1
|
Hu W, Li J, Zhang X, Lv Y, Ye H, Li C, Liu E, Chu C. Integrating sodium cholate-modified MOF hybrid lipase and solubilization of hydrophobic candidates into a step for liganding fishing lipase inhibitors from Nelumbinis Folium. J Pharm Biomed Anal 2024; 251:116430. [PMID: 39197203 DOI: 10.1016/j.jpba.2024.116430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024]
Abstract
Enzyme immobilization by metal organic frameworks (MOFs) is an efficient way for screening active constituents in natural products. However, the enzyme's biocatalysis activity is usually decreased due to unfavorable conformational changes during the immobilization process. In this study, sodium cholate was firstly used as the modifier for zeolitic imidazolate framework-8 (ZIF-8) immobilized lipase to increase both the stability and activity. More importantly, with the help of solubilization of sodium cholate, a total of 3 flavonoids and 6 alkaloids candidate compounds were fished out. Their structures were identified and the enzyme inhibitory activities were verified. In addition, the binding information between the candidate compound and the enzyme was displayed by molecular docking. This study provides valuable information for the improvement of immobilized enzyme activity and functional active ingredients in complicated medicinal plant extracts.
Collapse
Affiliation(s)
- Wenxiang Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiayun Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xindan Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yangbin Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hongwei Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chenyue Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ehu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
2
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Singh M, Kumar S, Aswal VK, Kang TS. Mixed Aggregates of Surface-Active Ionic Liquids and 14-2-14 Gemini Surfactants in an Aqueous Medium as Fluid Scaffolds for Enzymology of Cytochrome-c. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11582-11595. [PMID: 37552854 DOI: 10.1021/acs.langmuir.3c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The aggregation behavior of the surface-active ionic liquid (SAIL), 3-(2-(hexadecyloxy)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium chloride, [C16Emim][Cl], and a gemini surfactant (GS) (14-2-14) in the whole mole fraction range has been investigated in an aqueous medium employing various techniques. Experimentally obtained values of critical aggregation concentration (cac) are in good agreement with the theoretical cac values obtained using Clint's equation. Rubingh's model has been employed to evaluate the extent of synergistic interactions between two components, which has been found to be dependent upon the composition of a mixture of surfactants. The polarity index, hydrodynamic diameter (Dh), zeta potential (ζ-Pot.), and morphology of the aggregates have been found to be dependent upon the extent of hydrophobic as well as dipolar interactions and the degree of counterion binding governed by the content of the GS in mixed aggregates. Thermodynamic parameters evaluated employing isothermal titration calorimetry have revealed the aggregation as an entropy-driven process. Density functional theory calculations provide a detailed account of the SAIL-GS interactions at the molecular level. The reduced density gradient (RDG) along with the calculated isosurfaces asserts that the dominant interactions are noncovalent interactions. Furthermore, the enzymology of cytochrome-c in the aqueous SAIL-GS aggregated systems has been investigated and a two-fold increase in the enzyme activity has been observed in the aggregates formed by the GS as compared to that in buffer.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Chemistry, UGC-Centre for Advance Studies - II, Guru Nanak Dev University, Amritsar 143005, India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Tejwant Singh Kang
- Department of Chemistry, UGC-Centre for Advance Studies - II, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
4
|
Tarannum A, Ballav S, Rao JR, Fathima NN. Extraction of dermatan sulfate using ionic liquid-assisted enzymatic digestion: An efficient approach. Carbohydr Res 2023; 531:108897. [PMID: 37441844 DOI: 10.1016/j.carres.2023.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/16/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Dermatan sulfate is one of the major glycosaminoglycan (GAG) present in the animal hides, which is a waste/byproduct from meat industry. Efficient utilization of these meat industry wastes is garnering attention because these wastes render a possibility for their conversion into useful products. With the increased concerns over health, various initiatives have been developed to permit more efficient utilization of these by-products and thereby directly impacting environmental sustainability. Herein, we demonstrate for the first time an efficient and environmentally safe ionic liquid-assisted enzymatic process for the extraction of dermatan sulfate from buffalo hides. Dermatan sulfate has been extracted, separated, and purified from the GAG mixture using IL-assisted enzymatic digestions and chromatographic separations. NMR, FT-IR, and ESI-MS measurements showed typical characteristic peaks for dermatan sulfate. The advantages of this eco-friendly process adopted include i) use of fewer chemicals, ii) elimination of harsh chemicals, iii) elimination of various steps and sub-steps, iv) reduction in process time (12 h), and v) increase in extraction yield by 75% when compared to conventional enzymatic process (57%). Thus, the use of ionic liquids alongside enzymes will serve as an efficient methodology for the futuristic development of these derived GAGs for their potential applications.
