1
|
Zhu E, Hiramatsu K, Inoue T, Mori K, Tashiro K, Fujita K, Karashima T, Takashita H, Okutsu K, Yoshizaki Y, Takamine K, Tamaki H, Futagami T. Deficiency of β-xylosidase activity in Aspergillus luchuensis mut. kawachii IFO 4308. Biosci Biotechnol Biochem 2024; 88:816-823. [PMID: 38621718 DOI: 10.1093/bbb/zbae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
In this study, we investigated a deleterious mutation in the β-xylosidase gene, xylA (AkxylA), in Aspergillus luchuensis mut. kawachii IFO 4308 by constructing an AkxylA disruptant and complementation strains of AkxylA and xylA derived from A. luchuensis RIB2604 (AlxylA), which does not harbor the mutation in xylA. Only the AlxylA complementation strain exhibited significantly higher growth and substantial β-xylosidase activity in medium containing xylan, accompanied by an increase in XylA expression. This resulted in lower xylobiose and higher xylose concentrations in the mash of barley shochu. These findings suggest that the mutation in xylA affects xylose levels during the fermentation process. Because the mutation in xylA was identified not only in the genome of strain IFO 4308 but also the genomes of other industrial strains of A. luchuensis and A. luchuensis mut. kawachii, these findings enhance our understanding of the genetic factors that affect the fermentation characteristics.
Collapse
Affiliation(s)
- Enkang Zhu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
- School of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Kentaro Hiramatsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Taiga Inoue
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Kazuki Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Kiyotaka Fujita
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
| | | | | | - Kayu Okutsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Yumiko Yoshizaki
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Korimoto, Kagoshima University, Kagoshima, Japan
| | - Kazunori Takamine
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Korimoto, Kagoshima University, Kagoshima, Japan
| | - Hisanori Tamaki
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Korimoto, Kagoshima University, Kagoshima, Japan
| | - Taiki Futagami
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Korimoto, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
2
|
Tanamachi C, Iwahashi J, Togo A, Ohta K, Miura M, Sakamoto T, Gotoh K, Horita R, Kamei K, Watanabe H. Molecular Analysis for Potential Hospital-Acquired Infection Caused by Aspergillus Tubingensis Through the Environment. Kurume Med J 2024; 69:185-193. [PMID: 38233176 DOI: 10.2739/kurumemedj.ms6934013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The identification of Aspergillus species has been performed mainly by morphological classification. In recent years, however, the revelation of the existence of cryptic species has required genetic analysis for accurate identification. The purpose of this study was to investigate five Aspergillus section Nigri strains isolated from a patient and the environment in a university hospital. Species identification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry identified all five black Aspergillus strains as Aspergillus niger. However, calmodulin gene sequence analysis revealed that all five strains were cryptic species, four of which, including the clinical strain, were Aspergillus tubingensis. Hospital-acquired infection of the patient with the A. tubingensis strain introduced from the environment was suspected, but sequencing of six genes from four A. tubingensis strains revealed no environmental strain that completely matched the patient strain. The amount of in vitro biofilm formation of the four examples of the A. tubingensis strain was comparable to that of Aspergillus fumigatus. An extracellular matrix was observed by electron microscopy of the biofilm of the clinical strain. This study suggests that various types of biofilm-forming A. tubingensis exist in the hospital environment and that appropriate environmental management is required.
Collapse
Affiliation(s)
- Chiyoko Tanamachi
- Department of Clinical Laboratory Medicine, Kurume University Hospital
| | - Jun Iwahashi
- Department of Infection Control and Prevention, Kurume University School of Medicine
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine
| | - Miho Miura
- Division of Infection Control and Prevention, Kurume University Hospital
| | - Toru Sakamoto
- Division of Infection Control and Prevention, Kurume University Hospital
- Department of Infection Control and Prevention, Kurume University School of Medicine
| | - Kenji Gotoh
- Division of Infection Control and Prevention, Kurume University Hospital
- Department of Infection Control and Prevention, Kurume University School of Medicine
| | - Rie Horita
- Department of Clinical Laboratory Medicine, Kurume University Hospital
| | - Katsuhiko Kamei
- Division of Clinical Research, Medical Mycology Research Center, Chiba University
| | - Hiroshi Watanabe
- Division of Infection Control and Prevention, Kurume University Hospital
- Department of Infection Control and Prevention, Kurume University School of Medicine
| |
Collapse
|
3
|
Musangi CR, Juma BS, Mukhebi DW, Isoe EM, Kibiti CM, Mbinda WM. Aspergillus population diversity and its role in aflatoxin contamination of cashew nuts from coastal Kenya. PLoS One 2024; 19:e0292519. [PMID: 38271327 PMCID: PMC10810534 DOI: 10.1371/journal.pone.0292519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/23/2023] [Indexed: 01/27/2024] Open
Abstract
Cashew nuts are among the main cash crops in coastal Kenya, due in large part to their high nutritional value. Unfortunately, they also make them highly susceptible to mold contamination, resulting in biodeterioration of the nutritional value and potential contamination with toxic secondary metabolites, such as aflatoxins, that cause them to be rejected for sale at the market. We determined the population diversity of the Aspergillus species and their role in aflatoxin contamination in cashew nuts in selected coastal regions of Kenya. Fifty raw cashew nut samples were collected from post-harvest storage facilities across three counties in Kenya's coastal region and examined for moisture content and the presence of Aspergillus fungi. About 63 presumptive isolates were recovered from the cashew nuts. ITS and 28S rDNA regions were sequenced. The aflD, aflM and aflR genes were amplified to identify the potentially aflatoxigenic from the Aspergillus isolates. The Aflatoxins' presence on the isolates was screened using UV and the ammonia vapour test on coconut milk agar and validated using ELISA assay. A comparison of cashew moisture content between the three counties sampled revealed a significant difference. Sixty-three isolates were recovered and identified to section based on morphological characters and their respective ITS regions were used to obtain species identifications. Three sections from the genus were represented, Flavi and Nigri, and Terrei with isolates from the section Nigri having slightly greater abundance (n = 35). The aflD, aflM and aflR genes were amplified for all isolates to assess the presence of the aflatoxin biosynthesis pathway, indicating the potential for aflatoxin production. Less than half of the Aspergillus isolates (39.68%) contained the aflatoxin pathway genes, while 22.22% isolates were aflatoxigenic, which included only the section Flavi isolates. Section Flavi isolates identification was confirmed by calmodulin gene. The presence of species from Aspergillus section Flavi and section Nigri indicate the potential for aflatoxin or ochratoxin in the cashew nuts. The study established a foundation for future investigations of the fungi and mycotoxins contaminating cashew nuts in Kenya, which necessitates developing strategies to prevent infection by mycotoxigenic fungi, especially during the storage and processing phases.
