1
|
Pongcharoen P, Tawong W, Pathaichindachote W, Rod-In W. Physiological responses contributing to multiple stress tolerance in Pichia kudriavzevii with potential enhancement for ethanol fermentation. J Biosci Bioeng 2024; 138:314-323. [PMID: 39098474 DOI: 10.1016/j.jbiosc.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Economically feasible ethanol production requires efficient hydrolysis of lignocellulosic biomass and high-temperature processing to enable simultaneous saccharification and fermentation. During the lignocellulolysic hydrolysate, the yeast must encounter with a multiple of inhibitors such as heat and furfural. To solve this problem, a potential fermentative yeast strain that tolerated simultaneous multistress and enhance ethanol concentration was investigated. Twenty yeast isolates were classified into two major yeast species, namely Pichia kudriavzevii (twelve isolates) and Candida tropicalis (eight isolates). All P. kudriavzevii isolates were able to grow at high temperature (45 °C) and exhibited stress tolerance toward furfural. Among P. kudriavzevii isolates, NUCG-S3 presented the highest specific growth rate under each stress condition of heat and furfural, and multistress. Morphological changes in P. kudriavzevii isolates (NUCG-S2, NUCG-S3, NUKL-P1, NUKL-P3, and NUOR-J1) showed alteration in mean cell length and width compared to the non-stress condition. Ethanol production by glucose was also determined. The yeast strain, NUCG-S3, gave the highest ethanol concentrations at 99.46 ± 0.82, 62.23 ± 0.96, and 65.80 ± 0.62 g/l (P < 0.05) under temperature of 30 °C, 40 °C, and 42 °C, respectively. The tolerant isolated yeast NUCG-S3 achieved ethanol production of 53.58 ± 3.36 and 48.06 ± 3.31 g/l (P < 0.05) in the presence of 15 mM furfural and multistress (42 °C with 15 mM furfural), respectively. Based on the results of the present study, the novel thermos and furfural-tolerant yeast strain P. kudriavzevii NUCG-S3 showed promise as a highly proficient yeast for high-temperature ethanol fermentation.
Collapse
Affiliation(s)
- Pongsanat Pongcharoen
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand.
| | - Wittaya Tawong
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand.
| | - Wanwarang Pathaichindachote
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand.
| | - Weerawan Rod-In
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
2
|
Chen C, Li YW, Chen XY, Wang YT, Ye C, Shi TQ. Application of adaptive laboratory evolution for Yarrowia lipolytica: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 391:129893. [PMID: 39491116 DOI: 10.1016/j.biortech.2023.129893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Adaptive laboratory evolution is an innovative approach utilized by researchers to enhance the characteristics of microorganisms in the field of biology. With the advancement of this technology, it is now being extended to non-model strains. Yarrowia lipolytica, an oleaginous yeast with significant industrial potential, stands out among the non-conventional fungi. However, the activity of Yarrowia lipolytica is frequently affected by specific substances and environmental factors, necessitating the development of techniques to address these challenges. This manuscript provides an overview of adaptive laboratory evolution experiments conducted on Yarrowia lipolytica, and categorizes the contents into two aspects including improving lignocellulose utilization and enhancing the production in Yarrowia lipolytica. Additionally, we selected several representative examples to illustrate how adaptive laboratory evolution can be combined with other techniques to elucidate the potential mechanisms underlying strain evolution. Lastly, we anticipate a promising future for adaptive laboratory evolution technology and Yarrowia lipolytica in tandem.
Collapse
Affiliation(s)
- Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xin-Yu Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| |
Collapse
|
3
|
Liang P, Cao M, Li J, Wang Q, Dai Z. Expanding sugar alcohol industry: Microbial production of sugar alcohols and associated chemocatalytic derivatives. Biotechnol Adv 2023; 64:108105. [PMID: 36736865 DOI: 10.1016/j.biotechadv.2023.108105] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Sugar alcohols are polyols that are widely employed in the production of chemicals, pharmaceuticals, and food products. Chemical synthesis of polyols, however, is complex and necessitates the use of hazardous compounds. Therefore, the use of microbes to produce polyols has been proposed as an alternative to traditional synthesis strategies. Many biotechnological approaches have been described to enhancing sugar alcohols production and microbe-mediated sugar alcohol production has the potential to benefit from the availability of inexpensive substrate inputs. Among of them, microbe-mediated erythritol production has been implemented in an industrial scale, but microbial growth and substrate conversion rates are often limited by harsh environmental conditions. In this review, we focused on xylitol, mannitol, sorbitol, and erythritol, the four representative sugar alcohols. The main metabolic engineering strategies, such as regulation of key genes and cofactor balancing, for improving the production of these sugar alcohols were reviewed. The feasible strategies to enhance the stress tolerance of chassis cells, especially thermotolerance, were also summarized. Different low-cost substrates like glycerol, molasses, cellulose hydrolysate, and CO2 employed for producing these sugar alcohols were presented. Given the value of polyols as precursor platform chemicals that can be leveraged to produce a diverse array of chemical products, we not only discuss the challenges encountered in the above parts, but also envisioned the development of their derivatives for broadening the application of sugar alcohols.
Collapse
Affiliation(s)
- Peixin Liang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Zongjie Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| |
Collapse
|
4
|
Liang P, Li J, Wang Q, Dai Z. Enhancing the thermotolerance and erythritol production of Yarrowia lipolytica by introducing heat-resistant devices. Front Bioeng Biotechnol 2023; 11:1108653. [PMID: 36845173 PMCID: PMC9947466 DOI: 10.3389/fbioe.2023.1108653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Yarrowia lipolytica has been widely used in the food biotech-related industry, where it plays the host's role in producing erythritol. Nevertheless, a temperature of about 28°C-30°C has been estimated as the yeast's optimal growth temperature, leading to the consumption of a considerable quantity of cooling water, especially in summer, which is obligatory for fermentation. Herein is described a method for improving the thermotolerance and erythritol production efficiency at high temperatures of Y. lipolytica. Through screening and testing different heat resistant devices, eight refactored engineered strains showed better growth at higher temperature and the antioxidant properties of the eight engineered strains were also improved. In addition, the erythritol titer, yield and productivity of the strain FOS11-Ctt1 represented the best among the eight strains, reaching at 39.25 g/L, 0.348 g/g glucose, and 0.55 g/L/h respectively, which were increased by 156%, 86% and 161% compared with the control strain, respectively. This study provides insight into an effective heat-resistant device that could enhance the thermotolerance and erythritol production of Y. lipolytica, which might be considered a valued scientific reference for other resistant strains' construction.
