1
|
Tsegaye KN, Alemnew M, Berhane N. Saccharomyces cerevisiae for lignocellulosic ethanol production: a look at key attributes and genome shuffling. Front Bioeng Biotechnol 2024; 12:1466644. [PMID: 39386039 PMCID: PMC11461319 DOI: 10.3389/fbioe.2024.1466644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
These days, bioethanol research is looking at using non-edible plant materials, called lignocellulosic feedstocks, because they are cheap, plentiful, and renewable. However, these materials are complex and require pretreatment to release fermentable sugars. Saccharomyces cerevisiae, the industrial workhorse for bioethanol production, thrives in sugary environments and can handle high levels of ethanol. However, during lignocellulose fermentation, S. cerevisiae faces challenges like high sugar and ethanol concentrations, elevated temperatures, and even some toxic substances present in the pretreated feedstocks. Also, S. cerevisiae struggles to efficiently convert all the sugars (hexose and pentose) present in lignocellulosic hydrolysates. That's why scientists are exploring the natural variations within Saccharomyces strains and even figuring out ways to improve them. This review highlights why Saccharomyces cerevisiae remains a crucial player for large-scale bioethanol production from lignocellulose and discusses the potential of genome shuffling to create even more efficient yeast strains.
Collapse
Affiliation(s)
- Kindu Nibret Tsegaye
- Department of Biology, Gondar College of Teachers Education, Gondar, Ethiopia
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Marew Alemnew
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Nega Berhane
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Minnaar L, den Haan R. Engineering natural isolates of Saccharomyces cerevisiae for consolidated bioprocessing of cellulosic feedstocks. Appl Microbiol Biotechnol 2023; 107:7013-7028. [PMID: 37688599 PMCID: PMC10589140 DOI: 10.1007/s00253-023-12729-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 09/11/2023]
Abstract
Saccharomyces cerevisiae has gained much attention as a potential host for cellulosic bioethanol production using consolidated bioprocessing (CBP) methodologies, due to its high-ethanol-producing titres, heterologous protein production capabilities, and tolerance to various industry-relevant stresses. Since the secretion levels of heterologous proteins are generally low in domesticated strains of S. cerevisiae, natural isolates may offer a more diverse genetic background for improved heterologous protein secretion, while also displaying greater robustness to process stresses. In this study, the potential of natural and industrial S. cerevisiae strains to secrete a core set of cellulases (CBH1, CBH2, EG2, and BGL1), encoded by genes integrated using CRISPR/Cas9 tools, was evaluated. High levels of heterologous protein production were associated with a reduced maximal growth rate and with slight changes in overall strain robustness, compared to the parental strains. The natural isolate derivatives YI13_BECC and YI59_BECC displayed superior secretion capacity for the heterologous cellulases at high incubation temperature and in the presence of acetic acid, respectively, compared to the reference industrial strain MH1000_BECC. These strains also exhibited multi-tolerance to several fermentation-associated and secretion stresses. Cultivation of the strains on crystalline cellulose in oxygen-limited conditions yielded ethanol concentrations in the range of 4-4.5 g/L, representing 35-40% of the theoretical maximum ethanol yield after 120 h, without the addition of exogenous enzymes. This study therefore highlights the potential of these natural isolates to be used as chassis organisms in CBP bioethanol production. KEY POINTS: • Process-related fermentation stresses influence heterologous protein production. • Transformants produced up to 4.5 g/L ethanol, ~ 40% of the theoretical yield in CBP. • CRISPR/Cas9 was feasible for integrating genes in natural S. cerevisiae isolates.
Collapse
Affiliation(s)
- Letitia Minnaar
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
3
|
Lappe-Oliveras P, Avitia M, Sánchez-Robledo SD, Castillo-Plata AK, Pedraza L, Baquerizo G, Le Borgne S. Genotypic and Phenotypic Diversity of Kluyveromyces marxianus Isolates Obtained from the Elaboration Process of Two Traditional Mexican Alcoholic Beverages Derived from Agave: Pulque and Henequen ( Agave fourcroydes) Mezcal. J Fungi (Basel) 2023; 9:795. [PMID: 37623566 PMCID: PMC10455534 DOI: 10.3390/jof9080795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Seven Kluyveromyces marxianus isolates from the elaboration process of pulque and henequen mezcal were characterized. The isolates were identified based on the sequences of the D1/D2 domain of the 26S rRNA gene and the internal transcribed spacer (ITS-5.8S) region. Genetic differences were found between pulque and henequen mezcal isolates and within henequen mezcal isolates, as shown by different branching patterns in the ITS-5.8S phylogenetic tree and (GTG)5 microsatellite profiles, suggesting that the substrate and process selective conditions may give rise to different K. marxianus populations. All the isolates fermented and assimilated inulin and lactose and some henequen isolates could also assimilate xylose and cellobiose. Henequen isolates were more thermotolerant than pulque ones, which, in contrast, presented more tolerance to the cell wall-disturbing agent calcofluor white (CFW), suggesting that they had different cell wall structures. Additionally, depending on their origin, the isolates presented different maximum specific growth rate (µmax) patterns at different temperatures. Concerning tolerance to stress factors relevant for lignocellulosic hydrolysates fermentation, their tolerance limits were lower at 42 than 30 °C, except for glucose and furfural. Pulque isolates were less tolerant to ethanol, NaCl, and Cd. Finally, all the isolates could produce ethanol by simultaneous saccharification and fermentation (SSF) of a corncob hydrolysate under laboratory conditions at 42 °C.