Collapse
Affiliation(s)
- Colletah Rhoda Musangi
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Bicko Steve Juma
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Dennis Wamalabe Mukhebi
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Everlyne Moraa Isoe
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Wilton Mwema Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| |
Collapse
|
4
|
Nishitani A, Hiramatsu K, Kadooka C, Mori K, Okutsu K, Yoshizaki Y, Takamine K, Tashiro K, Goto M, Tamaki H, Futagami T. Expression of heterochromatin protein 1 affects citric acid production in Aspergillus luchuensis mut. kawachii. J Biosci Bioeng 2023; 136:443-451. [PMID: 37775438 DOI: 10.1016/j.jbiosc.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
A putative methyltransferase, LaeA, controls citric acid production through epigenetic regulation of the citrate exporter gene, cexA, in the white koji fungus Aspergillus luchuensis mut. kawachii. In this study, we investigated the role of another epigenetic regulator, heterochromatin protein 1, HepA, in citric acid production. The ΔhepA strain exhibited reduced citric acid production in liquid culture, although to a lesser extent compared to the ΔlaeA strain. In addition, the ΔlaeA ΔhepA strain showed citric acid production similar to the ΔlaeA strain, indicating that HepA plays a role in citric acid production, albeit with a less-significant regulatory effect than LaeA. RNA-seq analysis revealed that the transcriptomic profiles of the ΔhepA and ΔlaeA strains were similar, and the expression level of cexA was reduced in both strains. These findings suggest that the genes regulated by HepA are similar to those regulated by LaeA in A. luchuensis mut. kawachii. However, the reductions in citric acid production and cexA expression observed in the disruptants were mitigated in rice koji, a solid-state culture. Thus, the mechanism by which citric acid production is regulated differs between liquid and solid cultivation. Further investigation is thus needed to understand the regulatory mechanism in koji.
Collapse
Affiliation(s)
- Atsushi Nishitani
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Center for Advanced Science Research and Promotion, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kentaro Hiramatsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kazuki Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kayu Okutsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yumiko Yoshizaki
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kazunori Takamine
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Masatoshi Goto
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Hisanori Tamaki
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
5
|
Wang X, Jarmusch SA, Frisvad JC, Larsen TO. Current status of secondary metabolite pathways linked to their related biosynthetic gene clusters in Aspergillus section Nigri. Nat Prod Rep 2023; 40:237-274. [PMID: 35587705 DOI: 10.1039/d1np00074h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: up to the end of 2021Aspergilli are biosynthetically 'talented' micro-organisms and therefore the natural products community has continually been interested in the wealth of biosynthetic gene clusters (BGCs) encoding numerous secondary metabolites related to these fungi. With the rapid increase in sequenced fungal genomes combined with the continuous development of bioinformatics tools such as antiSMASH, linking new structures to unknown BGCs has become much easier when taking retro-biosynthetic considerations into account. On the other hand, in most cases it is not as straightforward to prove proposed biosynthetic pathways due to the lack of implemented genetic tools in a given fungal species. As a result, very few secondary metabolite biosynthetic pathways have been characterized even amongst some of the most well studied Aspergillus spp., section Nigri (black aspergilli). This review will cover all known biosynthetic compound families and their structural diversity known from black aspergilli. We have logically divided this into sub-sections describing major biosynthetic classes (polyketides, non-ribosomal peptides, terpenoids, meroterpenoids and hybrid biosynthesis). Importantly, we will focus the review on metabolites which have been firmly linked to their corresponding BGCs.
Collapse
Affiliation(s)
- Xinhui Wang
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Jens C Frisvad
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Thomas O Larsen
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Bian C, Kusuya Y, Sklenář F, D’hooge E, Yaguchi T, Ban S, Visagie C, Houbraken J, Takahashi H, Hubka V. Reducing the number of accepted species in Aspergillus series Nigri. Stud Mycol 2022; 102:95-132. [PMID: 36760462 PMCID: PMC9903907 DOI: 10.3114/sim.2022.102.03] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The Aspergillus series Nigri contains biotechnologically and medically important species. They can produce hazardous mycotoxins, which is relevant due to the frequent occurrence of these species on foodstuffs and in the indoor environment. The taxonomy of the series has undergone numerous rearrangements, and currently, there are 14 species accepted in the series, most of which are considered cryptic. Species-level identifications are, however, problematic or impossible for many isolates even when using DNA sequencing or MALDI-TOF mass spectrometry, indicating a possible problem in the definition of species limits or the presence of undescribed species diversity. To re-examine the species boundaries, we collected DNA sequences from three phylogenetic markers (benA, CaM and RPB2) for 276 strains from series Nigri and generated 18 new whole-genome sequences. With the three-gene dataset, we employed phylogenetic methods based on the multispecies coalescence model, including four single-locus methods (GMYC, bGMYC, PTP and bPTP) and one multilocus method (STACEY). From a total of 15 methods and their various settings, 11 supported the recognition of only three species corresponding to the three main phylogenetic lineages: A. niger, A. tubingensis and A. brasiliensis. Similarly, recognition of these three species was supported by the GCPSR approach (Genealogical Concordance Phylogenetic Species Recognition) and analysis in DELINEATE software. We also showed that the phylogeny based on benA, CaM and RPB2 is suboptimal and displays significant differences from a phylogeny constructed using 5 752 single-copy orthologous proteins; therefore, the results of the delimitation methods may be subject to a higher than usual level of uncertainty. To overcome this, we randomly selected 200 genes from these genomes and performed ten independent STACEY analyses, each with 20 genes. All analyses supported the recognition of only one species in the A. niger and A. brasiliensis lineages, while one to four species were inconsistently delimited in the A. tubingensis lineage. After considering all of these results and their practical implications, we propose that the revised series Nigri includes six species: A. brasiliensis, A. eucalypticola, A. luchuensis (syn. A. piperis), A. niger (syn. A. vinaceus and A. welwitschiae), A. tubingensis (syn. A. chiangmaiensis, A. costaricensis, A. neoniger and A. pseudopiperis) and A. vadensis. We also showed that the intraspecific genetic variability in the redefined A. niger and A. tubingensis does not deviate from that commonly found in other aspergilli. We supplemented the study with a list of accepted species, synonyms and unresolved names, some of which may threaten the stability of the current taxonomy. Citation: Bian C, Kusuya Y, Sklenář F, D'hooge E, Yaguchi T, Ban S, Visagie CM, Houbraken J, Takahashi H, Hubka V (2022). Reducing the number of accepted species in Aspergillus series Nigri. Studies in Mycology 102: 95-132. doi: 10.3114/sim.2022.102.03.