Collapse
Affiliation(s)
- Peixin Liang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Jing Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Center of Technology Innovation for Synthetic Biology, Tianjin, China,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Center of Technology Innovation for Synthetic Biology, Tianjin, China,*Correspondence: Zongjie Dai,
| |
Collapse
|
5
|
González-Gloria K, Rodríguez-Jasso RM, Saxena R, Sindhu R, Ali SS, Singhania RR, Patel AK, Binod P, Ruiz HA. Bubble column bioreactor design and evaluation for bioethanol production using simultaneous saccharification and fermentation strategy from hydrothermally pretreated lignocellulosic biomass. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Baptista M, Domingues L. Kluyveromyces marxianus as a microbial cell factory for lignocellulosic biomass valorisation. Biotechnol Adv 2022; 60:108027. [PMID: 35952960 DOI: 10.1016/j.biotechadv.2022.108027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
The non-conventional yeast Kluyveromyces marxianus is widely used for several biotechnological applications, mainly due to its thermotolerance, high growth rate, and ability to metabolise a wide range of sugars. These cell traits are strategic for lignocellulosic biomass valorisation and strain diversity prompts the development of robust chassis, either with improved tolerance to lignocellulosic inhibitors or ethanol. This review summarises bioethanol and value-added chemicals production by K. marxianus from different lignocellulosic biomasses. Moreover, metabolic engineering and process optimization strategies developed to expand K. marxianus potential are also compiled, as well as studies reporting cell mechanisms to cope with lignocellulosic-derived inhibitors. The main lignocellulosic-based products are bioethanol, representing 71% of the reports, and xylitol, representing 17% of the reports. K. marxianus also proved to be a good chassis for lactic acid and volatile compounds production from lignocellulosic biomass, although the literature on this matter is still scarce. The increasing advances in genome editing tools and process optimization strategies will widen the K. marxianus-based portfolio products.
Collapse
Affiliation(s)
- Marlene Baptista
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
7
|
Pongcharoen P. The ability of Pichia kudriavzevii to tolerate multiple stresses makes it promising for developing improved bioethanol production processes. Lett Appl Microbiol 2022; 75:36-44. [PMID: 35315114 DOI: 10.1111/lam.13703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
Thermotolerant ethanol fermenting yeasts have been extensively used in industrial bioethanol production. However, little is known about yeast physiology under stress during bioethanol processing. This study investigated the physiological characteristics of the thermotolerant yeast Pichia kudriavzevii, strains NUNS-4, NUNS-5 and NUNS-6, under the multiple stresses of heat, ethanol and sodium chloride. Results showed that NUNS-4, NUNS-5 and NUNS-6 displayed higher growth rates under each stress condition than the reference strain, Saccharomyces cerevisiae TISTR5606. Maximum specific growth rates under stresses of heat (45°C), 15% v/v ethanol and 1·0 M sodium chloride were 0·23 ± 0·04 (NUNS-4), 0·11 ± 0·01 (NUNS-5) and 0·15 ± 0·01 h-1 (NUNS-5), respectively. Morphological features of all yeast studied changed distinctly with the production of granules and vacuoles when exposed to ethanol, and cells were elongated under increased sodium chloride concentration. This study suggests that the three P. kudriavzevii strains are potential candidates to use in industrial-scale fermentation due to a high specific growth rate under multiple stress conditions. Multiple stress-tolerant P. kudriavzevii NUNS strains have received much attention not only for improving large-scale fuel ethanol production, but also for utilizing these strains in other biotechnological industries.
Collapse
Affiliation(s)
- Pongsanat Pongcharoen
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand.,Center of Excellence in Research in Agricultural Biotechnology, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
8
|
Engineering eukaryote-like regulatory circuits to expand artificial control mechanisms for metabolic engineering in Saccharomyces cerevisiae. Commun Biol 2022; 5:135. [PMID: 35173283 PMCID: PMC8850539 DOI: 10.1038/s42003-022-03070-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Temporal control of heterologous pathway expression is critical to achieve optimal efficiency in microbial metabolic engineering. The broadly-used GAL promoter system for engineered yeast (Saccharomyces cerevisiae) suffers from several drawbacks; specifically, unintended induction during laboratory development, and unintended repression in industrial production applications, which decreases overall production capacity. Eukaryotic synthetic circuits have not been well examined to address these problems. Here, we explore a modularised engineering method to deploy new genetic circuits applicable for expanding the control of GAL promoter-driven heterologous pathways in S. cerevisiae. Trans- and cis- modules, including eukaryotic trans-activating-and-repressing mechanisms, were characterised to provide new and better tools for circuit design. A eukaryote-like tetracycline-mediated circuit that delivers stringent repression was engineered to minimise metabolic burden during strain development and maintenance. This was combined with a novel 37 °C induction circuit to relief glucose-mediated repression on the GAL promoter during the bioprocess. This delivered a 44% increase in production of the terpenoid nerolidol, to 2.54 g L-1 in flask cultivation. These negative/positive transcriptional regulatory circuits expand global strategies of metabolic control to facilitate laboratory maintenance and for industry applications.
Collapse
|
9
|
de Moura Ferreira MA, da Silveira FA, da Silveira WB. Ethanol stress responses in Kluyveromyces marxianus: current knowledge and perspectives. Appl Microbiol Biotechnol 2022; 106:1341-1353. [DOI: 10.1007/s00253-022-11799-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
|
10
|
Dekker WJC, Jürgens H, Ortiz-Merino RA, Mooiman C, van den Berg R, Kaljouw A, Mans R, Pronk JT. OUP accepted manuscript. FEMS Yeast Res 2022; 22:6523363. [PMID: 35137036 PMCID: PMC8862043 DOI: 10.1093/femsyr/foac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
While thermotolerance is an attractive trait for yeasts used in industrial ethanol production, oxygen requirements of known thermotolerant species are incompatible with process requirements. Analysis of oxygen-sufficient and oxygen-limited chemostat cultures of the facultatively fermentative, thermotolerant species Ogataea parapolymorpha showed its minimum oxygen requirements to be an order of magnitude larger than those reported for the thermotolerant yeast Kluyveromyces marxianus. High oxygen requirements of O. parapolymorpha coincided with a near absence of glycerol, a key NADH/NAD+ redox-cofactor-balancing product in many other yeasts, in oxygen-limited cultures. Genome analysis indicated absence of orthologs of the Saccharomyces cerevisiae glycerol-3-phosphate-phosphatase genes GPP1 and GPP2. Co-feeding of acetoin, whose conversion to 2,3-butanediol enables reoxidation of cytosolic NADH, supported a 2.5-fold increase of the biomass concentration in oxygen-limited cultures. An O. parapolymorpha strain in which key genes involved in mitochondrial reoxidation of NADH were inactivated did produce glycerol, but transcriptome analysis did not reveal a clear candidate for a responsible phosphatase. Expression of S. cerevisiae GPD2, which encodes NAD+-dependent glycerol-3-phosphate dehydrogenase, and GPP1 supported increased glycerol production by oxygen-limited chemostat cultures of O. parapolymorpha. These results identify dependence on respiration for NADH reoxidation as a key contributor to unexpectedly high oxygen requirements of O. parapolymorpha.
