1
|
Lu C, Li Z, Chang L, Dong Z, Guo P, Shen G, Xia Q, Zhao P. Efficient Delivery of dsRNA and DNA in Cultured Silkworm Cells for Gene Function Analysis Using PAMAM Dendrimers System. INSECTS 2019; 11:insects11010012. [PMID: 31877645 PMCID: PMC7022533 DOI: 10.3390/insects11010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/26/2023]
Abstract
: Polyamidoamine (PAMAM) dendrimers are emerging as intriguing nanovectors for nucleic acid delivery because of their unique well-defined architecture and high binding capacity, which have been broadly applied in DNA- and RNA-based therapeutics. The low-cost and high-efficiency of PAMAM dendrimers relative to traditional liposomal transfection reagents also promote their application in gene function analysis. In this study, we first investigated the potential use of a PAMAM system in the silkworm model insect. We determined the binding property of G5-PAMAM using dsRNA and DNA in vitro, and substantially achieved the delivery of dsRNA and DNA from culture medium to both silkworm BmN and BmE cells, thus leading to efficient knockdown and expression of target genes. Under treatments with different concentrations of G5-PAMAM, we evaluated its cellular cytotoxicity on silkworm cells, and the results show that G5-PAMAM had no obvious toxicity to cells. The presence of serum in the culture medium did not affect the delivery performance of DNA and dsRNA by G5-PAMAM, revealing its convenient use for various purposes. In conclusion, our data demonstrate that the PAMAM system provides a promising strategy for delivering dsRNA and DNA in cultured silkworm cells and promote its further application in individuals.
Collapse
Affiliation(s)
- Chenchen Lu
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Li Chang
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhaoming Dong
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Dong Z, Hu Z, Qin Q, Dong F, Huang L, Long J, Chen P, Lu C, Pan M. CRISPR/Cas9-mediated disruption of the immediate early-0 and 2 as a therapeutic approach to Bombyx mori nucleopolyhedrovirus in transgenic silkworm. INSECT MOLECULAR BIOLOGY 2019; 28:112-122. [PMID: 30120848 DOI: 10.1111/imb.12529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The CRISPR/Cas9 system is a powerful tool for the treatment of infectious diseases. In our previous study, we knocked out the Bombyx mori nucleopolyhedrovirus (BmNPV) key genes and BmNPV-dependent host factor to generate transgenic antiviral strains. To further expand the range of target genes for BmNPV and more effectively prevent and control pathogenic infections, we performed gene editing and antiviral analysis by constructing a target-directed baculovirus early transcriptional activator immediate early-0 (ie-0) and 2 (ie-2) transgenic silkworm line. We hybridized it with Cas9 transgenic line to produce a double-positive transgenic Cas9(+)/sgIE0-sgIE2(+) line that could activate the CRISPR gene editing system. We first demonstrated that the system is capable of efficiently editing target genes and resulting in fragment deletions in the BmNPV genome. Survival rate of the transgenic Cas9(+)/sgIE0-sgIE2(+) line reached 65% after inoculation with 1 × 106 occlusion bodies/larva. Molecular analysis showed that BmNPV DNA replication and viral gene expression level in the transgenic Cas9(+)/sgIE0-sgIE2(+) line were significantly inhibited compared with the control Cas9(-)/sgIE0-sgIE2(-) line. These results indicated that IE-0 and IE-2, as baculovirus early transcriptional activators, can be used as target sites for gene therapy and that multigene editing could expand the range of target sites for research to create silkworm resistance breeds.
Collapse
Affiliation(s)
- Z Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Z Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Q Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - F Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - L Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - J Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - P Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - C Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China
| | - M Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China
| |
Collapse
|
3
|
RNA interference technology to improve the baculovirus-insect cell expression system. Biotechnol Adv 2018; 36:443-451. [DOI: 10.1016/j.biotechadv.2018.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/11/2017] [Accepted: 01/13/2018] [Indexed: 02/02/2023]
|
4
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
5
|
Xu J, Zhang P, Kusakabe T, Mon H, Li Z, Zhu L, Iiyama K, Banno Y, Morokuma D, Lee JM. Comparative proteomic analysis of hemolymph proteins from Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-sensitive or -resistant silkworm strains during infections. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 16:36-47. [DOI: 10.1016/j.cbd.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/21/2015] [Accepted: 07/26/2015] [Indexed: 01/07/2023]
|
6
|
Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system. Mol Cell Biochem 2015; 409:255-62. [DOI: 10.1007/s11010-015-2529-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/06/2015] [Indexed: 01/13/2023]
|
7
|
Jose AM. Movement of regulatory RNA between animal cells. Genesis 2015; 53:395-416. [PMID: 26138457 PMCID: PMC4915348 DOI: 10.1002/dvg.22871] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022]
Abstract
Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions.