Collapse
Affiliation(s)
- C. Bian
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Y. Kusuya
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Biological Resource Center, National Institute of Technology and Evaluation, Kisarazu, Japan
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - E. D’hooge
- BCCM/IHEM collection, Mycology and Aerobiology, Sciensano, Bruxelles, Belgium
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - S. Ban
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - C.M. Visagie
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - H. Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Molecular Chirality Research Center, Chiba University, Chiba, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
| | - V. Hubka
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Matsumoto Y, Suzuki M, Nihei H, Matsumoto S. Discovery of Tolerance to Itraconazole in Japanese Isolates of Aspergillus Section Nigri, Aspergillus tubingensis and Aspergillus welwitschiae, by Microscopic Observation. Med Mycol J 2022; 63:65-69. [PMID: 36047184 DOI: 10.3314/mmj.22-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aspergillus section Nigri, a group of black Aspergillus, has several cryptic species that were recently discovered to be intrinsically resistant to azole antifungals. In this study, susceptibility testing of 35 clinical isolates of Aspergillus tubingensis and Aspergillus welwitschiae in Japan was carried out using microdilution method. Strains tolerant to itraconazole in A. tubingensis (14/17 strains) and A. welwitschiae (6/18 strains) were discovered with hyphal growth and conidial germination above the minimal inhibitory concentration by microscopic observation, while no resistant strain was observed macroscopically. In contrast, no strain with reduced susceptibility to voriconazole, posaconazole, and amphotericin-B was found. Further examination may be required to determine the susceptibility of cryptic species in Aspergillus section Nigri to antifungals.
Collapse
Affiliation(s)
- Yasunobu Matsumoto
- Infectious Diseases Testing Department, Microbiological Testing Group, LSI Medience Corporation
| | - Makoto Suzuki
- Infectious Diseases Testing Department, Microbiological Testing Group, LSI Medience Corporation
| | - Hiroyoshi Nihei
- Infectious Diseases Testing Department, Microbiological Testing Group, LSI Medience Corporation
| | - Satoru Matsumoto
- Infectious Diseases Testing Department, Microbiological Testing Group, LSI Medience Corporation
| |
Collapse
|
8
|
Ma Y, Jiang B, Liu K, Li R, Chen L, Liu Z, Xiang G, An J, Luo H, Wu J, Lv C, Pan Y, Ling T, Zhao M. Multi-omics analysis of the metabolism of phenolic compounds in tea leaves by Aspergillus luchuensis during fermentation of pu-erh tea. Food Res Int 2022; 162:111981. [DOI: 10.1016/j.foodres.2022.111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
|
9
|
Bai F, Cai C, Zhang T, Wang P, Shi L, Zhai L, Li H, Zhang L, Yao S. Genome-Based Analysis of Aspergillus niger Aggregate Species from China and Their Potential for Fumonisin B 2 and Ochratoxin A Production. Curr Microbiol 2022; 79:193. [PMID: 35579721 DOI: 10.1007/s00284-022-02876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Based on entire genome sequencing, this study focused on the classification of Aspergillus niger aggregation species and investigated their potential for fumonisin B2 (FB2) and ochratoxin A (OTA) production. In the current study, 22 strains were used, namely 17 A. niger strains, four A. welwitschiae strains, and one A. lacticoffeatus (a synonym of A. niger) strain. Traditional multigene phylogenetic analysis, average nucleotide identity analysis (ANI), and the whole-genome single-nucleotide polymorphism (SNP) analyses were used to reconfirm the taxonomic status of A. niger, A. welwitschiae, and A. lacticoffeatus. The ability of A. niger to produce FB2 and OTA on five culture substrates was determined, and the association between FB2 and OTA gene clusters and toxin-producing abilities was explored. The results revealed that the ANI method could distinguish A. niger from A. welwitschiae, with an ANI value of < 98%. The SNP-based phylogenetic analysis suggested that A. niger and A. welwitschiae were two independent phylogenetic species. The ANI, SNP, and multigene phylogenetic analysis supported previous findings that A. lacticoffeatus was a synonymous species of A. niger. Aspergillus niger strains exhibited the varied potential of producing FB2 and OTA on different culture media. The A. niger genome sequence analysis revealed no significant difference in fumonisin gene clusters between FB2-nonproducing isolates and FB2-producing isolates, and the integrity of the ochratoxin biosynthesis genes cluster was clearly associated with OTA production. In conclusion, gene sequencing can be useful in assessing A. niger's ability to produce OTA, but it cannot reliably predict its ability to produce FB2.
Collapse
Affiliation(s)
- Feirong Bai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Chengshan Cai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Tianci Zhang
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Penghui Wang
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Liang Shi
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Lei Zhai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Hui Li
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Lu Zhang
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Su Yao
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China.
| |
Collapse
|
10
|
Futagami T. The white koji fungus Aspergillus luchuensis mut. kawachii. Biosci Biotechnol Biochem 2022; 86:574-584. [PMID: 35238900 DOI: 10.1093/bbb/zbac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022]
Abstract
The white koji fungus, Aspergillus luchuensis mut. kawachii, is used in the production of shochu, a traditional Japanese distilled spirit. White koji fungus plays an important role in the shochu production process by supplying amylolytic enzymes such as α-amylase and glucoamylase. These enzymes convert starch contained in primary ingredients such as rice, barley, buckwheat, and sweet potato into glucose, which is subsequently utilized by the yeast Saccharomyces cerevisiae to produce ethanol. White koji fungus also secretes large amounts of citric acid, which lowers the pH of the shochu mash, thereby preventing the growth of undesired microbes and enabling stable production of shochu in relatively warm regions of Japan. This review describes the historical background, research tools, and recent advances in studies of the mechanism of citric acid production by white koji fungus.
Collapse
Affiliation(s)
- Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan.,United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
11
|
Mori K, Kadooka C, Oda K, Okutsu K, Yoshizaki Y, Takamine K, Tashiro K, Goto M, Tamaki H, Futagami T. Chromosome-level genome sequence data and analysis of the white koji fungus, Aspergillus luchuensis mut. kawachii IFO 4308. Data Brief 2022; 41:107888. [PMID: 35198670 PMCID: PMC8847812 DOI: 10.1016/j.dib.2022.107888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022] Open
Abstract
Aspergillus luchuensis mut. kawachii is used primarily in the production of shochu, a traditional Japanese distilled alcoholic beverage. Here, we report the chromosome-level genome sequence of A. luchuensis mut. kawachii IFO 4308 (NBRC 4308) and a comparison of the sequence with that of A. luchuensis RIB2601. The genome of strain IFO 4308 was assembled into nine contigs consisting of eight chromosomes and one mitochondrial DNA segment. The nearly complete genome of strain IFO 4308 comprises 37,287,730 bp with a GC content of 48.85% and 12,664 predicted coding sequences and 267 tRNAs. Comparison of the IFO 4308 and RIB2601 genomes revealed a highly conserved structure; however, the IFO 4308 genome is larger than that of RIB2601, which is primarily attributed to chromosome 5. The genome sequence of IFO 4308 was deposited in DDBJ/ENA/GenBank under accession numbers AP024425–AP024433.