Collapse
Affiliation(s)
- Wijbrand J C Dekker
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Hannes Jürgens
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Raúl A Ortiz-Merino
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christiaan Mooiman
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Remon van den Berg
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Astrid Kaljouw
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Corresponding author: Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands. Tel: +31 15 2783214; E-mail:
| |
Collapse
|
11
|
Tinôco D, da Silveira WB. Kinetic model of ethanol inhibition for Kluyveromyces marxianus CCT 7735 (UFV-3) based on the modified Monod model by Ghose & Tyagi. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00876-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Avchar R, Lanjekar V, Dhakephalkar PK, Dagar SS, Baghela A. Compost as an untapped niche for thermotolerant yeasts capable of high-temperature ethanol production. Lett Appl Microbiol 2021; 74:109-121. [PMID: 34714552 DOI: 10.1111/lam.13593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022]
Abstract
Efficient bioethanol production from lignocellulosic biomass requires thermotolerant yeasts capable of utilizing multiple sugars, tolerating inhibitors and fermenting at high temperatures. In this study, 98 thermotolerant yeasts were isolated from nine compost samples. We selected 37 yeasts that belonged to 11 species; 31 grew at 45°C; 6 strains grew at 47°C, while 9 yeasts could utilize multiple sugars. Many yeast isolates showed high ethanol production in the range of 12-24 g l-1 , with fermentation efficiencies of 47-94% at 40°C using 5% glucose. Kluyveromyces marxianus CSV3.1 and CSC4.1 (47°C), Pichia kudriavzevii CSUA9.3 (45°C) produced 21, 22 and 23 g l-1 of ethanol with efficiencies of 83, 87 and 90%, respectively, using 5% glucose. Among these yeasts, K. marxianus CSC4.1 and P. kudriavzevii CSUA9.3 exhibited high tolerance against furfural, 5-HMF, acetic acid and ethanol. These two strains produced high amounts of ethanol from alkali-treated RS, with 84 and 87% efficiency via separate hydrolysis and fermentation; 76 and 74% via simultaneous saccharification and fermentation at 47 and 45°C, respectively. Therefore, this study demonstrates compost as a potential anthropogenic niche for multiple sugar-utilizing, inhibitor-tolerant ethanologenic yeasts suitable for high-temperature ethanol production via SHF of rice straw.
Collapse
Affiliation(s)
- R Avchar
- Biodiversity and Palaeobiology Group, National Fungal Culture Collection of India (NFCCI), MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - V Lanjekar
- Bioenergy Group, MACS-Agharkar Research Institute, Pune, India
| | | | - S S Dagar
- Bioenergy Group, MACS-Agharkar Research Institute, Pune, India
| | - A Baghela
- Biodiversity and Palaeobiology Group, National Fungal Culture Collection of India (NFCCI), MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| |
Collapse
|
13
|
Hoffman SM, Alvarez M, Alfassi G, Rein DM, Garcia-Echauri S, Cohen Y, Avalos JL. Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:157. [PMID: 34274018 PMCID: PMC8285809 DOI: 10.1186/s13068-021-02008-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/05/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Future expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed. Cellulosic emulsions have been shown to enhance saccharification by increasing enzyme contact with cellulose fibers. In this study, we use these emulsions to develop an emulsified SSF (eSSF) process for rapid and efficient cellulosic biofuel production and make a direct three-way comparison of ethanol production between S. cerevisiae, O. polymorpha, and K. marxianus in glucose and cellulosic media at different temperatures. RESULTS In this work, we show that cellulosic emulsions hydrolyze rapidly at temperatures tolerable to yeast, reaching up to 40-fold higher conversion in the first hour compared to microcrystalline cellulose (MCC). To evaluate suitable conditions for the eSSF process, we explored the upper temperature limits for the thermotolerant yeasts Kluyveromyces marxianus and Ogataea polymorpha, as well as Saccharomyces cerevisiae, and observed robust fermentation at up to 46, 50, and 42 °C for each yeast, respectively. We show that the eSSF process reaches high ethanol titers in short processing times, and produces close to theoretical yields at temperatures as low as 30 °C. Finally, we demonstrate the transferability of the eSSF technology to other products by producing the advanced biofuel isobutanol in a light-controlled eSSF using optogenetic regulators, resulting in up to fourfold higher titers relative to MCC SSF. CONCLUSIONS The eSSF process addresses the main challenges of cellulosic biofuel production by increasing saccharification rate at temperatures tolerable to yeast. The rapid hydrolysis of these emulsions at low temperatures permits fermentation using non-thermotolerant yeasts, short processing times, low enzyme loads, and makes it possible to extend the process to chemicals other than ethanol, such as isobutanol. This transferability establishes the eSSF process as a platform for the sustainable production of biofuels and chemicals as a whole.
Collapse
Affiliation(s)
- Shannon M Hoffman
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Maria Alvarez
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
- Department of Chemical Engineering, University of Vigo, 36310, Vigo, Spain
| | - Gilad Alfassi
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Dmitry M Rein
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sergio Garcia-Echauri
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Yachin Cohen
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - José L Avalos
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA.
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Environmental Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
14
|
Qiu X, Gu Y, Du G, Zhang J, Xu P, Li J. Conferring thermotolerant phenotype to wild-type Yarrowia lipolytica improves cell growth and erythritol production. Biotechnol Bioeng 2021; 118:3117-3127. [PMID: 34009652 DOI: 10.1002/bit.27835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/22/2021] [Accepted: 05/09/2021] [Indexed: 12/19/2022]
Abstract
In microbial engineering, heat stress is an important environmental factor modulating cell growth, metabolic flux distribution and the synthesis of target products. Yarrowia lipolytica, as a GARS (generally recognized as safe) nonconventional yeast, has been widely used in the food industry, especially as the host of erythritol production. Biomanufacturing economics is limited by the high operational cost of cooling energy in large-scale fermentation. It is of great significance to select thermotolerant Y. lipolytica to reduce the cooling cost and elucidate the heat-resistant mechanism at molecular level. For this purpose, we performed adaptive evolution and obtained a thermotolerant strain named Y. lipolytica BBE-18. Transcriptome analysis allows us to identify four genes in thiamine metabolism pathway that are responsible for the complicated thermotolerant phenotype. The heat-resistant phenotype was validated with the model strain Y. lipolytica Po1f by overexpression of single and combined genes. Then, conferring the thermotolerant phenotype to the wild-type Y. lipolytica BBE-17 enable the strain to produce three-times more erythritol of the control strain with 3°C higher than optimal cultivation temperature. To our knowledge, this is the first report on engineering heat-resistant phenotype to improve the erythritol production in Y. lipolytica. However, due to the increase of culture temperature, a large amount of adenosine triphosphate is consumed to ensure the life activities of Y. lipolytica which limits the potential of cell synthetic products to a certain extent. Even so, this study provides a reference for Y. lipolytica to produce other products under high temperature.