Collapse
Affiliation(s)
- Aafiya Tarannum
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | - Sangeeta Ballav
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | - Jonnalagadda Raghava Rao
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | - Nishter Nishad Fathima
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India.
| |
Collapse
|
5
|
Enhancing laccase-assisted polymerization reactions with perfluorinated compounds. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Yan J, Mangolini F. Engineering encapsulated ionic liquids for next-generation applications. RSC Adv 2021; 11:36273-36288. [PMID: 35492767 PMCID: PMC9043619 DOI: 10.1039/d1ra05034f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Ionic liquids (ILs) have attracted considerable attention in several sectors (from energy storage to catalysis, from drug delivery to separation media) owing to their attractive properties, such as high thermal stability, wide electrochemical window, and high ionic conductivity. However, their high viscosity and surface tension compared to conventional organic solvents can lead to unfavorable transport properties. To circumvent undesired kinetics effects limiting mass transfer, the discretization of ILs into small droplets has been proposed as a method to increase the effective surface area and the rates of mass transfer. In the present review paper, we summarize the different methods developed so far for encapsulating ILs in organic or inorganic shells and highlight characteristic features of each approach, while outlining potential applications. The remarkable tunability of ILs, which derives from the high number of anions and cations currently available as well as their permutations, combines with the possibility of tailoring the composition, size, dispersity, and properties (e.g., mechanical, transport) of the shell to provide a toolbox for rationally designing encapsulated ILs for next-generation applications, including carbon capture, energy storage devices, waste handling, and microreactors. We conclude this review with an outlook on potential applications that could benefit from the possibility of encapsulating ILs in organic and inorganic shells. Encapsulated ionic liquids (ILs) are candidate materials for several applications owing to the attractive properties of ILs combined with the enhanced mass transfer rate obtained through the discretization of ILs in small capsules.![]()
Collapse
Affiliation(s)
- Jieming Yan
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA.,Materials Science and Engineering Program, The University of Texas at Austin Austin TX 78712 USA
| | - Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA.,Walker Department of Mechanical Engineering, The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
7
|
Wang T, Chang D, Huang D, Liu Z, Wu Y, Liu H, Yuan H, Jiang Y. Application of surfactants in papermaking industry and future development trend of green surfactants. Appl Microbiol Biotechnol 2021; 105:7619-7634. [PMID: 34559284 DOI: 10.1007/s00253-021-11602-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
In this work, the application of chemical surfactants, including cooking aids, detergents, surface sizing agents, and deinking agents as core components, is introduced in the wet end of pulping and papermaking. This method for the combined application of enzymes and surfactants has expanded, promoting technological updates and improving the effect of surfactants in practical applications. Finally, the potential substitution of green surfactants for chemical surfactants is discussed. The source, classification, and natural functions of green surfactants are introduced, including plant extracts, biobased surfactants, fermentation products, and woody biomass. These green surfactants have advantages over their chemically synthesized counterparts, such as their low toxicity and biodegradability. This article reviews the latest developments in the application of surfactants in different paper industry processes and extends the methods of use. Additionally, the application potential of green surfactants in the field of papermaking is discussed. KEY POINTS: • Surfactants as important chemical additives in papermaking process are reviewed. • Deinking technologies by combined of surfactants and enzymes are reviewed. • Applications of green surfactant in papermaking industry are prospected.