Collapse
|
12
|
Kamali Sarvestani H, Seifi A, Falahatinejad M, Mahmoudi S. Black aspergilli as causes of otomycosis in the era of molecular diagnostics, a mini-review. J Mycol Med 2021; 32:101240. [PMID: 34999297 DOI: 10.1016/j.mycmed.2021.101240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022]
Abstract
Otomycosis refers to the fungal infection of the external auditory canal, and less commonly the middle ear. A wide range of fungi can cause this disease, however, the most common etiologies are species of Aspergillus and Candida. Until recent years, Aspergillus niger was thought to be the prevailing species of the genus Aspergillus that causes otomycosis. Using molecular methods, now, it is known that Aspergillus section Nigri comprises several morphologically similar species and all black Aspergillus isolates are not necessarily equivalent to Aspergillus niger. In this review, we focus on the species within the Aspergillus section Nigri and their role as the causative agents of otomycosis.
Collapse
Affiliation(s)
- Hasti Kamali Sarvestani
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Seifi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Falahatinejad
- Department of Mycology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Chromosome-Level Genome Sequence of the Black Koji Fungus Aspergillus luchuensis RIB2601. Microbiol Resour Announc 2021; 10:e0038421. [PMID: 34292062 PMCID: PMC8297454 DOI: 10.1128/mra.00384-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aspergillus luchuensis is used for the production of awamori and shochu, which are traditional Japanese distilled alcoholic beverages. Here, we determined the chromosome-level genome sequence of A. luchuensis RIB2601.
Collapse
|
14
|
Yamamoto N, Watarai N, Koyano H, Sawada K, Toyoda A, Kurokawa K, Yamada T. Analysis of genomic characteristics and their influence on metabolism in Aspergillus luchuensis albino mutants using genome sequencing. Fungal Genet Biol 2021; 155:103601. [PMID: 34224861 DOI: 10.1016/j.fgb.2021.103601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Black Aspergillus luchuensis and its white albino mutant are essential fungi for making alcoholic beverages in Japan. A large number of industrial strains have been created using novel isolation or gene/genome mutation techniques. Such mutations influence metabolic and phenotypic characteristics in industrial strains, but few comparative studies of inter-strain mutation have been conducted. We carried out comparative genome analyses of 8 industrial strains of A. luchuensis and A. kawachii IFO 4308, the latter being the first albino strain to be isolated. Phylogenetic analysis based on 8938 concatenated genes exposed the diversity of black koji strains and uniformity among albino industrial strains, suggesting that passaged industrial albino strains have more genetic mutations compared with strain IFO 4308 and black koji strains. Comparative analysis showed that the albino strains had mutations in genes not only for conidial pigmentation but also in those that encode N-terminal acetyltransferase A and annexin XIV-like protein. The results also suggest that some mutations may have emerged through subculturing of albino strains. For example, mutations in the genes for isocitrate lyase and sugar transporters were observed only in industrial albino strains. This implies that selective pressure for increasing enzyme activity or secondary metabolites may have influenced the mutation of genes associated with environmental stress responses in A. luchuensis albino strains. Our study clarifies hitherto unknown genetic and metabolic characteristics of A. luchuensis industrial strains and provides potential applications for comparative genome analysis for breeding koji strains.
Collapse
Affiliation(s)
- Nozomi Yamamoto
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Naoki Watarai
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hitoshi Koyano
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kazunori Sawada
- Corporate Strategy Office, Gurunavi, Inc., Toho Hibiya Building, 1-2-2 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Ken Kurokawa
- Department of Informatics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takuji Yamada
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
15
|
Hayashi K, Kajiwara Y, Futagami T, Goto M, Takashita H. Making Traditional Japanese Distilled Liquor, Shochu and Awamori, and the Contribution of White and Black Koji Fungi. J Fungi (Basel) 2021; 7:517. [PMID: 34203379 PMCID: PMC8306306 DOI: 10.3390/jof7070517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022] Open
Abstract
The traditional Japanese single distilled liquor, which uses koji and yeast with designated ingredients, is called "honkaku shochu." It is made using local agricultural products and has several types, including barley shochu, sweet potato shochu, rice shochu, and buckwheat shochu. In the case of honkaku shochu, black koji fungus (Aspergillus luchuensis) or white koji fungus (Aspergillus luchuensis mut. kawachii) is used to (1) saccharify the starch contained in the ingredients, (2) produce citric acid to prevent microbial spoilage, and (3) give the liquor its unique flavor. In order to make delicious shochu, when cultivating koji fungus during the shochu production process, we use a unique temperature control method to ensure that these three important elements, which greatly affect the taste of the produced liquor, are balanced without any excess or deficiency. This review describes in detail the production method of honkaku shochu, a distilled spirit unique to Japan and whose market is expected to expand worldwide, with special attention paid to the koji fungi cultivation step. Furthermore, we describe the history of the koji fungi used today in the production of shochu, and we provide a thorough explanation of the characteristics of each koji fungi. We also report the latest research progress on this topic.
Collapse
Affiliation(s)
- Kei Hayashi
- Sanwa Research Institute, Sanwa Shurui Co., Ltd., Usa 879-0495, Japan; (Y.K.); (H.T.)
| | - Yasuhiro Kajiwara
- Sanwa Research Institute, Sanwa Shurui Co., Ltd., Usa 879-0495, Japan; (Y.K.); (H.T.)
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan;
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Masatoshi Goto
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Hideharu Takashita
- Sanwa Research Institute, Sanwa Shurui Co., Ltd., Usa 879-0495, Japan; (Y.K.); (H.T.)
| |
Collapse
|
16
|
Expression profiles of amylolytic genes in AmyR and CreA transcription factor deletion mutants of the black koji mold Aspergillus luchuensis. J Biosci Bioeng 2021; 132:321-326. [PMID: 34176737 DOI: 10.1016/j.jbiosc.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022]
Abstract
The black koji mold, Aspergillus luchuensis, which belongs to Aspergillus section Nigri, is used for the production of traditional Japanese spirits (shochu) mainly in the southern districts of Japan. This mold is known to produce amylolytic enzymes essential for shochu production; however, mechanisms regulating amylolytic gene expression in A. luchuensis have not been studied in as much detail as those in the yellow koji mold, Aspergillus oryzae. Here, we examined the gene expression profiles of deletion mutants of transcription factors orthologous to A. oryzae AmyR and CreA in A. luchuensis. A. luchuensis produces acid-unstable (AmyA) and acid-stable (AsaA) α-amylases. AmyA production and amyA gene expression were not influenced by amyR or creA deletion, indicating that amyA was constitutively expressed. In contrast, asaA gene expression was significantly down- and upregulated upon deletion of amyR and creA, respectively. Furthermore, the glaA and agdA genes (encoding glucoamylase and α-glucosidase, respectively) showed expression profiles similar to those of asaA. Thus, genes that play pivotal roles in starch saccharification, asaA, glaA, and agdA, were found to be regulated by AmyR and CreA. Moreover, despite previous reports on AsaA being only produced in solid-state culture, deletion of the ortholog of A. oryzae flbC, which is involved in the expression of the solid-state culture-specific genes, did not affect AsaA α-amylase activity, suggesting that FlbC was not associated with asaA expression.