Collapse
Affiliation(s)
- Xueliang Qiu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yang Gu
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Juan Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Xu
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Jianghua Li
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Tesfaw A, Oner ET, Assefa F. Optimization of ethanol production using newly isolated ethanologenic yeasts. Biochem Biophys Rep 2021; 25:100886. [PMID: 33490643 PMCID: PMC7806873 DOI: 10.1016/j.bbrep.2020.100886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/27/2020] [Accepted: 12/18/2020] [Indexed: 10/25/2022] Open
Abstract
Yeasts are important microorganisms used for ethanol production; however, they are not equally efficient in the amount of ethanol production under different environmental conditions. It is, therefore, necessary to screen for elite strains to utilize them for commercial production of these commodities. In this study, yeasts were isolated from different Ethiopian traditional fermented alcoholic beverages (teji, tella, shamiata and areqe tinisis), milk and ergo, teff and maize dough, soil and compost, flowers, and fruits to evaluate their potential use for ethanol fermentation process. Isolates were screened for efficient ethanol production and the selected ones were identified using phenotypic and genetic characters using D1/D2 region of LSU rDNA sequence analysis. The yeast isolates were evaluated based on their growth and fermentation of different carbon sources. Response surface methodology (RSM) was applied to optimize temperature, pH and incubation time using central composite design (CCD) in Design-Expert 7.0.0. A total of 211 yeasts colonies were isolated of which 60% were ethanologenic yeasts (ethanol producers) and 40% were non-ethanol producers. The yeast population detected from various sources was in the range of 10 5 CFU from traditional foods and beverages to that of 10 3 CFU from fruits and soil samples. The data also showed that the number of colony types (diversity) did not correlate with population density. The highly fermentative isolates were taxonomically characterized into four genera, of which 65% of the isolates (ETP37, ETP50; ETP53, ETP89, ETP94) were categorized under Saccharomyces cerevisiae, and the remaining were Pichia fermentans ETP22, Kluyveromyces marxianus ETP87, and Candida humilis ETP122. The S. cerevisiae isolates produced ethanol (7.6-9.0 g/L) similar with K. marxianus ETP87 producing 7.97 g/L; comparable to the ethanol produced from commercial baker's yeast (8.43 g/L) from 20 g/L dextrose; whereas C. humilis ETP122 and P. fermentans ETP22 produced 5.37 g/L and 6.43 g/L ethanol, respectively. S. cerevisiae ETP53, K. marxianus ETP87, P. fermentans ETP22 and C. humilis ETP122 tolerated 10% extraneous ethanol but the percentage of ethanol tolerance considerably decreased upon 15%. S. cerevisiae ETP53 produced ethanol optimally at pH 5.0, 60 h, and 34 o C. pH 4.8, temperature 36 o C, and 65 h of time were optimal growth conditions of ethanol fermentation by K. marxianus ETP87. The ethanol fermentation conditions of P. fermentans ETP22 was similar to S. cerevisiae ETP53 though the ethanol titer of S. cerevisiae ETP53 was higher than P. fermentans ETP22. Therefore, S. cerevisiae ETP53, K. marxianus and P. fermentans ETP22 are good candidates for ethanol production.
Collapse
Affiliation(s)
- Asmamaw Tesfaw
- Department of Biology, Debre Berhan University, P.O Box,445, Debre Berhan, Ethiopia
| | - Ebru Toksoy Oner
- , Department of Bioengineering, Marmara University, Goztepe Campus, P.O.Box 34722, Istanbul, Turkey
| | - Fassil Assefa
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, P.O Box,1176, Addis Ababa, Ethiopia
| |
Collapse
|
16
|
Kluyveromyces marxianus: Current State of Omics Studies, Strain Improvement Strategy and Potential Industrial Implementation. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioethanol is considered an excellent alternative to fossil fuels, since it importantly contributes to the reduced consumption of crude oil, and to the alleviation of environmental pollution. Up to now, the baker yeast Saccharomyces cerevisiae is the most common eukaryotic microorganism used in ethanol production. The inability of S. cerevisiae to grow on pentoses, however, hinders its effective growth on plant biomass hydrolysates, which contain large amounts of C5 and C12 sugars. The industrial-scale bioprocessing requires high temperature bioreactors, diverse carbon sources, and the high titer production of volatile compounds. These criteria indicate that the search for alternative microbes possessing useful traits that meet the required standards of bioethanol production is necessary. Compared to other yeasts, Kluyveromyces marxianus has several advantages over others, e.g., it could grow on a broad spectrum of substrates (C5, C6 and C12 sugars); tolerate high temperature, toxins, and a wide range of pH values; and produce volatile short-chain ester. K. marxianus also shows a high ethanol production rate at high temperature and is a Crabtree-negative species. These attributes make K. marxianus promising as an industrial host for the biosynthesis of biofuels and other valuable chemicals.
Collapse
|
17
|
Lacerda MP, Oh EJ, Eckert C. The Model System Saccharomyces cerevisiae Versus Emerging Non-Model Yeasts for the Production of Biofuels. Life (Basel) 2020; 10:E299. [PMID: 33233378 PMCID: PMC7700301 DOI: 10.3390/life10110299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Microorganisms are effective platforms for the production of a variety of chemicals including biofuels, commodity chemicals, polymers and other natural products. However, deep cellular understanding is required for improvement of current biofuel cell factories to truly transform the Bioeconomy. Modifications in microbial metabolic pathways and increased resistance to various types of stress caused by the production of these chemicals are crucial in the generation of robust and efficient production hosts. Recent advances in systems and synthetic biology provide new tools for metabolic engineering to design strategies and construct optimal biocatalysts for the sustainable production of desired chemicals, especially in the case of ethanol and fatty acid production. Yeast is an efficient producer of bioethanol and most of the available synthetic biology tools have been developed for the industrial yeast Saccharomyces cerevisiae. Non-conventional yeast systems have several advantageous characteristics that are not easily engineered such as ethanol tolerance, low pH tolerance, thermotolerance, inhibitor tolerance, genetic diversity and so forth. Currently, synthetic biology is still in its initial steps for studies in non-conventional yeasts such as Yarrowia lipolytica, Kluyveromyces marxianus, Issatchenkia orientalis and Pichia pastoris. Therefore, the development and application of advanced synthetic engineering tools must also focus on these underexploited, non-conventional yeast species. Herein, we review the basic synthetic biology tools that can be applied to the standard S. cerevisiae model strain, as well as those that have been developed for non-conventional yeasts. In addition, we will discuss the recent advances employed to develop non-conventional yeast strains that are efficient for the production of a variety of chemicals through the use of metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Maria Priscila Lacerda
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, CO 80303, USA;
| | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Carrie Eckert
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, CO 80303, USA;
- National Renewable Energy Laboratory (NREL), Biosciences Center, Golden, CO 80401, USA
| |
Collapse
|
18
|
Prado CD, Mandrujano GPL, Souza JP, Sgobbi FB, Novaes HR, da Silva JPMO, Alves MHR, Eliodório KP, Cunha GCG, Giudici R, Procópio DP, Basso TO, Malavazi I, Cunha AF. Physiological characterization of a new thermotolerant yeast strain isolated during Brazilian ethanol production, and its application in high-temperature fermentation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:178. [PMID: 33117432 PMCID: PMC7590731 DOI: 10.1186/s13068-020-01817-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The use of thermotolerant yeast strains can improve the efficiency of ethanol fermentation, allowing fermentation to occur at temperatures higher than 40 °C. This characteristic could benefit traditional bio-ethanol production and allow simultaneous saccharification and fermentation (SSF) of starch or lignocellulosic biomass. RESULTS We identified and characterized the physiology of a new thermotolerant strain (LBGA-01) able to ferment at 40 °C, which is more resistant to stressors as sucrose, furfural and ethanol than CAT-1 industrial strain. Furthermore, this strain showed similar CAT-1 resistance to acetic acid and lactic acid, and it was also able to change the pattern of genes involved in sucrose assimilation (SUC2 and AGT1). Genes related to the production of proteins involved in secondary products of fermentation were also differentially regulated at 40 °C, with reduced expression of genes involved in the formation of glycerol (GPD2), acetate (ALD6 and ALD4), and acetyl-coenzyme A synthetase 2 (ACS2). Fermentation tests using chemostats showed that LBGA-01 had an excellent performance in ethanol production in high temperature. CONCLUSION The thermotolerant LBGA-01 strain modulates the production of key genes, changing metabolic pathways during high-temperature fermentation, and increasing its resistance to high concentration of ethanol, sugar, lactic acid, acetic acid, and furfural. Results indicate that this strain can be used to improve first- and second-generation ethanol production in Brazil.