Collapse
Affiliation(s)
- Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China. .,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.
| | - Dejun Chang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China. .,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.
| | - Zetong Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Yukang Wu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| |
Collapse
|
8
|
Wells PK, Smutok O, Melman A, Katz E. Switchable Biocatalytic Reactions Controlled by Interfacial pH Changes Produced by Orthogonal Biocatalytic Processes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33830-33839. [PMID: 34264645 DOI: 10.1021/acsami.1c07393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzymes immobilized on a nano-structured surface were used to switch the activity of one enzyme by a local pH change produced by another enzyme. Immobilized amyloglucosidase (AMG) and trypsin were studied as examples of the pH-dependent switchable "target enzymes." The reactions catalyzed by co-immobilized urease or esterase were increasing or decreasing the local pH, respectively, thus operating as "actuator enzymes." Both kinds of the enzymes, producing local pH changes and changing biocatalytic activity with the pH variation, were orthogonal in terms of the biocatalytic reactions; however, their operation was coupled with the local pH produced near the surface with the immobilized enzymes. The "target enzymes" (AMG and trypsin) were changed reversibly between the active and inactive states by applying input signals (urea or ester, substrates for the urease or esterase operating as the "actuator enzymes") and washing them out with a new portion of the background solution. The developed approach can potentially lead to switchable operation of several enzymes, while some of them are inhibited when the others are activated upon receiving external signals processed by the "actuator enzymes." More complex systems with branched biocatalytic cascades can be controlled by orthogonal biocatalytic reactions activating selected pathways and changing the final output.
Collapse
Affiliation(s)
- Paulina K Wells
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
9
|
An integrative approach to improving the biocatalytic reactions of whole cells expressing recombinant enzymes. World J Microbiol Biotechnol 2021; 37:105. [PMID: 34037845 DOI: 10.1007/s11274-021-03075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Biotransformation is a selective, stereospecific, efficient, and environment friendly method, compared to chemical synthesis, and a feasible tool for industrial and pharmaceutical applications. The design of biocatalysts using enzyme engineering and metabolic engineering tools has been widely reviewed. However, less importance has been given to the biocatalytic reaction of whole cells expressing recombinant enzymes. Along with the remarkable development of biotechnology tools, a variety of techniques have been applied to improve the biocatalytic reaction of whole cell biotransformation. In this review, techniques related to the biocatalytic reaction are examined, reorganized, and summarized via an integrative approach. Moreover, equilibrium-shifted biotransformation is reviewed for the first time.
Collapse
|
10
|
Garajová K, Sedláková D, Berta M, Gazova Z, Sedlák E. Destabilization effect of imidazolium cation-Hofmeister anion salts on cytochrome c. Int J Biol Macromol 2020; 164:3808-3813. [DOI: 10.1016/j.ijbiomac.2020.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 01/15/2023]
|
11
|
Antimicrobial antidegradative dental adhesive preserves restoration-tooth bond. Dent Mater 2020; 36:1666-1679. [PMID: 33183773 DOI: 10.1016/j.dental.2020.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Assess the ability of an antimicrobial drug-releasing resin adhesive, containing octenidine dihydrochloride (OCT)-silica co-assembled particles (DSPs), to enhance the biostability and preserve the interfacial fracture toughness (FT) of composite restorations bonded to dentin. Enzyme-catalyzed degradation compromises the dental restoration-tooth interface, increasing cariogenic bacterial infiltration. In addition to bacterial ingress inhibition, antimicrobial-releasing adhesives may exhibit direct interfacial biodegradation inhibition as an additional benefit. METHODS Mini short-rod restoration bonding specimens with total-etch adhesive with/without 10% wt. DSPs were made. Interfacial fracture toughness (FT) was measured as-manufactured or post-incubation in simulated human salivary esterase (SHSE) for up to 6-months. Effect of OCT on SHSE and whole saliva/bacterial enzyme activity was assessed. Release of OCT outside the restoration interface was assessed. RESULTS No deleterious effect of DSPs on initial bonding capacity was observed. Aging specimens in SHSE reduced FT of control but not DSP-adhesive-bonded specimens. OCT inhibited SHSE degradation of adhesive monomer and may inhibit endogenous proteases. OCT inhibited bacterial esterase and collagenase. No endogenous collagen breakdown was detected in the present study. OCT increased human saliva degradative esterase activity below its minimum inhibitory concentration towards S. mutans (MIC), but inhibited degradation above MIC. OCT release outside restoration margins was below detection. SIGNIFICANCE DSP-adhesive preserves the restoration bond through a secondary enzyme-inhibitory effect of released OCT, which is virtually confined to the restoration interface microgap. Enzyme activity modulation may produce a positive-to-negative feedback switch, by increasing OCT concentration via biodegradation-triggered release to an effective dose, then subsequently slowing degradation and degradation-triggered release.