Collapse
|
17
|
Lambré C, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Herman L, Andryszkiewicz M, Bernasconi G, Gomes A, Kovalkovicova N, Liu Y, Maia J, Rainieri S, Chesson A. Safety evaluation of the food enzyme triacylglycerol lipase from the genetically modified Aspergillus luchuensis strain FL100SC. EFSA J 2021; 19:e06561. [PMID: 33968250 PMCID: PMC8082701 DOI: 10.2903/j.efsa.2021.6561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase EC 3.1.1.3) is produced with a genetically modified Aspergillus luchuensis strain FL100SC by Advanced Enzyme Technologies Ltd. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. The triacylglycerol lipase is intended to be used only in an immobilised form in the production of modified fats and oils by interesterification. Since residual amounts of total organic solids (TOS) are removed by filtration and purification steps applied during fats and oils processing for interesterification, no dietary exposure was calculated. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level (NOAEL) of 849 mg TOS/kg body weight (bw) per day, the highest dose tested. The similarity of the amino acid sequence of the food enzyme to those of known allergens was searched and no match was found. The Panel considers that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is considered to be low. Based on the data provided, including the immobilisation process and the absence of TOS in the final product, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
Collapse
|
18
|
Yamada O, Nishibori N, Hayashi R, Arima T, Mizutani O. Construction of transcription factor gene deletion library of Aspergillus luchuensis. J GEN APPL MICROBIOL 2021; 67:118-123. [DOI: 10.2323/jgam.2020.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - Toshihide Arima
- Department of Life and Environmental Sciences, Prefectural University of Hiroshima
| | - Osamu Mizutani
- Department of Bioscience and Biotechnology, University of the Ryukyus
| |
Collapse
|
19
|
LaeA Controls Citric Acid Production through Regulation of the Citrate Exporter-Encoding cexA Gene in Aspergillus luchuensis mut. kawachii. Appl Environ Microbiol 2020; 86:AEM.01950-19. [PMID: 31862728 DOI: 10.1128/aem.01950-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
The putative methyltransferase LaeA is a global regulator of metabolic and development processes in filamentous fungi. We characterized the homologous laeA genes of the white koji fungus Aspergillus luchuensis mut. kawachii (A. kawachii) to determine their role in citric acid hyperproduction. The ΔlaeA strain exhibited a significant reduction in citric acid production. Cap analysis gene expression (CAGE) revealed that laeA is required for the expression of a putative citrate exporter-encoding cexA gene, which is critical for citric acid production. Deficient citric acid production by a ΔlaeA strain was rescued by the overexpression of cexA to a level comparable with that of a cexA-overexpressing ΔcexA strain. In addition, chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) analysis indicated that LaeA regulates the expression of cexA via methylation levels of the histones H3K4 and H3K9. These results indicate that LaeA is involved in citric acid production through epigenetic regulation of cexA in A. kawachii IMPORTANCE A. kawachii has been traditionally used for production of the distilled spirit shochu in Japan. Citric acid produced by A. kawachii plays an important role in preventing microbial contamination during the shochu fermentation process. This study characterized homologous laeA genes; using CAGE, complementation tests, and ChIP-qPCR, it was found that laeA is required for citric acid production through the regulation of cexA in A. kawachii The epigenetic regulation of citric acid production elucidated in this study will be useful for controlling the fermentation processes of shochu.
Collapse
|
20
|
Gomi K. Regulatory mechanisms for amylolytic gene expression in the koji mold Aspergillus oryzae. Biosci Biotechnol Biochem 2019; 83:1385-1401. [PMID: 31159661 DOI: 10.1080/09168451.2019.1625265] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The koji mold Aspergillus oryzae has been used in traditional Japanese food and beverage fermentation for over a thousand years. Amylolytic enzymes are important in sake fermentation, wherein production is induced by starch or malto-oligosaccharides. This inducible production requires at least two transcription activators, AmyR and MalR. Among amylolytic enzymes, glucoamylase GlaB is produced exclusively in solid-state culture and plays a critical role in sake fermentation owing to its contribution to glucose generation from starch. A recent study demonstrated that glaB gene expression is regulated by a novel transcription factor, FlbC, in addition to AmyR in solid-state culture. Amylolytic enzyme production is generally repressed by glucose due to carbon catabolite repression (CCR), which is mediated by the transcription factor CreA. Modifying CCR machinery, including CreA, can improve amylolytic enzyme production. This review focuses on the role of transcription factors in regulating A. oryzae amylolytic gene expression.
Collapse
Affiliation(s)
- Katsuya Gomi
- a Laboratory of Fermentation Microbiology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
21
|
Mitochondrial Citrate Transporters CtpA and YhmA Are Required for Extracellular Citric Acid Accumulation and Contribute to Cytosolic Acetyl Coenzyme A Generation in Aspergillus luchuensis mut. kawachii. Appl Environ Microbiol 2019; 85:AEM.03136-18. [PMID: 30737343 DOI: 10.1128/aem.03136-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/27/2019] [Indexed: 11/20/2022] Open
Abstract
Aspergillus luchuensis mut. kawachii (A. kawachii) produces a large amount of citric acid during the process of fermenting shochu, a traditional Japanese distilled spirit. In this study, we characterized A. kawachii CtpA and YhmA, which are homologous to the yeast Saccharomyces cerevisiae mitochondrial citrate transporters Ctp1 and Yhm2, respectively. CtpA and YhmA were purified from A. kawachii and reconstituted into liposomes. The proteoliposomes exhibited only counterexchange transport activity; CtpA transported citrate using countersubstrates, especially cis-aconitate and malate, whereas YhmA transported citrate using a wider variety of countersubstrates, including citrate, 2-oxoglutarate, malate, cis-aconitate, and succinate. Disruption of ctpA and yhmA caused deficient hyphal growth and conidium formation with reduced mycelial weight-normalized citrate production. Because we could not obtain a ΔctpA ΔyhmA strain, we constructed an S-tagged ctpA (ctpA-S) conditional expression strain in the ΔyhmA background using the Tet-On promoter system. Knockdown of ctpA-S in ΔyhmA resulted in a severe growth defect on minimal medium with significantly reduced acetyl coenzyme A (acetyl-CoA) and lysine levels, indicating that double disruption of ctpA and yhmA leads to synthetic lethality; however, we subsequently found that the severe growth defect was relieved by addition of acetate or lysine, which could remedy the acetyl-CoA level. Our results indicate that CtpA and YhmA are mitochondrial citrate transporters involved in citric acid production and that transport of citrate from mitochondria to the cytosol plays an important role in acetyl-CoA biogenesis in A. kawachii IMPORTANCE Citrate transport is believed to play a significant role in citrate production by filamentous fungi; however, details of the process remain unclear. This study characterized two citrate transporters from Aspergillus luchuensis mut. kawachii Biochemical and gene disruption analyses showed that CtpA and YhmA are mitochondrial citrate transporters required for normal hyphal growth, conidium formation, cytosolic acetyl-CoA synthesis, and citric acid production. The characteristics of fungal citrate transporters elucidated in this study will help expand our understanding of the citrate production mechanism and facilitate the development and optimization of industrial organic acid fermentation processes.