Collapse
Affiliation(s)
- Cleiton D. Prado
- Genetic and Evolution Department, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Gustavo P. L. Mandrujano
- Genetic and Evolution Department, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Jonas. P. Souza
- Genetic and Evolution Department, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Flávia B. Sgobbi
- Genetic and Evolution Department, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Hosana R. Novaes
- Genetic and Evolution Department, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - João P. M. O. da Silva
- Genetic and Evolution Department, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Mateus H. R. Alves
- Genetic and Evolution Department, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Kevy P. Eliodório
- Chemical Engineering Department, Escola Politécnica, Universidade de São Paulo (USP), São Paulo, SP 05508-010 Brazil
| | - Gabriel C. G. Cunha
- Chemical Engineering Department, Escola Politécnica, Universidade de São Paulo (USP), São Paulo, SP 05508-010 Brazil
| | - Reinaldo Giudici
- Chemical Engineering Department, Escola Politécnica, Universidade de São Paulo (USP), São Paulo, SP 05508-010 Brazil
| | - Diele P. Procópio
- Chemical Engineering Department, Escola Politécnica, Universidade de São Paulo (USP), São Paulo, SP 05508-010 Brazil
| | - Thiago O. Basso
- Chemical Engineering Department, Escola Politécnica, Universidade de São Paulo (USP), São Paulo, SP 05508-010 Brazil
| | - Iran Malavazi
- Genetic and Evolution Department, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Anderson F. Cunha
- Genetic and Evolution Department, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| |
Collapse
|
19
|
da Silveira FA, de Oliveira Soares DL, Bang KW, Balbino TR, de Moura Ferreira MA, Diniz RHS, de Lima LA, Brandão MM, Villas-Bôas SG, da Silveira WB. Assessment of ethanol tolerance of Kluyveromyces marxianus CCT 7735 selected by adaptive laboratory evolution. Appl Microbiol Biotechnol 2020; 104:7483-7494. [DOI: 10.1007/s00253-020-10768-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/21/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
|
20
|
Lip KYF, García-Ríos E, Costa CE, Guillamón JM, Domingues L, Teixeira J, van Gulik WM. Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae strains during continuous growth at sub- and- supra optimal temperatures. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00462. [PMID: 32477898 PMCID: PMC7251540 DOI: 10.1016/j.btre.2020.e00462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 11/04/2022]
Abstract
A phenotypic screening of 12 industrial yeast strains and the well-studied laboratory strain CEN.PK113-7D at cultivation temperatures between 12 °C and 40 °C revealed significant differences in maximum growth rates and temperature tolerance. From those 12, two strains, one performing best at 12 °C and the other at 40 °C, plus the laboratory strain, were selected for further physiological characterization in well-controlled bioreactors. The strains were grown in anaerobic chemostats, at a fixed specific growth rate of 0.03 h-1 and sequential batch cultures at 12 °C, 30 °C, and 39 °C. We observed significant differences in biomass and ethanol yields on glucose, biomass protein and storage carbohydrate contents, and biomass yields on ATP between strains and cultivation temperatures. Increased temperature tolerance coincided with higher energetic efficiency of cell growth, indicating that temperature intolerance is a result of energy wasting processes, such as increased turnover of cellular components (e.g. proteins) due to temperature induced damage.
Collapse
Affiliation(s)
- Ka Ying Florence Lip
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carlos E. Costa
- Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lucília Domingues
- Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - José Teixeira
- Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - Walter M. van Gulik
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, the Netherlands
| |
Collapse
|
21
|
Hoang Nguyen Tran P, Ko JK, Gong G, Um Y, Lee SM. Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:12. [PMID: 31993090 PMCID: PMC6975041 DOI: 10.1186/s13068-019-1641-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/19/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lignocellulosic biorefinery offers economical and sustainable production of fuels and chemicals. Saccharomyces cerevisiae, a promising industrial host for biorefinery, has been intensively developed to expand its product profile. However, the sequential and slow conversion of xylose into target products remains one of the main challenges for realizing efficient industrial lignocellulosic biorefinery. RESULTS In this study, we developed a powerful mixed-sugar co-fermenting strain of S. cerevisiae, XUSEA, with improved xylose conversion capacity during simultaneous glucose/xylose co-fermentation. To reinforce xylose catabolism, the overexpression target in the pentose phosphate pathway was selected using a DNA assembler method and overexpressed increasing xylose consumption and ethanol production by twofold. The performance of the newly engineered strain with improved xylose catabolism was further boosted by elevating fermentation temperature and thus significantly reduced the co-fermentation time by half. Through combined efforts of reinforcing the pathway of xylose catabolism and elevating the fermentation temperature, XUSEA achieved simultaneous co-fermentation of lignocellulosic hydrolysates, composed of 39.6 g L-1 glucose and 23.1 g L-1 xylose, within 24 h producing 30.1 g L-1 ethanol with a yield of 0.48 g g-1. CONCLUSIONS Owing to its superior co-fermentation performance and ability for further engineering, XUSEA has potential as a platform in a lignocellulosic biorefinery toward realizing a more economical and sustainable process for large-scale bioethanol production.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen Tran
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
- Green School, Korea University, Seoul, 02841 Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
- Green School, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
22
|
Silva JCR, Salgado JCS, Vici AC, Ward RJ, Polizeli MLTM, Guimarães LHS, Furriel RPM, Jorge JA. A novel Trichoderma reesei mutant RP698 with enhanced cellulase production. Braz J Microbiol 2019; 51:537-545. [PMID: 31667801 DOI: 10.1007/s42770-019-00167-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/27/2019] [Indexed: 01/13/2023] Open
Abstract
A new strain of Trichoderma reesei (teleomorph Hypocrea jecorina) with high cellulase production was obtained by exposing the spores from T. reesei QM9414 to an ultraviolet light followed by selecting fast-growing colonies on plates containing CMC (1% w/v) as the carbon source. The mutant T. reesei RP698 reduced cultivation period to 5 days and increased tolerance to the end-products of enzymatic cellulose digestion. Under submerged fermentation conditions, FPase, CMCase, and Avicelase production increased up to 2-fold as compared to the original QM9414 strain. The highest levels of cellulase activity were obtained at 27 °C after 72 h with Avicel®, cellobiose, and sugarcane bagasse as carbon sources. The temperature and pH activity optima of the FPase, CMCase, and Avicelase were approximately 60 °C and 5.0, respectively. The cellulase activity was unaffected by the addition of 140 mM glucose in the enzyme assay. When T. reesei RP698 crude extract was supplemented by the addition of β-glucosidase from Scytalidium thermophilum, a 2.3-fold increase in glucose release was observed, confirming the low inhibition by the end-product of cellulose hydrolysis. These features indicate the utility of this mutant strain in the production of enzymatic cocktails for biomass degradation.