Collapse
|
12
|
Tian M, Zhu J, Guo J, Guo X. Activity of Bromelain with Cationic Surfactants and the Correlation with the Change of
1
H NMR
Signals. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maozhang Tian
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC Beijing 100083 China
| | - Jiaxin Zhu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China
| | - Xia Guo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China
| |
Collapse
|
13
|
Han C, Yang R, Sun Y, Liu M, Zhou L, Li D. Identification and Characterization of a Novel Hyperthermostable Bifunctional Cellobiohydrolase- Xylanase Enzyme for Synergistic Effect With Commercial Cellulase on Pretreated Wheat Straw Degradation. Front Bioeng Biotechnol 2020; 8:296. [PMID: 32328483 PMCID: PMC7160368 DOI: 10.3389/fbioe.2020.00296] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
The novel cellobiohydrolase gene ctcel7 was identified from Chaetomium thermophilum, and its recombinant protein CtCel7, a member of glycoside hydrolase family 7, was heterologously expressed in Pichia pastoris and biochemically characterized. Compared with commercial hydrolases, purified CtCel7 exhibited superior bifunctional cellobiohydrolase and xylanase activities against microcrystalline cellulose and xylan, respectively, under optimal conditions of 60°C and pH 4.0. Moreover, CtCel7 displayed remarkable thermostability with over 90% residual activity after heat (60°C) treatment for 180 min. CtCel7 was insensitive to most detected cations and reagents and preferentially cleaved the β-1,4-glycosidic bond to generate oligosaccharides through the continuous saccharification of lignocellulosic substrates, which are crucial for various practical applications. Notably, the hydrolysis effect of a commercial cellulase cocktail on pretreated wheat straw was substantively improved by its combination with CtCel7. Taken together, these excellent properties distinguish CtCel7 as a robust candidate for the biotechnological production of biofuels and biobased chemicals.
Collapse
Affiliation(s)
- Chao Han
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ruirui Yang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yanxu Sun
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Mengyu Liu
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Lifan Zhou
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Duochuan Li
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
14
|
Li WN, Fan DD. Biocatalytic strategies for the production of ginsenosides using glycosidase: current state and perspectives. Appl Microbiol Biotechnol 2020; 104:3807-3823. [DOI: 10.1007/s00253-020-10455-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
|
15
|
Bento RM, Almeida MR, Bharmoria P, Freire MG, Tavares AP. Improvements in the enzymatic degradation of textile dyes using ionic-liquid-based surfactants. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116191] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Mallawarachchi S, Gejji V, Sierra LS, Wang H, Fernando S. Electrical Field Reversibly Modulates Enzyme Kinetics of Hexokinase Entrapped in an Electro-Responsive Hydrogel. ACS APPLIED BIO MATERIALS 2019; 2:5676-5686. [DOI: 10.1021/acsabm.9b00748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samavath Mallawarachchi
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Varun Gejji
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Laura Soto Sierra
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Haoqi Wang
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Zhaoyu Z, Chunmiao H, Chuanhu D, Ping X, Weiwei Z. Efficient synthesis of cefadroxil in [Bmim][NTf
2
]‐phosphate cosolvent by magnetic immobilized penicillin G acylase. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zheng Zhaoyu
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical EngineeringNingxia University Yinchuan China
| | - Hu Chunmiao
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical EngineeringNingxia University Yinchuan China
| | - Du Chuanhu
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical EngineeringNingxia University Yinchuan China
| | - Xue Ping
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical EngineeringNingxia University Yinchuan China
| | - Zhang Weiwei
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical EngineeringNingxia University Yinchuan China
| |
Collapse
|
18
|
Cheng K, Wu Q, Jiang L, Liu M, Li C. Protein stability analysis in ionic liquids by 19F NMR. Anal Bioanal Chem 2019; 411:4929-4935. [DOI: 10.1007/s00216-019-01804-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/24/2019] [Accepted: 03/25/2019] [Indexed: 01/16/2023]
|
19
|
Insights into the effect of imidazolium-based ionic liquids on chemical structure and hydrolytic activity of microbial lipase. Bioprocess Biosyst Eng 2019; 42:1235-1246. [DOI: 10.1007/s00449-019-02121-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 01/04/2023]