Collapse
|
22
|
Park J, Kwon W, Zhu B, Mageswari A, Heo IB, Han KH, Hong SB. Complete mitochondrial genome sequence of the food fermentation fungus, Aspergillus luchuensis. MITOCHONDRIAL DNA PART B 2019. [DOI: 10.1080/23802359.2018.1547160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jongsun Park
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Woochan Kwon
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Bohan Zhu
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| | - Anbazhagan Mageswari
- Korean Agricultural Culture Collection, National Institute of Agricultural Science, RDA, Wanju, Republic of Korea
| | - In-Beom Heo
- Korean Agricultural Culture Collection, National Institute of Agricultural Science, RDA, Wanju, Republic of Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| | - Seung-Beom Hong
- Korean Agricultural Culture Collection, National Institute of Agricultural Science, RDA, Wanju, Republic of Korea
| |
Collapse
|
23
|
Draft Genome Sequence of Aspergillus awamori IFM 58123 NT. Microbiol Resour Announc 2019; 8:MRA01453-18. [PMID: 30701239 PMCID: PMC6346188 DOI: 10.1128/mra.01453-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/19/2018] [Indexed: 11/20/2022] Open
Abstract
Species of the Aspergillus section Nigri are taxonomically very complex. The taxonomic assignment of Aspergillus awamori is unclear. Species of the Aspergillus section Nigri are taxonomically very complex. The taxonomic assignment of Aspergillus awamori is unclear. Here, we present the draft genome sequence of A. awamori strain IFM 58123NT.
Collapse
|
24
|
Pex16 is involved in peroxisome and Woronin body formation in the white koji fungus, Aspergillus luchuensis mut. kawachii. J Biosci Bioeng 2019; 127:85-92. [DOI: 10.1016/j.jbiosc.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/10/2018] [Accepted: 07/04/2018] [Indexed: 11/21/2022]
|
25
|
Kojo T, Kadooka C, Komohara M, Onitsuka S, Tanimura M, Muroi Y, Kurazono S, Shiraishi Y, Oda K, Iwashita K, Onoue M, Okutsu K, Yoshizaki Y, Takamine K, Futagami T, Mori K, Tamaki H. Characterization of amylolytic enzyme overproducing mutant of Aspergillus luchuensis obtained by ion beam mutagenesis. J GEN APPL MICROBIOL 2017; 63:339-346. [PMID: 29046501 DOI: 10.2323/jgam.2017.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aspergillus luchuensis is a kuro (black) koji fungus that has been used as a starch degrader for the awamori- and shochu-making industries in Japan. In this study, we investigated the effect of ion beam irradiation on A. luchuensis RIB2601 and obtained a high starch-degrading mutant strain U1. Strain U1 showed reduced growth rate, whereas it showed higher α-amylase, glucoamylase, and α-glucosidase activities on a mycelial mass basis than the wild type (wt) strain both on agar plates and in rice koji. In addition, strain U1 showed higher N-acetylglucosamine content in the cell wall and higher sensitivity to calcofluor white, suggesting a deficiency in cell wall composition. Interestingly, produced protein showed higher expression of acid-labile α-amylase (AmyA) and glucoamylase (GlaA) in strain U1, although real-time RT-PCR indicated no significant change in the transcription of the amyA or glaA gene. These results suggested that the high amylolytic activity of strain U1 is attributable to a high AmyA and GlaA production level, but the elevated production is not due to transcriptional regulation of the corresponding genes. Furthermore, RNA-seq analysis indicated that strain U1 shows transcriptional changes in at least 604 genes related to oxidation-reduction, transport, and glucosamine-containing compound metabolic processes, which may be involved in the deficient cell wall composition of strain U1.
Collapse
Affiliation(s)
- Toshihiro Kojo
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Chihiro Kadooka
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Marisa Komohara
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Shiori Onitsuka
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Miya Tanimura
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Yukiko Muroi
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Shugo Kurazono
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Yohei Shiraishi
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University.,Bio'c, Co., Ltd
| | - Ken Oda
- National Research Institute of Brewing
| | | | - Masahira Onoue
- Natural Science Centre for Research and Education, Kagoshima University
| | - Kayu Okutsu
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Yumiko Yoshizaki
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Kazunori Takamine
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Taiki Futagami
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Kazuki Mori
- Computational Bio-Big Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology
| | - Hisanori Tamaki
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| |
Collapse
|
26
|
Park HS, Jun SC, Han KH, Hong SB, Yu JH. Diversity, Application, and Synthetic Biology of Industrially Important Aspergillus Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:161-202. [PMID: 28732553 DOI: 10.1016/bs.aambs.2017.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The filamentous fungal genus Aspergillus consists of over 340 officially recognized species. A handful of these Aspergillus fungi are predominantly used for food fermentation and large-scale production of enzymes, organic acids, and bioactive compounds. These industrially important Aspergilli primarily belong to the two major Aspergillus sections, Nigri and Flavi. Aspergillus oryzae (section Flavi) is the most commonly used mold for the fermentation of soybeans, rice, grains, and potatoes. Aspergillus niger (section Nigri) is used in the industrial production of various enzymes and organic acids, including 99% (1.4 million tons per year) of citric acid produced worldwide. Better understanding of the genomes and the signaling mechanisms of key Aspergillus species can help identify novel approaches to enhance these commercially significant strains. This review summarizes the diversity, current applications, key products, and synthetic biology of Aspergillus fungi commonly used in industry.