Collapse
Affiliation(s)
- Patricia Lappe-Oliveras
- Laboratorio de Micología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Morena Avitia
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Sara Darinka Sánchez-Robledo
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Avenida Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Ciudad de México 05348, Mexico; (S.D.S.-R.); (A.K.C.-P.)
| | - Ana Karina Castillo-Plata
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Avenida Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Ciudad de México 05348, Mexico; (S.D.S.-R.); (A.K.C.-P.)
| | - Lorena Pedraza
- Departamento de Ingeniería Química, Industrial y de Alimentos, Universidad Iberoamericana CDMX, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, Ciudad de México 01219, Mexico;
| | - Guillermo Baquerizo
- Instituto de Investigaciones en Medio Ambiente Xabier Gorostiaga S.J., Universidad Iberoamericana Puebla, Boulevard del Niño Poblano 2901, Reserva Territorial Atlixcáyotl, San Andrés Cholula 72810, Puebla, Mexico;
| | - Sylvie Le Borgne
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Avenida Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Ciudad de México 05348, Mexico
| |
Collapse
|
4
|
Jamaluddin, Riyanti EI, Mubarik NR, Listanto E. Construction of Novel Yeast Strains from Candida tropicalis KBKTI 10.5.1 and Saccharomyces cerevisiae DBY1 to Improve the Performance of Ethanol Production Using Lignocellulosic Hydrolysate. Trop Life Sci Res 2023; 34:81-107. [PMID: 38144374 PMCID: PMC10735269 DOI: 10.21315/tlsr2023.34.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/19/2022] [Indexed: 12/26/2023] Open
Abstract
Increased consumption of xylose-glucose and yeast tolerance to lignocellulosic hydrolysate are the keys to the success of second-generation bioethanol production. Candida tropicalis KBKTI 10.5.1 is a new isolated strain that has the ability to ferment xylose. In contrast to Saccharomyces cerevisiae DBY1 which only can produce ethanol from glucose fermentation. The research objective is the application of the genome shuffling method to increase the performance of ethanol production using lignocellulosic hydrolysate. Mutants were selected on xylose and glucose substrates separately and using random amplified polymorphic DNA (RAPD) analysis. The ethanol production using lignocellulosic hydrolysate by parents and mutants was evaluated using a batch fermentation system. Concentrations of ethanol, residual sugars, and by-products such as glycerol, lactate and acetate were measured using HPLC machine equipped with Hiplex H for carbohydrate column and a refraction index detector (RID). Ethanol produced by Fcs1 and Fcs4 mutants on acid hydrolysate increased by 26.58% and 24.17% from parent DBY1, by 14.94% and 21.84% from parent KBKTI 10.5.1. In contrast to the increase in ethanol production on alkaline hydrolysate, Fcs1 and Fcs4 mutants only experienced an increase in ethanol production by 1.35% from the parent KBKTI 10.5.1. Ethanol productivity by Fcs1 and Fcs4 mutants on acid hydrolysate reached 0.042 g/L/h and 0.044 g/L/h. The recombination of the genomes of different yeast species resulted in novel yeast strains that improved resistance performance and ethanol production on lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Jamaluddin
- Graduate School of IPB University, IPB University, Jl. Raya Dramaga, Kampus IPB Dramaga Bogor 16680 West Java, Indonesia
| | - Eny Ida Riyanti
- National Research and Innovation Agency (BRIN), Jl. Tentara Pelajar No 3A, Bogor 16111, Indonesia
| | - Nisa Rachmania Mubarik
- Department of Biology, Faculty of Mathematics and Natural Science, IPB University, Jl. Raya Dramaga, Kampus IPB Dramaga, Bogor 16680 West Java, Indonesia
| | - Edy Listanto
- National Research and Innovation Agency (BRIN), Jl. Tentara Pelajar No 3A, Bogor 16111, Indonesia
| |
Collapse
|
5
|
Xiao H, Yu J, Hu M, Liu H, Yuan Z, Xue Y, Xue C. Development of novel fermented stinky sea bass and analysis of its taste active compounds, flavor compounds, and quality. Food Chem 2023; 401:134186. [PMID: 36115233 DOI: 10.1016/j.foodchem.2022.134186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022]