|
20
|
Liu Y, Liu Z, Zeng G, Chen M, Jiang Y, Shao B, Li Z, Liu Y. Effect of surfactants on the interaction of phenol with laccase: Molecular docking and molecular dynamics simulation studies. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:10-18. [PMID: 29859460 DOI: 10.1016/j.jhazmat.2018.05.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/01/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Some surfactants can enhance the removal of phenol by laccase (Lac) in various industrial effluents. Their behavior and function in the biodegradation of phenolic wastewater have been experimentally reported by many researchers, but the underlying molecular mechanism is still unclear. Therefore, the interaction mechanisms of phenol with Lac from Trametes versicolor were investigated in the presence or absence of Triton X-100 (TX100) or rhamnolipid (RL) by molecular docking and molecular dynamics (MD) simulations. The results indicate that phenol contacts with an active site of Lac by hydrogen bonds (HBs) and van der Waals (vdW) interactions in aqueous solution for maintaining its stability. The presence of TX100 or RL results in the significant changes of enzymatic conformations. Meanwhile, the hydrophobic parts of surfactants contact with the outside surface of Lac. These changes lead to the decrease of binding energy between phenol and Lac. The migration behavior of water molecules within hydration shell is also inevitably affected. Therefore, the amphipathic TX100 or RL may influence the phenol degradation ability of Lac by modulating their interactions and water environment. This study offers molecular level of understanding on the function of surfactants in biosystem.
Collapse
Affiliation(s)
- Yujie Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Yilin Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Zhigang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
21
|
Heitz MP, Rupp JW. Determining mushroom tyrosinase inhibition by imidazolium ionic liquids: A spectroscopic and molecular docking study. Int J Biol Macromol 2017; 107:1971-1981. [PMID: 29032215 DOI: 10.1016/j.ijbiomac.2017.10.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/30/2017] [Accepted: 10/11/2017] [Indexed: 01/12/2023]
Abstract
The inhibition effects of imidazolium ionic liquids (ILs) on the enzyme kinetics of mushroom tyrosinase is reported. A simple UV-VIS spectrophotometric assay was used to measure the reaction kinetics of the reaction between mushroom tyrosinase and L-dopa. Seven different imidazolium ILs, comprised of 1-alkyl-3-methylimidazolium ([Imn1+], n=2, 4, 6) cations paired with several anions that included Cl-, [NO3-], methanesulfonate ([MeSO3-]), trifluoromethanesulfonate (or triflate, [TFMS-]), and bis(trifluoromethylsulfonyl)imide ([Tf2N-]). Lineweaver-Burk plots were generated from the recovered kcat and Km parameters using four to six substrate concentrations per measurement. The results show that mushroom tyrosinase activity was consistently inhibited by all of the ILs and that the type of inhibition was non-competitive in nearly all cases. Only the data for [Im21+][Tf2N-] suggested that the inhibition mechanism was competitive with the substrate. Molecular docking simulations were performed using AutoDock4.2 and AutoDock Vina and revealed that all cations docked in the L-dopa active site. Anions showed varied results that included locations both within and outside of the active site.
Collapse
Affiliation(s)
- Mark P Heitz
- Department of Chemistry and Biochemistry, The College at Brockport, SUNY, 228, Smith Hall 350 New Campus Drive, Brockport, NY, 14420, United States.
| | - Jason W Rupp
- Department of Chemistry and Biochemistry, The College at Brockport, SUNY, 228, Smith Hall 350 New Campus Drive, Brockport, NY, 14420, United States
| |
Collapse
|
22
|
Affiliation(s)
- Toshiyuki Itoh
- Department
of Chemistry and Biotechnology, Graduate School of Engineering and ‡Center for Research
on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| |
Collapse
|
23
|
Aspras I, Jaworska MM, Górak A. Kinetics of chitin deacetylase activation by the ionic liquid [Bmim][Br]. J Biotechnol 2017; 251:94-98. [PMID: 28435098 DOI: 10.1016/j.jbiotec.2017.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/10/2017] [Accepted: 04/15/2017] [Indexed: 12/20/2022]
Abstract
Chitin deacetylase is the only known enzyme that can deacetylate the N-acetyl-d-glucosamine units in chitin and chitosan to D-glucosamine. Unfortunately, this enzyme, originally obtained from fungi, usually has low activity. Here, we present that it is possible to enhance the activity of chitin deacetylase using the ionic liquid [Bmim][Br]. An increase in activity of up to 160% from the basal chitin deacetylase activity was observed. Kinetic investigations suggest that [Bmim][Br] is a non-essential activator.