Collapse
Affiliation(s)
- Hee-Soo Park
- Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | - Jae-Hyuk Yu
- University of Wisconsin, Madison, WI, United States
| |
Collapse
|
27
|
Yamada O, Machida M, Hosoyama A, Goto M, Takahashi T, Futagami T, Yamagata Y, Takeuchi M, Kobayashi T, Koike H, Abe K, Asai K, Arita M, Fujita N, Fukuda K, Higa KI, Horikawa H, Ishikawa T, Jinno K, Kato Y, Kirimura K, Mizutani O, Nakasone K, Sano M, Shiraishi Y, Tsukahara M, Gomi K. Genome sequence of Aspergillus luchuensis NBRC 4314. DNA Res 2016; 23:507-515. [PMID: 27651094 PMCID: PMC5144674 DOI: 10.1093/dnares/dsw032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/02/2016] [Indexed: 12/03/2022] Open
Abstract
Awamori is a traditional distilled beverage made from steamed Thai-Indica rice in Okinawa, Japan. For brewing the liquor, two microbes, local kuro (black) koji mold Aspergillus luchuensis and awamori yeast Saccharomyces cerevisiae are involved. In contrast, that yeasts are used for ethanol fermentation throughout the world, a characteristic of Japanese fermentation industries is the use of Aspergillus molds as a source of enzymes for the maceration and saccharification of raw materials. Here we report the draft genome of a kuro (black) koji mold, A. luchuensis NBRC 4314 (RIB 2604). The total length of nonredundant sequences was nearly 34.7 Mb, comprising approximately 2,300 contigs with 16 telomere-like sequences. In total, 11,691 genes were predicted to encode proteins. Most of the housekeeping genes, such as transcription factors and N-and O-glycosylation system, were conserved with respect to Aspergillus niger and Aspergillus oryzae An alternative oxidase and acid-stable α-amylase regarding citric acid production and fermentation at a low pH as well as a unique glutamic peptidase were also found in the genome. Furthermore, key biosynthetic gene clusters of ochratoxin A and fumonisin B were absent when compared with A. niger genome, showing the safety of A. luchuensis for food and beverage production. This genome information will facilitate not only comparative genomics with industrial kuro-koji molds, but also molecular breeding of the molds in improvements of awamori fermentation.
Collapse
Affiliation(s)
- Osamu Yamada
- National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Masayuki Machida
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, AIST, Tsukuba, Ibaraki 305-8566, Japan
| | - Akira Hosoyama
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | - Masatoshi Goto
- Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Toru Takahashi
- National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Taiki Futagami
- Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Youhei Yamagata
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| | - Michio Takeuchi
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| | | | - Hideaki Koike
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, AIST, Tsukuba, Ibaraki 305-8566, Japan
| | - Keietsu Abe
- Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | - Kiyoshi Asai
- Computational Biology Research Center, AIST, Koto-ku, Tokyo 135-0064, Japan
| | - Masanori Arita
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Nobuyuki Fujita
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | - Kazuro Fukuda
- Asahi Breweries, LTD, Sumida-ku, Tokyo 130-8602, Japan
| | - Ken-Ichi Higa
- Industrial Technology Center, Okinawa Prefectural Government, Uruma, Okinawa 904-2234, Japan
| | - Hiroshi Horikawa
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | | | - Koji Jinno
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | - Yumiko Kato
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | - Kohtaro Kirimura
- Department of Applied Chemistry, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Osamu Mizutani
- National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Kaoru Nakasone
- Kinki University Faculty of Engineering, Higashi-hiroshima, Hiroshima 739-2116, Japan
| | - Motoaki Sano
- Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501, Japan
| | - Yohei Shiraishi
- National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | | | - Katsuya Gomi
- Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| |
Collapse
|
28
|
Kadooka C, Onitsuka S, Uzawa M, Tashiro S, Kajiwara Y, Takashita H, Okutsu K, Yoshizaki Y, Takamine K, Goto M, Tamaki H, Futagami T. Marker recycling system using the sC gene in the white koji mold, Aspergillus luchuensis mut. kawachii. J GEN APPL MICROBIOL 2016; 62:160-3. [PMID: 27211832 DOI: 10.2323/jgam.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chihiro Kadooka
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ichishima E. Development of enzyme technology for Aspergillus oryzae, A. sojae, and A. luchuensis, the national microorganisms of Japan. Biosci Biotechnol Biochem 2016; 80:1681-92. [PMID: 27151561 DOI: 10.1080/09168451.2016.1177445] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This paper describes the modern enzymology in Japanese bioindustries. The invention of Takadiastase by Jokiti Takamine in 1894 has revolutionized the world of industrial enzyme production by fermentation. In 1949, a new γ-amylase (glucan 1,4-α-glucosidase, EC 3.2.1.3) from A. luchuensis (formerly designated as A. awamori), was found by Kitahara. RNase T1 (guanyloribonuclease, EC 3.1.27.3) was discovered by Sato and Egami. Ando discovered Aspergillus nuclease S1 (single-stranded nucleate endonuclease, EC 3.1.30.1). Aspergillopepsin I (EC 3.4.23.18) from A. tubingensis (formerly designated as A. saitoi) activates trypsinogen to trypsin. Shintani et al. demonstrated Asp76 of aspergillopepsin I as the binding site for the basic substrate, trypsinogen. The new oligosaccharide moieties Man10GlcNAc2 and Man11GlcNAc2 were identified with α-1,2-mannosidase (EC 3.2.1.113) from A. tubingensis. A yeast mutant compatible of producing Man5GlcNAc2 human compatible sugar chains on glycoproteins was constructed. The acid activation of protyrosinase from A. oryzae at pH 3.0 was resolved. The hyper-protein production system of glucoamylase was established in a submerged culture.
Collapse
Affiliation(s)
- Eiji Ichishima
- a Department of Applied Biological Chemistry , Tohoku University , Sendai , Japan.,b Department of Agricultural Chemistry , Tokyo University of Agriculture and Technology , Tokyo , Japan
| |
Collapse
|
30
|
Transcriptomic analysis of temperature responses of Aspergillus kawachii during barley koji production. Appl Environ Microbiol 2016; 81:1353-63. [PMID: 25501485 DOI: 10.1128/aem.03483-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The koji mold Aspergillus kawachii is used for making the Japanese distilled spirit shochu. During shochu production, A. kawachii is grown in solid-state culture (koji) on steamed grains, such as rice or barley, to convert the grain starch to glucose and produce citric acid. During this process, the cultivation temperature of A. kawachii is gradually increased to 40 °C and is then lowered to 30 °C. This temperature modulation is important for stimulating amylase activity and the accumulation of citric acid. However, the effects of temperature on A. kawachii at the gene expression level have not been elucidated. In this study, we investigated the effect of solid-state cultivation temperature on gene expression for A. kawachii grown on barley. The results of DNA microarray and gene ontology analyses showed that the expression of genes involved in the glycerol, trehalose, and pentose phosphate metabolic pathways, which function downstream of glycolysis, was downregulated by shifting the cultivation temperature from 40 to 30 °C. In addition, significantly reduced expression of genes related to heat shock responses and increased expression of genes related with amino acid transport were also observed. These results suggest that solid-state cultivation at 40 °C is stressful for A. kawachii and that heat adaptation leads to reduced citric acid accumulation through activation of pathways branching from glycolysis. The gene expression profile of A. kawachii elucidated in this study is expected to contribute to the understanding of gene regulation during koji production and optimization of the industrially desirable characteristics of A. kawachii.