Collapse
Affiliation(s)
- Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|
8
|
Mitsudome T, Mon H, Xu J, Li Z, Lee JM, Patil AA, Masuda A, Iiyama K, Morokuma D, Kusakabe T. Biochemical characterization of maintenance DNA methyltransferase DNMT-1 from silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 58:55-65. [PMID: 25623240 DOI: 10.1016/j.ibmb.2015.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
DNA methylation is an important epigenetic mechanism involved in gene expression of vertebrates and invertebrates. In general, DNA methylation profile is established by de novo DNA methyltransferases (DNMT-3A, -3B) and maintainance DNA methyltransferase (DNMT-1). DNMT-1 has a strong substrate preference for hemimethylated DNA over the unmethylated one. Because the silkworm genome lacks an apparent homologue of de novo DNMT, it is still unclear that how silkworm chromosome establishes and maintains its DNA methylation profile. As the first step to unravel this enigma, we purified recombinant BmDNMT-1 using baculovirus expression system and characterized its DNA-binding and DNA methylation activity. We found that the BmDNMT-1 preferentially methylates hemimethylated DNA despite binding to both unmethylated and hemimethylated DNA. Interestingly, BmDNMT-1 formed a complex with DNA in the presence or absence of methyl group donor, S-Adenosylmethionine (AdoMet) and the AdoMet-dependent complex formation was facilitated by Zn(2+) and Mn(2+). Our results provide clear evidence that BmDNMT-1 retained the function as maintenance DNMT but its sensitivity to metal ions is different from mammalian DNMT-1.
Collapse
Affiliation(s)
- Takumi Mitsudome
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Jian Xu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Zhiqing Li
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Anandrao Ashok Patil
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Atsushi Masuda
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Kazuhiro Iiyama
- Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Daisuke Morokuma
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan.
| |
Collapse
|
9
|
Li Z, Zeng B, Ling L, Xu J, You L, Aslam AFM, Tan A, Huang Y. Enhancement of larval RNAi efficiency by over-expressing Argonaute2 in Bombyx mori. Int J Biol Sci 2015; 11:176-85. [PMID: 25561900 PMCID: PMC4279093 DOI: 10.7150/ijbs.10235] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/16/2014] [Indexed: 11/30/2022] Open
Abstract
RNA interference has been described as a powerful genetic tool for gene functional analysis and a promising approach for pest management. However, RNAi efficiency varies significantly among insect species due to distinct RNAi machineries. Lepidopteran insects include a large number of pests as well as model insects, such as the silkworm, Bombyx mori. However, only limited success of in vivo RNAi has been reported in lepidoptera, particularly during the larval stages when the worms feed the most and do the most harm to the host plant. Enhancing the efficiency of larval RNAi in lepidoptera is urgently needed to develop RNAi-based pest management strategies. In the present study, we investigate the function of the conserved RNAi core factor, Argonaute2 (Ago2), in mediating B. mori RNAi efficiency. We demonstrate that introducing BmAgo2 dsRNA inhibits the RNAi response in both BmN cells and embryos. Furthermore, we establish several transgenic silkworm lines to assess the roles of BmAgo2 in larval RNAi. Over-expressing BmAgo2 significantly facilitated both dsRNA-mediated larval RNAi when targeting DsRed using dsRNA injection and shRNA-mediated larval RNAi when targeting BmBlos2 using transgenic shRNA expression. Our results show that BmAgo2 is involved in RNAi in B. mori and provides a promising approach for improving larval RNAi efficiency in B. mori and in lepidopteran insects in general.
Collapse
Affiliation(s)
- Zhiqian Li
- 1. Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China. ; 2. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baosheng Zeng
- 1. Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China. ; 2. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Ling
- 1. Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Xu
- 1. Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China. ; 2. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang You
- 1. Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Abu F M Aslam
- 1. Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Anjiang Tan
- 1. Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yongping Huang
- 1. Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Kolliopoulou A, Swevers L. Recent progress in RNAi research in Lepidoptera: intracellular machinery, antiviral immune response and prospects for insect pest control. CURRENT OPINION IN INSECT SCIENCE 2014; 6:28-34. [PMID: 0 DOI: 10.1016/j.cois.2014.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/27/2014] [Accepted: 09/30/2014] [Indexed: 05/03/2023]
|
11
|
A novel third chromosomal locus controls susceptibility to Autographa californica multiple nucleopolyhedrovirus in the silkworm, Bombyx mori. Appl Microbiol Biotechnol 2013; 98:3049-58. [DOI: 10.1007/s00253-013-5437-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/04/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
|