Collapse
Affiliation(s)
- Izabela Aspras
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Warynskiego 1, 00645 Warsaw, Poland
| | - Malgorzata M Jaworska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Warynskiego 1, 00645 Warsaw, Poland.
| | - Andrzej Górak
- Faculty of Biochemical and Chemical Engineering, Technical University of Dortmund, Emil-Figge-Straße 70, 44227 Dortmund, Germany; Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Łodz, Poland.
| |
Collapse
|
24
|
|
25
|
Sehata S, Nakagawa Y, Genjima R, Koumoto K. Quick Activation/Stabilization of a α-Glucosidase-catalyzed Hydrolysis Reaction by Addition of a Betaine-type Metabolite Analogue. CHEM LETT 2016. [DOI: 10.1246/cl.160567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Azimi M, Nafissi-Varcheh N, Mogharabi M, Faramarzi MA, Aboofazeli R. Study of laccase activity and stability in the presence of ionic and non-ionic surfactants and the bioconversion of indole in laccase-TX-100 system. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Kuchenbuch A, Giernoth R. Ionic Liquids Beyond Simple Solvents: Glimpses at the State of the Art in Organic Chemistry. ChemistryOpen 2015; 4:677-81. [PMID: 27308192 PMCID: PMC4906501 DOI: 10.1002/open.201500113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 11/26/2022] Open
Abstract
Within the last 25 years ionic liquids have written a tremendous success story, which is documented in a nearly uncountable amount of original research papers, reviews, and numerous applications in research and industry. These days, ionic liquids can be considered as a mature class of compounds for many different applications. Frequently, they are used as neoteric solvents for chemical tansformations, and the number of reviews on this field of research is huge. In this focused review, though, we are trying to evaluate the state of the art of ionic liquid chemistry beyond using them simply as solvents for chemical transformations. It is not meant to be a comprehensive overview on the topic; the choice of emphasis and examples rather refects the authors' personal view on the field. We are especially highlighting fields in which we believe the most fundamental developments within the next five years will take place: biomass processing, (chiral) ionic liquids from natural sources, biotransformations, and organic synthesis.
Collapse
Affiliation(s)
| | - Ralf Giernoth
- Department für ChemieUniversität zu KölnGreinstr. 450939KölnGermany
| |
Collapse
|
28
|
Weiss E, Gertopski D, Gupta MK, Abu-Reziq R. Encapsulation of ionic liquid BMIm[PF6] within polyurea microspheres. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Li X, Zhang C, Li S, Huang H, Hu Y. Improving Catalytic Performance of Candida rugosa Lipase by Chemical Modification with Polyethylene Glycol Functional Ionic Liquids. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01881] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiujuan Li
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Chuan Zhang
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Shuang Li
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - He Huang
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| |
Collapse
|
30
|
Zhao J, Jia N, Jaeger KE, Bocola M, Schwaneberg U. Ionic liquid activatedBacillus subtilislipase A variants through cooperative surface substitutions. Biotechnol Bioeng 2015; 112:1997-2004. [DOI: 10.1002/bit.25617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/27/2015] [Accepted: 04/06/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Zhao
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3; 52074 Aachen Germany
| | - Ning Jia
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3; 52074 Aachen Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology; Heinrich-Heine-University Düsseldorf; Forschungszentrum Jülich; 52426 Jülich Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3; 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3; 52074 Aachen Germany
| |
Collapse
|
31
|
Nakagawa Y, Takagi K, Genjima R, Koumoto K. Significance of anionic functional group in betaine-type metabolite analogs on the facilitation of enzyme reactions. Bioprocess Biosyst Eng 2015; 38:1811-7. [PMID: 26025639 DOI: 10.1007/s00449-015-1422-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/25/2015] [Indexed: 11/28/2022]
Abstract
Using synthetic sulfobetaine library, the enzyme activation behavior has been investigated. Comparison of enzyme activation behavior revealed that sulfobetaines equally facilitate enzyme reactions, being consistent with that of carboxybetaines. The subsequent kinetic and solution property analyses clarified that both the kinetic parameter and hydration property changes are identical with those of carboxybetaines, indicating that the difference in the anionic functional group of the betaine structure scarcely affects the enzyme activation. On the other hand, comparison of carboxy- or sulfo-betaines with tetraalkylammonium salts, whose counteranion binds to the ammonium cation intermolecularly, revealed that the activation ability for enzymes of tetraalkylammonium salts is considerably smaller than that of carboxy- or sulfo-betaines. These findings give us a hint to design the useful betaine-type enzyme activators.