Collapse
|
31
|
Chemical Analysis of the Sugar Moiety of Monohexosylceramide Contained in Koji, Japanese Traditional Rice Fermented with Aspergillus. FERMENTATION-BASEL 2016. [DOI: 10.3390/fermentation2010002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Garmendia G, Vero S. Occurrence and biodiversity of Aspergillus section Nigri on 'Tannat' grapes in Uruguay. Int J Food Microbiol 2015; 216:31-9. [PMID: 26398282 DOI: 10.1016/j.ijfoodmicro.2015.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/10/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
Ochratoxin A (OTA) is a nephrotoxic mycotoxin which has been found worldwide as a contaminant in wines. It is produced on grapes mainly by molds from Aspergillus section Nigri. This study has demonstrated for the first time the occurrence of black aspergilli on Tannat grapes from Uruguay, in a two year survey. Aspergillus uvarum (uniseriate) and Aspergillus welwitschiae (from Aspergillusniger aggregate) were the prevalent species whereas Aspergillus carbonarius which is considered the main OTA producing species was not detected. OTA production in culture medium was evaluated for native isolates from A. niger aggregate and compared to levels produced by a type strain of A. carbonarius. This work also includes the development of quick and easy molecular methods to identify black aspergilli to species level, avoiding sequencing.
Collapse
Affiliation(s)
- Gabriela Garmendia
- Cátedra de Microbiología, Departamento de Biociencias, Facultad de Química, UDELAR. 11800, Montevideo, Uruguay.
| | - Silvana Vero
- Cátedra de Microbiología, Departamento de Biociencias, Facultad de Química, UDELAR. 11800, Montevideo, Uruguay
| |
Collapse
|
33
|
Taxonomic Characterization and Safety of Nuruk Molds Used Industrially in Korea. THE KOREAN JOURNAL OF MYCOLOGY 2015. [DOI: 10.4489/kjm.2015.43.3.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Abstract
The genus Aspergillus is one of the most widespread groups of fungi on Earth, comprised of about 300-350 species with very diverse lifestyles. Most species produce asexual propagula (conidia) on conidial heads. Despite their ubiquity, a sexual cycle has not yet been identified for most of the aspergilli. Where sexual reproduction is present, species exhibit either homothallic (self fertile) or heterothallic (obligate outcrossing) breeding systems. A parasexual cycle has also been described in some Aspergillus species. As in other fungi, sexual reproduction is governed by mating-type (MAT) genes, which determine sexual identity and are involved in regulating later stages of sexual development. Previous population genetic studies have indicated that some supposedly asexual aspergilli exhibit evidence of a recombining population structure, suggesting the presence of a cryptic sexual cycle. In addition, genome analyses have revealed networks of genes necessary for sexual reproduction in several Aspergillus species, again consistent with latent sexuality in these fungi. Knowledge of MAT gene presence has then successfully been applied to induce sexual reproduction between MAT1-1 and MAT1-2 isolates of certain supposedly asexual aspergilli. Recent progress in understanding the extent and significance of sexual reproduction is described here, with special emphasis on findings that are relevant to clinically important aspergilli.
Collapse
|
35
|
Davolos D, Pietrangeli B. A molecular and bioinformatic study on the ochratoxin A (OTA)-producing Aspergillus affinis (section Circumdati). Mycotoxin Res 2014; 30:113-22. [PMID: 24668272 DOI: 10.1007/s12550-014-0195-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/01/2023]
Abstract
Aspergillus affinis (section Circumdati) is a novel ochratoxin A (OTA)-producing species found in submerged riparian decomposing leaves. However, very little is known about its role on the breakdown of plant debris and its ability to degrade carbohydrate polymers. Moreover, its OTA biosynthetic pathway has not yet been explored. In the present paper, we investigated the gene encoding the extracellular alpha-amylase (amyAa) of A. affinis within the evolution of the Aspergillus lineages in relation to the possible use of this enzyme in starch processing. The novel amyAa, despite being related to branches of the Aspergillus species of the sections Terrei and Flavi, formed a distinct phylogenetic branch, which may be of outstanding importance from a biotechnological point of view. Moreover, we identified the polyketide synthase gene (pks) putatively required for the first step of OTA biosynthesis in A. affinis. This otapks was examined in relation to a limited number of orthologous genes available from Aspergillus species of the sections Circumdati and Nigri. Our study highlights the importance of otapks as target genes in the treatment of ochratoxigenic Aspergillus species on a more comprehensive evolutionary basis.
Collapse
Affiliation(s)
- Domenico Davolos
- INAIL-Research, Certification, Verification Area, Department of Productive Plants and Human Settlements (DIPIA), Via Alessandria, 220/E, 00198, Rome, Italy,
| | | |
Collapse
|
36
|
Tanaka M, Tokuoka M, Gomi K. Effects of codon optimization on the mRNA levels of heterologous genes in filamentous fungi. Appl Microbiol Biotechnol 2014; 98:3859-67. [PMID: 24682479 DOI: 10.1007/s00253-014-5609-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
Filamentous fungi, particularly Aspergillus species, have recently attracted attention as host organisms for recombinant protein production. Because the secretory yields of heterologous proteins are generally low compared with those of homologous proteins or proteins from closely related fungal species, several strategies to produce substantial amounts of recombinant proteins have been conducted. Codon optimization is a powerful tool for improving the production levels of heterologous proteins. Although codon optimization is generally believed to improve the translation efficiency of heterologous genes without affecting their mRNA levels, several studies have indicated that codon optimization causes an increase in the steady-state mRNA levels of heterologous genes in filamentous fungi. However, the mechanism that determines the low mRNA levels when native heterologous genes are expressed was poorly understood. We recently showed that the transcripts of heterologous genes are polyadenylated prematurely within the coding region and that the heterologous gene transcripts can be stabilized significantly by codon optimization, which is probably attributable to the prevention of premature polyadenylation in Aspergillus oryzae. In this review, we describe the detailed mechanism of premature polyadenylation and the rapid degradation of mRNA transcripts derived from heterologous genes in filamentous fungi.
Collapse
Affiliation(s)
- Mizuki Tanaka
- Department of Bioindustrial Informatics and Genomics, Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan,
| | | | | |
Collapse
|