Collapse
Affiliation(s)
- Jean Carlos Rodrigues Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, campus Sertãozinho, Rua Américo Ambrósio, 269, Sertãozinho, 14169-263, São Paulo, Brazil
| | - José Carlos Santos Salgado
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil.
| | - Ana Claudia Vici
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Maria Lourdes Teixeira Moraes Polizeli
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Luis Henrique Souza Guimarães
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Rosa Prazeres Melo Furriel
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - João Atílio Jorge
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil
| |
Collapse
|
23
|
Favaro L, Jansen T, van Zyl WH. Exploring industrial and naturalSaccharomyces cerevisiaestrains for the bio-based economy from biomass: the case of bioethanol. Crit Rev Biotechnol 2019; 39:800-816. [DOI: 10.1080/07388551.2019.1619157] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Trudy Jansen
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | | |
Collapse
|
24
|
Li P, Fu X, Chen M, Zhang L, Li S. Proteomic profiling and integrated analysis with transcriptomic data bring new insights in the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:49. [PMID: 30899329 PMCID: PMC6408782 DOI: 10.1186/s13068-019-1390-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND The thermotolerant yeast Kluyveromyces marxianus is a potential candidate for high-temperature fermentation. When K. marxianus was used for high-temperature ethanol fermentation, a fermentation arrest was observed during the late fermentation stage and the stress responses have been investigated based on the integration of RNA-Seq and metabolite data. In order to bring new insights into the cellular responses of K. marxianus after the fermentation arrest during high-temperature ethanol fermentation, quantitative proteomic profiling and integrated analysis with transcriptomic data were performed in this study. RESULTS Samples collected at 14, 16, 18, 20 and 22 h during high-temperature fermentation were subjected to isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic profiling and integrated analysis with transcriptomic data. The correlations between transcripts and proteins for the comparative group 16 h vs 14 h accounted for only 4.20% quantified proteins and 3.23% differentially expressed proteins (DEPs), respectively, much higher percentages of correlations (30.56%-59.11%) were found for other comparative groups (i.e., 18 h vs 14 h, 20 h vs 14 h, and 22 h vs 14 h). According to Spearman correlation tests between transcriptome and proteome (the absolute value of a correlation coefficient between 0.5 and 1 indicates a strong correlation), poor correlations were found for all quantified proteins (R = - 0.0355 to 0.0138), DEPs (R = - 0.0079 to 0.0233) and the DEPs with opposite expression trends to corresponding differentially expressed genes (DEGs) (R = - 0.0478 to 0.0636), whereas stronger correlations were observed in terms of the DEPs with the same expression trends as the correlated DEGs (R = 0.5593 to 0.7080). The results of multiple reaction monitoring (MRM) verification indicate that the iTRAQ results were reliable. After the fermentation arrest, a number of proteins involved in transcription, translation, oxidative phosphorylation and fatty acid metabolism were down-regulated, some molecular chaperones and proteasome proteins were up-regulated, the ATPase activity significantly decreased, and the total fatty acids gradually accumulated. In addition, the contents of palmitic acid, oleic acid, C16, C18, C22 and C24 fatty acids increased by 16.77%, 28.49%, 14.14%, 26.88%, 628.57% and 125.29%, respectively. CONCLUSIONS This study confirmed some biochemical and enzymatic alterations provoked by the stress conditions in the specific case of K. marxianus: such as decreases in transcription, translation and oxidative phosphorylation, alterations in cellular fatty acid composition, and increases in the abundance of molecular chaperones and proteasome proteins. These findings provide potential targets for further metabolic engineering towards improvement of the stress tolerance in K. marxianus.
Collapse
Affiliation(s)
- Pengsong Li
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Xiaofen Fu
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Ming Chen
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Lei Zhang
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
- Agricultural Utilization Research Center, Nutrition and Health Research Institute, COFCO Corporation, No.4 Road, Future Science and Technology Park South, Beiqijia, Changping, Beijing, 102209 China
| | - Shizhong Li
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
25
|
Alvim MCT, Vital CE, Barros E, Vieira NM, da Silveira FA, Balbino TR, Diniz RHS, Brito AF, Bazzolli DMS, de Oliveira Ramos HJ, da Silveira WB. Ethanol stress responses of Kluyveromyces marxianus CCT 7735 revealed by proteomic and metabolomic analyses. Antonie van Leeuwenhoek 2019; 112:827-845. [DOI: 10.1007/s10482-018-01214-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
|
26
|
Mo W, Wang M, Zhan R, Yu Y, He Y, Lu H. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:63. [PMID: 30949239 PMCID: PMC6429784 DOI: 10.1186/s13068-019-1393-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/06/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Kluyveromyces marxianus, the known fastest-growing eukaryote on the earth, has remarkable thermotolerance and capacity to utilize various agricultural residues to produce low-cost bioethanol, and hence is industrially important to resolve the imminent energy shortage crisis. Currently, the poor ethanol tolerance hinders its operable application in the industry, and it is necessary to improve K. marxianus' ethanol resistance and unravel the underlying systematical mechanisms. However, this has been seldom reported to date. RESULTS We carried out a wild-type haploid K. marxianus FIM1 in adaptive evolution in 6% (v/v) ethanol. After 100-day evolution, the KM-100d population was obtained; its ethanol tolerance increased up to 10% (v/v). Interestingly, DNA analysis and RNA-seq analysis showed that KM-100d yeasts' ethanol tolerance improvement was not due to ploidy change or meaningful mutations, but founded on transcriptional reprogramming in a genome-wide range. Even growth in an ethanol-free medium, many genes in KM-100d maintained their up-regulation. Especially, pathways of ethanol consumption, membrane lipid biosynthesis, anti-osmotic pressure, anti-oxidative stress, and protein folding were generally up-regulated in KM-100d to resist ethanol. Notably, enhancement of the secretory pathway may be the new strategy KM-100d developed to anti-osmotic pressure, instead of the traditional glycerol production way in S. cerevisiae. Inferred from the transcriptome data, besides ethanol tolerance, KM-100d may also develop the ability to resist osmotic, oxidative, and thermic stresses, and this was further confirmed by the cell viability test. Furthermore, under such environmental stresses, KM-100d greatly improved ethanol production than the original strain. In addition, we found that K. marxianus may adopt distinct routes to resist different ethanol concentrations. Trehalose biosynthesis was required for low ethanol, while sterol biosynthesis and the whole secretory pathway were activated for high ethanol. CONCLUSIONS This study reveals that ethanol-driven laboratory evolution could improve K. marxianus' ethanol tolerance via significant up-regulation of multiple pathways including anti-osmotic, anti-oxidative, and anti-thermic processes, and indeed consequently raised ethanol yield in industrial high-temperature and high-ethanol circumstance. Our findings give genetic clues for further rational optimization of K. marxianus' ethanol production, and also partly confirm the positively correlated relationship between yeast's ethanol tolerance and production.