Abstract
This paper developed novel fermented stinky sea bass (FSSB) products and reports the first analysis of its taste active compounds, flavor compounds, and quality. The FSSB with Xian Hen stinky tofu (F-XH) had the best sensory quality. After fermentation, the texture of FSSB improved, and the umami amino and sweet amino acid contents significantly increased, whereas that of the bitter amino acids decreased. Moreover, the IMP content and EUC in FSSB increased significantly. Of the six key volatile flavor compounds distinguished, the key volatile flavor compounds of F-XH are Ethyl Acetate, Propan-2-ol, alpha-pinene, 2-methylbutanal, acetol, 4-Methylpentan-2-one. Ethyl Acetate and 2-propanol were thought to give F-XH its unique wine flavor after cooking. The quality evaluation results demonstrated that the six FSSB complied with the Chinese Standard (GB10136-2015) (2015) animal aquatic products. Six types of FSSB products with unique flavors were developed, and a reference was provided for their industrial application.
Collapse
Affiliation(s)
- Hong Xiao
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China; Qingdao Institute of Marine Bioresources for Nutrition and Health Innovation, Qingdao 266100, PR China
| | - Jiao Yu
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Mengyue Hu
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Hongying Liu
- Qingdao Institute of Marine Bioresources for Nutrition and Health Innovation, Qingdao 266100, PR China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, PR China
| | - Zichen Yuan
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Yong Xue
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Changhu Xue
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China; Qingdao Institute of Marine Bioresources for Nutrition and Health Innovation, Qingdao 266100, PR China; Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, PR China
| |
Collapse
|
6
|
Kruasuwan W, Puseenam A, Am-in S, Trakarnpaiboon S, Sornlek W, Kocharin K, Jindamorakot S, Tanapongpipat S, Bai FY, Roongsawang N. Evaluation of thermotolerant and ethanol-tolerant Saccharomyces cerevisiae as an alternative strain for bioethanol production from industrial feedstocks. 3 Biotech 2023; 13:23. [PMID: 36573155 PMCID: PMC9789288 DOI: 10.1007/s13205-022-03436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/26/2022] [Indexed: 12/25/2022] Open
Abstract
Despite the fact that yeast Saccharomyces cerevisiae is by far the most commonly used in ethanol fermentation, few have been reported to be resistant to high ethanol concentrations at high temperatures. Hence, in this study, 150 S. cerevisiae strains from the Thailand Bioresource Research Center (TBRC) were screened for ethanol production based on their glucose utilization capability at high temperatures. Four strains, TBRC 12149, 12150, 12151, and 12153, exhibited the most outstanding ethanol production at high temperatures in shaking-flask culture. Among these, strain TBRC 12151 demonstrated a high ethanol tolerance of up to 12% at 40 °C. Compared to industrial and laboratory strains, TBRC 12149 displayed strong sucrose fermentation capacity whereas TBRC 12153 and 12151, respectively, showed the greatest ethanol production from molasses and cassava starch hydrolysate at high temperatures in shaking-flask conditions. In 5-L batch fermentation, similarly to both industrial strains, strain TBRC 12153 yielded an ethanol concentration of 66.5 g L-1 (58.4% theoretical yield) from molasses after 72 h at 40 °C. In contrast, strain TBRC12151 outperformed other industrial strains in cell growth and ethanol production from cassava starch hydrolysis at 40 °C with an ethanol production of 65 g L-1 (77.7% theoretical yield) after 72 h. Thus, the thermotolerant and ethanol-tolerant S. cerevisiae TBRC 12151 displayed great potential and possible uses as an alternative strain for industrial ethanol fermentation using cassava starch hydrolysate. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03436-4.
