratory, University Park, Pennsylvania 16802, United States
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Pandit AV, Srinivasan S, Mahadevan R. Redesigning metabolism based on orthogonality principles. Nat Commun 2017; 8:15188. [PMID: 28555623 PMCID: PMC5459945 DOI: 10.1038/ncomms15188] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/08/2017] [Indexed: 01/25/2023] Open
Abstract
Modifications made during metabolic engineering for overproduction of chemicals have network-wide effects on cellular function due to ubiquitous metabolic interactions. These interactions, that make metabolic network structures robust and optimized for cell growth, act to constrain the capability of the cell factory. To overcome these challenges, we explore the idea of an orthogonal network structure that is designed to operate with minimal interaction between chemical production pathways and the components of the network that produce biomass. We show that this orthogonal pathway design approach has significant advantages over contemporary growth-coupled approaches using a case study on succinate production. We find that natural pathways, fundamentally linked to biomass synthesis, are less orthogonal in comparison to synthetic pathways. We suggest that the use of such orthogonal pathways can be highly amenable for dynamic control of metabolism and have other implications for metabolic engineering.
Collapse
Affiliation(s)
- Aditya Vikram Pandit
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
| | - Shyam Srinivasan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, CanadaM5S 3G9
| |
Collapse
|
11
|
Engineering glucose metabolism of Escherichia coli under nitrogen starvation. NPJ Syst Biol Appl 2017; 3:16035. [PMID: 28725483 PMCID: PMC5516864 DOI: 10.1038/npjsba.2016.35] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/07/2016] [Accepted: 10/05/2016] [Indexed: 12/02/2022] Open
Abstract
A major aspect of microbial metabolic engineering is the development of chassis hosts that have favorable global metabolic phenotypes, and can be further engineered to produce a variety of compounds. In this work, we focus on the problem of decoupling growth and production in the model bacterium Escherichia coli, and in particular on the maintenance of active metabolism during nitrogen-limited stationary phase. We find that by overexpressing the enzyme PtsI, a component of the glucose uptake system that is inhibited by α-ketoglutarate during nitrogen limitation, we are able to achieve a fourfold increase in metabolic rates. Alternative systems were also tested: chimeric PtsI proteins hypothesized to be insensitive to α-ketoglutarate did not improve metabolic rates under the conditions tested, whereas systems based on the galactose permease GalP suffered from energy stress and extreme sensitivity to expression level. Overexpression of PtsI is likely to be a useful arrow in the metabolic engineer’s quiver as productivity of engineered pathways becomes limited by central metabolic rates during stationary phase production processes.
Collapse
|
12
|
Youngquist JT, Korosh TC, Pfleger BF. Functional genomics analysis of free fatty acid production under continuous phosphate limiting conditions. J Ind Microbiol Biotechnol 2016; 44:759-772. [PMID: 27738839 DOI: 10.1007/s10295-016-1846-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/28/2016] [Indexed: 12/19/2022]
Abstract
Free fatty acids (FFA) are an attractive platform chemical that serves as a functional intermediate in metabolic pathways for producing oleochemicals. Many groups have established strains of Escherichia coli capable of producing various chain-length mixtures of FFA by heterologous expression of acyl-ACP thioesterases. For example, high levels of dodecanoic acid are produced by an E. coli strain expressing the Umbellularia californica FatB2 thioesterase, BTE. Prior studies achieved high dodecanoic acid yields and productivities under phosphate-limiting media conditions. In an effort to understand the metabolic and physiological changes that led to increased FFA production, the transcriptome of this strain was assessed as a function of nutrient limitation and growth rate. FFA generation under phosphate limitation led to consistent changes in transporter expression, osmoregulation, and central metabolism. Guided by these results, targeted knockouts led to a further ~11 % in yield in FFA.
Collapse
Affiliation(s)
- J Tyler Youngquist
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Drive, Madison, WI, USA
| | - Travis C Korosh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Drive, Madison, WI, USA.,Graduate Program in Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Drive, Madison, WI, USA. .,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway. PLoS One 2016; 11:e0160035. [PMID: 27466817 PMCID: PMC4965127 DOI: 10.1371/journal.pone.0160035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/12/2016] [Indexed: 11/19/2022] Open
Abstract
Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product.
Collapse
|
14
|
Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst Biol Appl 2016; 2:16009. [PMID: 28725470 PMCID: PMC5516863 DOI: 10.1038/npjsba.2016.9] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023] Open
Abstract
The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.