Collapse
Affiliation(s)
- Wenjuan Mo
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Mengzhu Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Rongrong Zhan
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Yungang He
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| |
Collapse
|
27
|
High temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.anres.2018.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Saini P, Beniwal A, Kokkiligadda A, Vij S. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Effect of cosubstrate on xylitol production by Debaryomyces nepalensis NCYC 3413: A cybernetic modelling approach. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Paulino de Souza J, Dias do Prado C, Eleutherio EC, Bonatto D, Malavazi I, Ferreira da Cunha A. Improvement of Brazilian bioethanol production – Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process. Fungal Biol 2018; 122:583-591. [DOI: 10.1016/j.funbio.2017.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
|
31
|
Ortiz-Merino RA, Varela JA, Coughlan AY, Hoshida H, da Silveira WB, Wilde C, Kuijpers NGA, Geertman JM, Wolfe KH, Morrissey JP. Ploidy Variation in Kluyveromyces marxianus Separates Dairy and Non-dairy Isolates. Front Genet 2018; 9:94. [PMID: 29619042 PMCID: PMC5871668 DOI: 10.3389/fgene.2018.00094] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/05/2018] [Indexed: 11/20/2022] Open
Abstract
Kluyveromyces marxianus is traditionally associated with fermented dairy products, but can also be isolated from diverse non-dairy environments. Because of thermotolerance, rapid growth and other traits, many different strains are being developed for food and industrial applications but there is, as yet, little understanding of the genetic diversity or population genetics of this species. K. marxianus shows a high level of phenotypic variation but the only phenotype that has been clearly linked to a genetic polymorphism is lactose utilisation, which is controlled by variation in the LAC12 gene. The genomes of several strains have been sequenced in recent years and, in this study, we sequenced a further nine strains from different origins. Analysis of the Single Nucleotide Polymorphisms (SNPs) in 14 strains was carried out to examine genome structure and genetic diversity. SNP diversity in K. marxianus is relatively high, with up to 3% DNA sequence divergence between alleles. It was found that the isolates include haploid, diploid, and triploid strains, as shown by both SNP analysis and flow cytometry. Diploids and triploids contain long genomic tracts showing loss of heterozygosity (LOH). All six isolates from dairy environments were diploid or triploid, whereas 6 out 7 isolates from non-dairy environment were haploid. This also correlated with the presence of functional LAC12 alleles only in dairy haplotypes. The diploids were hybrids between a non-dairy and a dairy haplotype, whereas triploids included three copies of a dairy haplotype.
Collapse
Affiliation(s)
- Raúl A Ortiz-Merino
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Javier A Varela
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Aisling Y Coughlan
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Hisashi Hoshida
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | - Kenneth H Wolfe
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - John P Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Montipó S, Ballesteros I, Fontana RC, Liu S, Martins AF, Ballesteros M, Camassola M. Integrated production of second generation ethanol and lactic acid from steam-exploded elephant grass. BIORESOURCE TECHNOLOGY 2018; 249:1017-1024. [PMID: 30045483 DOI: 10.1016/j.biortech.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 06/08/2023]
Abstract
Elephant grass was subjected to steam explosion to enhance cellulose accessibility and convert it into ethanol. After catalyzed pretreatment at 190 °C for 5 min, enzymatic hydrolysis was carried out using high rate of solid loading combined with different enzyme dosages. Assays employing 20% (w/v) solids loading and an enzyme dosage of 20 FPU g-1 substrate led to a yield of 86.02 g glucose released per 100 g potential glucose in the water insoluble solids. This condition was selected to carry out the simultaneous saccharification and fermentation procedure through S. cerevisiae CAT-1, producing 42.25 g L-1 ethanol with a yield of 74.57% regard to the maximum theoretical. The liquor containing C5 and C6-sugars was successfully converted into lactic acid using L. buchneri NRRL B-30929, resulting in 13.35 g L-1 with a yield of 68.21% in relation to the maximum theoretical.
Collapse
Affiliation(s)
- Sheila Montipó
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS 95070-560, Brazil.
| | - Ignacio Ballesteros
- Renewable Energies Department, CIEMAT - Research Centre for Energy, Environment and Technology, Madrid 28040, Spain
| | | | - Siqing Liu
- Renewable Product Technology, NCAUR-ARS, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | | | - Mercedes Ballesteros
- Renewable Energies Department, CIEMAT - Research Centre for Energy, Environment and Technology, Madrid 28040, Spain
| | - Marli Camassola
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS 95070-560, Brazil.
| |
Collapse
|
33
|
Khatun MM, Yu X, Kondo A, Bai F, Zhao X. Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein. BIORESOURCE TECHNOLOGY 2017; 245:1447-1454. [PMID: 28554523 DOI: 10.1016/j.biortech.2017.05.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 05/28/2023]
Abstract
In this work, the consolidated bioprocessing (CBP) yeast Saccharomyces cerevisiae MNII/cocδBEC3 was transformed by an artificial zinc finger protein (AZFP) library to improve its thermal tolerance, and the strain MNII-AZFP with superior growth at 42°C was selected. Improved degradation of acid swollen cellulose by 45.9% led to an increase in ethanol production, when compared to the control strain. Moreover, the fermentation of Jerusalem artichoke stalk (JAS) by MNII-AZFP was shortened by 12h at 42°C with a concomitant improvement in ethanol production. Comparative transcriptomics analysis suggested that the AZFP in the mutant exerted beneficial effect by modulating the expression of multiple functional genes. These results provide a feasible strategy for efficient ethanol production from JAS and other cellulosic biomass through CBP based-fermentation at elevated temperatures.
Collapse
Affiliation(s)
- M Mahfuza Khatun
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Xinshui Yu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
34
|
Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress. Appl Microbiol Biotechnol 2017; 101:6969-6980. [DOI: 10.1007/s00253-017-8432-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/11/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
|
35
|
Sorokina KN, Taran OP, Medvedeva TB, Samoylova YV, Piligaev AV, Parmon VN. Cellulose Biorefinery Based on a Combined Catalytic and Biotechnological Approach for Production of 5-HMF and Ethanol. CHEMSUSCHEM 2017; 10:562-574. [PMID: 27995758 DOI: 10.1002/cssc.201601244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/24/2016] [Indexed: 06/06/2023]
Abstract
In this study, a combination of catalytic and biotechnological processes was proposed for the first time for application in a cellulose biorefinery for the production of 5-hydroxymethylfurfural (5-HMF) and bioethanol. Hydrolytic dehydration of the mechanically activated microcrystalline cellulose over a carbon-based mesoporous Sibunt-4 catalyst resulted in moderate yields of glucose and 5-HMF (21.1-25.1 and 6.6-9.4 %). 5-HMF was extracted from the resulting mixture with isobutanol and subjected to ethanol fermentation. A number of yeast strains were isolated that also revealed high thermotolerance (up to 50 °C) and resistance to inhibitors found in the hydrolysates. The strains Kluyveromyces marxianus C1 and Ogataea polymorpha CBS4732 were capable of producing ethanol from processed catalytic hydrolysates of cellulose at 42 °C, with yields of 72.0±5.7 and 75.2±4.3 % from the maximum theoretical yield of ethanol, respectively.