Collapse
Affiliation(s)
- Worarat Kruasuwan
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
- Present Address: Siriraj Long-Read Laboratory (Si-LoL), Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - Aekkachai Puseenam
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Somjit Am-in
- Microbial Diversity and Utilization Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Srisakul Trakarnpaiboon
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Warasirin Sornlek
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Kanokarn Kocharin
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Sasitorn Jindamorakot
- Microbial Diversity and Utilization Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Sutipa Tanapongpipat
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Niran Roongsawang
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| |
Collapse
|
7
|
Increasing Ethanol Tolerance and Ethanol Production in an Industrial Fuel Ethanol Saccharomyces cerevisiae Strain. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The stress imposed by ethanol to Saccharomyces cerevisiae cells are one of the most challenging limiting factors in industrial fuel ethanol production. Consequently, the toxicity and tolerance to high ethanol concentrations has been the subject of extensive research, allowing the identification of several genes important for increasing the tolerance to this stress factor. However, most studies were performed with well-characterized laboratory strains, and how the results obtained with these strains work in industrial strains remains unknown. In the present work, we have tested three different strategies known to increase ethanol tolerance by laboratory strains in an industrial fuel–ethanol producing strain: the overexpression of the TRP1 or MSN2 genes, or the overexpression of a truncated version of the MSN2 gene. Our results show that the industrial CAT-1 strain tolerates up to 14% ethanol, and indeed the three strategies increased its tolerance to ethanol. When these strains were subjected to fermentations with high sugar content and cell recycle, simulating the industrial conditions used in Brazilian distilleries, only the strain with overexpression of the truncated MSN2 gene showed improved fermentation performance, allowing the production of 16% ethanol from 33% of total reducing sugars present in sugarcane molasses. Our results highlight the importance of testing genetic modifications in industrial yeast strains under industrial conditions in order to improve the production of industrial fuel ethanol by S. cerevisiae.
Collapse
|
8
|
Chetty BJ, Inokuma K, Hasunuma T, van Zyl WH, den Haan R. Improvement of cell-tethered cellulase activity in recombinant strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2022; 106:6347-6361. [PMID: 35951080 DOI: 10.1007/s00253-022-12114-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
Consolidated bioprocessing (CBP) remains an attractive option for the production of commodity products from pretreated lignocellulose if a process-suitable organism can be engineered. The yeast Saccharomyces cerevisiae requires engineered cellulolytic activity to enable its use in CBP production of second-generation (2G) bioethanol. A promising strategy for heterologous cellulase production in yeast entails displaying enzymes on the cell surface by means of glycosylphosphatidylinositol (GPI) anchors. While strains producing a core set of cell-adhered cellulases that enabled crystalline cellulose hydrolysis have been created, secreted levels of enzyme were insufficient for complete cellulose hydrolysis. In fact, all reported recombinant yeast CBP candidates must overcome the drawback of generally low secretion titers. Rational strain engineering can be applied to enhance the secretion phenotype. This study aimed to improve the amount of cell-adhered cellulase activities of recombinant S. cerevisiae strains expressing a core set of four cellulases, through overexpression of genes that were previously shown to enhance cellulase secretion. Results showed significant increases in cellulolytic activity for all cell-adhered cellulase enzyme types. Cell-adhered cellobiohydrolase activity was improved by up to 101%, β-glucosidase activity by up to 99%, and endoglucanase activity by up to 231%. Improved hydrolysis of crystalline cellulose of up to 186% and improved ethanol yields from this substrate of 40-50% in different strain backgrounds were also observed. In addition, improvement in resistance to fermentation stressors was noted in some strains. These strains represent a step towards more efficient organisms for use in 2G biofuel production. KEY POINTS: • Cell-surface-adhered cellulase activity was improved in strains engineered for CBP. • Levels of improvement of activity were strain and enzyme dependent. • Crystalline cellulose conversion to ethanol could be improved up to 50%.
Collapse
Affiliation(s)
- Bronwyn Jean Chetty
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | | | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
9
|
Genotypic and phenotypic characterization of industrial autochthonous Saccharomyces cerevisiae for the selection of well-adapted bioethanol-producing strains. Fungal Biol 2022; 126:658-673. [DOI: 10.1016/j.funbio.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
|
10
|
Zeng X, Meng J, Zhang W, He L, Deng L, Ye C. Changes in the microbiological, physicochemical properties of Chinese traditional fermented Suan rou at ripening fermentation. Food Sci Nutr 2021; 9:5899-5913. [PMID: 34760224 PMCID: PMC8565211 DOI: 10.1002/fsn3.2095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022] Open
Abstract
This study characterized the changes in the microbiological, physicochemical properties of Suan rou during fermentation via three different techniques (Technique A is a traditional production process. Based on technique A, technique B adds a total of 200 g of sucrose to the thinly sliced meat, and technique C changes the amount of salt in the thinly sliced meat to 200 grams.). Compared to batch A, the samples from batches B and C featured more rapid reduction in pH and generated more TA. Myofibrillar proteins in batches B and C showed higher degradation rate, and several low-molecular-weight metabolites were determined on the basis of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel lanes. The contents of thiobarbituric acid (TBARS) and total volatile base nitrogen (TVB-N) and the growth of spoilage bacteria and pathogens were suppressed in the three batches. A relatively compatible acid-salinity proportion was presented in the Suan rou of batches A and B compared with that of batch C. The results show that the Suan rou made by B technology was more palatable acid flavor and abundant nutrition.