Collapse
Affiliation(s)
- Victor Chubukov
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Héctor García Martín
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
15
|
Luterbacher JS, Alonso DM, Rand JM, Questell-Santiago YM, Yeap JH, Pfleger BF, Dumesic JA. Solvent-enabled nonenyzmatic sugar production from biomass for chemical and biological upgrading. CHEMSUSCHEM 2015; 8:1317-1322. [PMID: 25782703 DOI: 10.1002/cssc.201403418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/11/2015] [Indexed: 06/04/2023]
Abstract
We recently reported a nonenzymatic biomass deconstruction process for producing carbohydrates using homogeneous mixtures of γ-valerolactone (GVL) and water as a solvent. A key step in this process is the separation of the GVL from the aqueous phase, enabling GVL recycling and the production of a concentrated aqueous carbohydrate solution. In this study, we demonstrate that phenolic solvents-sec-butylphenol, nonylphenol, and lignin-derived propyl guaiacol-are effective at separating GVL from the aqueous phase using only small amounts of solvent (0.5 g per g of the original water, GVL, and sugar hydrolysate). Furthermore, using nonylphenol, we produced a hydrolysate that supported robust growth and high yields of ethanol (0.49 g EtOH per g glucose) at an industrially relevant concentration (50.8 g L(-1) EtOH). These results suggest that using phenolic solvents could be an interesting solution for separating and/or detoxifying aqueous carbohydrate solutions produced using GVL-based biomass deconstruction processes.
Collapse
Affiliation(s)
- Jeremy S Luterbacher
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (USA)
| | | | | | | | | | | | | |
Collapse
|
16
|
Sekar K, Tyo KE. Regulatory effects on central carbon metabolism from poly-3-hydroxybutryate synthesis. Metab Eng 2015; 28:180-189. [DOI: 10.1016/j.ymben.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|
17
|
Pfleger BF, Gossing M, Nielsen J. Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 2015; 29:1-11. [PMID: 25662836 DOI: 10.1016/j.ymben.2015.01.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
Abstract
Microbial synthesis of oleochemicals has advanced significantly in the last decade. Microbes have been engineered to convert renewable substrates to a wide range of molecules that are ordinarily made from plant oils. This approach is attractive because it can reduce a motivation for converting tropical rainforest into farmland while simultaneously enabling access to molecules that are currently expensive to produce from oil crops. In the last decade, enzymes responsible for producing oleochemicals in nature have been identified, strategies to circumvent native regulation have been developed, and high yielding strains have been designed, built, and successfully demonstrated. This review will describe the metabolic pathways that lead to the diverse molecular features found in natural oleochemicals, highlight successful metabolic engineering strategies, and comment on areas where future work could further advance the field.
Collapse
Affiliation(s)
- Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States.
| | - Michael Gossing
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
18
|
Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol. Nat Commun 2014; 5:5031. [PMID: 25248664 DOI: 10.1038/ncomms6031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/19/2014] [Indexed: 12/20/2022] Open
Abstract
Increasingly complex metabolic pathways have been engineered by modifying natural pathways and establishing de novo pathways with enzymes from a variety of organisms. Here we apply retro-biosynthetic screening to a modular pathway design to identify a redox neutral, theoretically high yielding route to a branched C6 alcohol. Enzymes capable of converting natural E. coli metabolites into 4-methyl-pentanol (4MP) via coenzyme A (CoA)-dependent chemistry were taken from nine different organisms to form a ten-step de novo pathway. Selectivity for 4MP is enhanced through the use of key enzymes acting on acyl-CoA intermediates, a carboxylic acid reductase from Nocardia iowensis and an alcohol dehydrogenase from Leifsonia sp. strain S749. One implementation of the full pathway from glucose demonstrates selective carbon chain extension and acid reduction with 4MP constituting 81% (90±7 mg l(-1)) of the observed alcohol products. The highest observed 4MP titre is 192±23 mg l(-1). These results demonstrate the ability of modular pathway screening to facilitate de novo pathway engineering.