Collapse
Affiliation(s)
- Ksenia N Sorokina
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
- Novosibirsk State University (NSU), 630090, Novosibirsk, Pirogova str. 2, Russian Federation
| | - Oxana P Taran
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
- Novosibirsk State Technical University (NSTU), 630037, Novosibirsk, Prosp. Karla Marksa, 20, Russian Federation
| | - Tatiana B Medvedeva
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
| | - Yuliya V Samoylova
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
| | - Alexandr V Piligaev
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
| | - Valentin N Parmon
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
- Novosibirsk State University (NSU), 630090, Novosibirsk, Pirogova str. 2, Russian Federation
| |
Collapse
|
36
|
Siedlarz P, Sroka M, Dyląg M, Nawrot U, Gonchar M, Kus-Liśkiewicz M. Preliminary physiological characteristics of thermotolerant Saccharomyces cerevisiae clinical isolates identified by molecular biology techniques. Lett Appl Microbiol 2016; 62:277-82. [PMID: 26693946 DOI: 10.1111/lam.12542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED The aim of the study was a molecular identification and physiological characteristic of the five Saccharomyces cerevisiae strains isolated from patients. The tested isolates were compared with control strains (which are of laboratory or commercial origin). The relation of the isolates to baker's yeast S. cerevisiae was studied using species-specific primers in PCR analysis of the ITS-26S region of DNA. Five isolates were genetically identified as the yeast belonging to the genus S. cerevisiae. The effects of temperature and carbon sources on the growth of the yeast strains were analysed. A quantitative characterization of growth kinetics approve that some tested isolates are thermotolerant and are able to grow at range 37-39°C. Among them, one representative is characterized by the highest specific growth rate (0·637 h(-1) ). In conclusions, some strains are defined as potential candidates to use in the biotechnology due to a higher growth rate at elevated temperatures. Screening for further evaluation of biotechnological significance of the tested isolates will be done (e.g. ethanol and trehalose production at higher temperatures). The physiological characterization and confirmation of species identification by molecular methods for yeasts important in the context of biotechnology industry were demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY Thermotolerant microbial strains are required in various industrial applications, for improving productivity and for decreasing the risk of undesirable contaminations when higher temperatures are used. It is important to search for such strains in extreme environments or exotic niches. In this paper, new thermotolerant strains were identified belonging to the Saccharomyces cerevisiae, but differed from typical bakers' yeast, essentially by their growth rate at higher temperature. The described yeast strains are promising for using in biotechnological industry, especially, for production of ethanol and other products at higher temperatures.
Collapse
Affiliation(s)
- P Siedlarz
- Biotechnology Centre for Applied and Fundamental Sciences, Department of Biotechnology, University of Rzeszow, Kolbuszowa, Poland
| | - M Sroka
- Biotechnology Centre for Applied and Fundamental Sciences, Department of Biotechnology, University of Rzeszow, Kolbuszowa, Poland
| | - M Dyląg
- Department of Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - U Nawrot
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - M Gonchar
- Biotechnology Centre for Applied and Fundamental Sciences, Department of Biotechnology, University of Rzeszow, Kolbuszowa, Poland.,Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - M Kus-Liśkiewicz
- Biotechnology Centre for Applied and Fundamental Sciences, Department of Biotechnology, University of Rzeszow, Kolbuszowa, Poland
| |
Collapse
|
37
|
Mishra A, Sharma AK, Sharma S, Mathur AS, Gupta RP, Tuli DK. Lignocellulosic bioethanol production employing newly isolated inhibitor and thermotolerant Saccharomyces cerevisiae DBTIOC S24 strain in SSF and SHF. RSC Adv 2016. [DOI: 10.1039/c6ra00007j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioethanol is a renewable alternative to fossil fuels which facilitate energy security and reduce greenhouse-gas emissions.
Collapse
Affiliation(s)
- Abhishek Mishra
- DBT-IOC Centre for Advanced Bio-Energy Research
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| | - Ajay K. Sharma
- DBT-IOC Centre for Advanced Bio-Energy Research
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| | - Sumit Sharma
- DBT-IOC Centre for Advanced Bio-Energy Research
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| | - A. S. Mathur
- DBT-IOC Centre for Advanced Bio-Energy Research
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| | - R. P. Gupta
- DBT-IOC Centre for Advanced Bio-Energy Research
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| | - D. K. Tuli
- DBT-IOC Centre for Advanced Bio-Energy Research
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| |
Collapse
|
38
|
A Neurospora crassa ÿ-glucosidase with potential for lignocellulose hydrolysis shows strong glucose tolerance and stimulation by glucose and xylose. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Cell lysis induced by membrane-damaging detergent saponins from Quillaja saponaria. Enzyme Microb Technol 2015; 75-76:44-8. [PMID: 26047915 DOI: 10.1016/j.enzmictec.2015.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/03/2015] [Accepted: 04/22/2015] [Indexed: 02/02/2023]
Abstract
This paper presents the results of a study to determine the effect of Quillaja saponaria saponins on the lysis of industrial yeast strains. Cell lysis induced by saponin from Q. saponaria combined with the plasmolysing effect of 5% NaCl for Saccharomyces cerevisiae, Kluyveromyces marxianus yeasts biomass was conducted at 50 °C for 24-48 h. Membrane permeability and integrity of the yeast cells were monitored using fluorescent techniques and concentrations of proteins, free amino nitrogen (FAN) and free amino acids in resulting lysates were analyzed. Protein release was significantly higher in the case of yeast cell lysis promoted with 0.008% Q. saponaria and 5% NaCl in comparison to plasmolysis triggered by NaCl only.
Collapse
|
40
|
Saini JK, Agrawal R, Satlewal A, Saini R, Gupta R, Mathur A, Tuli D. Second generation bioethanol production at high gravity of pilot-scale pretreated wheat straw employing newly isolated thermotolerant yeast Kluyveromyces marxianus DBTIOC-35. RSC Adv 2015. [DOI: 10.1039/c5ra05792b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Application of thermotolerant yeast Kluyveromyces marxianus DBTIOC-35 in SSF decreases overall process time, and increases productivity and yield by allowing elimination of presaccharification step and use of high biomass concentration, respectively.
Collapse
Affiliation(s)
- Jitendra Kumar Saini
- DBT-IOC Centre for Advanced Bio-Energy Research
- R & D Centre
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| | - Ruchi Agrawal
- DBT-IOC Centre for Advanced Bio-Energy Research
- R & D Centre
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| | - Alok Satlewal
- DBT-IOC Centre for Advanced Bio-Energy Research
- R & D Centre
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| | - Reetu Saini
- DBT-IOC Centre for Advanced Bio-Energy Research
- R & D Centre
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| | - Ravi Gupta
- DBT-IOC Centre for Advanced Bio-Energy Research
- R & D Centre
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| | - Anshu Mathur
- DBT-IOC Centre for Advanced Bio-Energy Research
- R & D Centre
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| | - Deepak Tuli
- DBT-IOC Centre for Advanced Bio-Energy Research
- R & D Centre
- Indian Oil Corporation Ltd
- Faridabad-121007
- India
| |
Collapse
|