Collapse
Affiliation(s)
- Yuichi Nakagawa
- Department of Nanobiochemistry, FIRST (Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | | | | | | |
Collapse
|
32
|
Nakagawa Y, Sehata S, Fujii S, Yamamoto H, Tsuda A, Koumoto K. Mechanistic study on the facilitation of enzymatic hydrolysis by α-glucosidase in the presence of betaine-type metabolite analogs. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Superactivity induced by micellar systems as the key for boosting the yield of enzymatic reactions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Fan LL, Li HJ, Chen QH. Applications and mechanisms of ionic liquids in whole-cell biotransformation. Int J Mol Sci 2014; 15:12196-216. [PMID: 25007820 PMCID: PMC4139838 DOI: 10.3390/ijms150712196] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/13/2014] [Accepted: 07/01/2014] [Indexed: 01/08/2023] Open
Abstract
Ionic liquids (ILs), entirely composed of cations and anions, are liquid solvents at room temperature. They are interesting due to their low vapor pressure, high polarity and thermostability, and also for the possibility to fine-tune their physicochemical properties through modification of the chemical structures of their cations or anions. In recent years, ILs have been widely used in biotechnological fields involving whole-cell biotransformations of biodiesel or biomass, and organic compound synthesis with cells. Research studies in these fields have increased from the past decades and compared to the typical solvents, ILs are the most promising alternative solvents for cell biotransformations. However, there are increasing limitations and new challenges in whole-cell biotransformations with ILs. There is little understanding of the mechanisms of ILs' interactions with cells, and much remains to be clarified. Further investigations are required to overcome the drawbacks of their applications and to broaden their application spectrum. This work mainly reviews the applications of ILs in whole-cell biotransformations, and the possible mechanisms of ILs in microbial cell biotransformation are proposed and discussed.
Collapse
Affiliation(s)
- Lin-Lin Fan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Hong-Ji Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Qi-He Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Yan K, Sun Y, Huang X. Effect of the alkyl chain length of a hydrophobic ionic liquid (IL) as an oil phase on the phase behavior and the microstructure of H2O/IL/nonionic polyoxyethylene surfactant ternary systems. RSC Adv 2014. [DOI: 10.1039/c4ra04392h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Coates CJ, Nairn J. Diverse immune functions of hemocyanins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:43-55. [PMID: 24486681 DOI: 10.1016/j.dci.2014.01.021] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 06/03/2023]
Abstract
Substantial evidence gathered recently has revealed the multiple functionalities of hemocyanin. Contrary to previous claims that this ancient protein is involved solely in oxygen transport within the hemolymph of invertebrates, hemocyanin and hemocyanin-derived peptides have been linked to key aspects of innate immunity, in particular, antiviral and phenoloxidase-like activities. Both phenoloxidase and hemocyanin belong to the family of type-3 copper proteins and share a high degree of sequence homology. While the importance of phenoloxidase in immunity and development is well characterised, the contribution of hemocyanin to biological defence systems within invertebrates is not recognised widely. This review focusses on the conversion of hemocyanin into a phenoloxidase-like enzyme and the array of hemocyanin-derived immune responses documented to date.
Collapse
Affiliation(s)
- Christopher J Coates
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Jacqueline Nairn
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| |
Collapse
|
37
|
Itoh T. Recent Trend of Ionic Liquid Chemistry in the Field of Synthetic Organic Chemistry: A Mini Review. J SYN ORG CHEM JPN 2014. [DOI: 10.5059/yukigoseikyokaishi.72.518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|