Collapse
|
19
|
Engineering Escherichia coli for odd straight medium chain free fatty acid production. Appl Microbiol Biotechnol 2014; 98:8145-54. [PMID: 25030454 DOI: 10.1007/s00253-014-5882-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/03/2014] [Accepted: 06/11/2014] [Indexed: 01/25/2023]
Abstract
Microbial biosynthesis of free fatty acids (FFAs) can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into Escherichia coli. The engineered E. coli usually produced even chain FFAs. In this study, propionyl-CoA synthetase (prpE) from Salmonella enterica was overexpressed in two efficient even chain FFAs producers, ML103 (pXZM12) carrying the acyl-ACP thioesterase gene from Umbellularia californica and ML103 (pXZ18) carrying the acyl-ACP thioesterase gene from Ricinus communis combined with supplement of extracellular propionate. With these metabolically engineered E. coli, the odd straight chain FFAs, undecanoic acid (C11:0), tridecanoic acid (C13:0), and pentadecanoic acid (C15:0) were produced from glucose and propionate. The highest total odd straight chain FFAs produced by ML103 (pXZM12, pBAD-prpE) reached 276 mg/l with a ratio of 23.43 % of the total FFAs. In ML103 (pXZ18, pBAD-prpE), the highest total odd straight chain FFAs accumulated to 297 mg/l, and the ratio reached 17.68 % of the total FFAs. Due to the different substrate specificity of the acyl-ACP thioesterases, the major odd straight chain FFA components of ML103 (pXZM12, pBAD-prpE) were undecanoic acid and tridecanoic acid, while the ML103 (pXZ18, pBAD-prpE) preferred pentadecanoic acid.
Collapse
|
20
|
Tee TW, Chowdhury A, Maranas CD, Shanks JV. Systems metabolic engineering design: fatty acid production as an emerging case study. Biotechnol Bioeng 2014; 111:849-57. [PMID: 24481660 PMCID: PMC4241050 DOI: 10.1002/bit.25205] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/21/2014] [Accepted: 01/28/2014] [Indexed: 12/20/2022]
Abstract
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities.
Collapse
Affiliation(s)
- Ting Wei Tee
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa
| | | | | | | |
Collapse
|
21
|
Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA. Nonenzymatic Sugar Production from Biomass Using Biomass-Derived -Valerolactone. Science 2014; 343:277-80. [DOI: 10.1126/science.1246748] [Citation(s) in RCA: 525] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:7. [PMID: 24405789 PMCID: PMC3896788 DOI: 10.1186/1754-6834-7-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/24/2013] [Indexed: 05/04/2023]
Abstract
The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed.
Collapse
Affiliation(s)
- Helge Jans Janßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Behrends V, Maharjan RP, Ryall B, Feng L, Liu B, Wang L, Bundy JG, Ferenci T. A metabolic trade-off between phosphate and glucose utilization in Escherichia coli. ACTA ACUST UNITED AC 2014; 10:2820-2. [DOI: 10.1039/c4mb00313f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using full genome sequencing and metabolomics we show that adaptation to chronic nutrient starvation reduces metabolic flexibility inEscherichia coli.
Collapse
Affiliation(s)
- Volker Behrends
- Department of Surgery and Cancer
- Imperial College London
- London SW7 2AZ, UK
| | - Ram P. Maharjan
- School of Molecular Bioscience
- University of Sydney
- , Australia
| | - Ben Ryall
- School of Molecular Bioscience
- University of Sydney
- , Australia
| | - Lu Feng
- TEDA Institute of Biological Sciences and Biotechnology
- Nankai University
- Tianjin 300457, P. R. China
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology
- Nankai University
- Tianjin 300457, P. R. China
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology
- Nankai University
- Tianjin 300457, P. R. China
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
| | - Jacob G. Bundy
- Department of Surgery and Cancer
- Imperial College London
- London SW7 2AZ, UK
| | - Thomas Ferenci
- School of Molecular Bioscience
- University of Sydney
- , Australia
| |
Collapse
|
24
|
Production of medium chain length fatty alcohols from glucose in Escherichia coli. Metab Eng 2013; 20:177-86. [PMID: 24141053 DOI: 10.1016/j.ymben.2013.10.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/19/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022]
Abstract
Metabolic engineering offers the opportunity to produce a wide range of commodity chemicals that are currently derived from petroleum or other non-renewable resources. Microbial synthesis of fatty alcohols is an attractive process because it can control the distribution of chain lengths and utilize low cost fermentation substrates. Specifically, primary alcohols with chain lengths of 12 to 14 carbons have many uses in the production of detergents, surfactants, and personal care products. The current challenge is to produce these compounds at titers and yields that would make them economically competitive. Here, we demonstrate a metabolic engineering strategy for producing fatty alcohols from glucose. To produce a high level of 1-dodecanol and 1-tetradecanol, an acyl-ACP thioesterase (BTE), an acyl-CoA ligase (FadD), and an acyl-CoA/aldehyde reductase (MAACR) were overexpressed in an engineered strain of Escherichia coli. Yields were improved by balancing expression levels of each gene, using a fed-batch cultivation strategy, and adding a solvent to the culture for extracting the product from cells. Using these strategies, a titer of over 1.6 g/L fatty alcohol with a yield of over 0.13 g fatty alcohol/g carbon source was achieved. These are the highest reported yield of fatty alcohols produced from glucose in E. coli.
Collapse
|