Collapse
Affiliation(s)
- Xuefeng Zeng
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and ProcessingGuiyangChina
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous RegionMinistry of EducationGuiyangChina
| | - Ju Meng
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and ProcessingGuiyangChina
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous RegionMinistry of EducationGuiyangChina
| | - Wei Zhang
- College of Food Science and EngineeringWuhan Polytechnic UniversityWuhanChina
| | - Laping He
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and ProcessingGuiyangChina
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous RegionMinistry of EducationGuiyangChina
| | - Li Deng
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and ProcessingGuiyangChina
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous RegionMinistry of EducationGuiyangChina
| | - Chun Ye
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and ProcessingGuiyangChina
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous RegionMinistry of EducationGuiyangChina
| |
Collapse
|
11
|
den Haan R, Rose SH, Cripwell RA, Trollope KM, Myburgh MW, Viljoen-Bloom M, van Zyl WH. Heterologous production of cellulose- and starch-degrading hydrolases to expand Saccharomyces cerevisiae substrate utilization: Lessons learnt. Biotechnol Adv 2021; 53:107859. [PMID: 34678441 DOI: 10.1016/j.biotechadv.2021.107859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Selected strains of Saccharomyces cerevisiae are used for commercial bioethanol production from cellulose and starch, but the high cost of exogenous enzymes for substrate hydrolysis remains a challenge. This can be addressed through consolidated bioprocessing (CBP) where S. cerevisiae strains are engineered to express recombinant glycoside hydrolases during fermentation. Looking back at numerous strategies undertaken over the past four decades to improve recombinant protein production in S. cerevisiae, it is evident that various steps in the protein production "pipeline" can be manipulated depending on the protein of interest and its anticipated application. In this review, we briefly introduce some of the strategies and highlight lessons learned with regards to improved transcription, translation, post-translational modification and protein secretion of heterologous hydrolases. We examine how host strain selection and modification, as well as enzyme compatibility, are crucial determinants for overall success. Finally, we discuss how lessons from heterologous hydrolase expression can inform modern synthetic biology and genome editing tools to provide process-ready yeast strains in future. However, it is clear that the successful expression of any particular enzyme is still unpredictable and requires a trial-and-error approach.
Collapse
Affiliation(s)
- Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Kim M Trollope
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
12
|
Adebami GE, Kuila A, Ajunwa OM, Fasiku SA, Asemoloye MD. Genetics and metabolic engineering of yeast strains for efficient ethanol production. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Arindam Kuila
- Department of Bioscience and Biotechnology Banasthali University Vanasthali India
| | - Obinna M. Ajunwa
- Department of Microbiology Modibbo Adama University of Technology Yola Nigeria
| | - Samuel A. Fasiku
- Department of Biological Sciences Ajayi Crowther University Oyo Nigeria
| | - Michael D. Asemoloye
- Department of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
13
|
Liu J, Lin C, Zhang W, Yang Q, Meng J, He L, Deng L, Zeng X. Exploring the bacterial community for starters in traditional high-salt fermented Chinese fish (Suanyu). Food Chem 2021; 358:129863. [PMID: 33940298 DOI: 10.1016/j.foodchem.2021.129863] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
Traditional high-salt fermented Suanyu is an ethnic fermented fish product in southwest China. Lactic acid bacteria (LAB) are the most appropriate strains because of their technological properties during ripening fermentation. The diversity of LAB in high-salt fermented Chinese Suanyu was examined through high-throughput sequencing (HTS), and the most suitable LAB strain was acquired through strain isolation and characterization, surimi simulation fermentation system, and principal component analysis (PCA). The processing adaptability of the strain was examined via Suanyu fermentation. Results showed that Lactobacillus, Tetragenococcus, and Weissella were the dominant bacteria in Suanyu, and their contributions were 53.99%, 35.60%, and 4.10%, respectively. The most suitable strain (Lactobacillus plantarum B7) rapidly produced acid, exhibited a strong antibacterial activity, showed salt tolerance, and had no amino acid decarboxylase activity. pH decreased to about 3.6. Eventually, the ability to tolerate 20% salt was observed, and the activity of amino acid decarboxylase was negative. Fermented Suanyu with B7 rapidly produced acid (11.7% d-1). The non-protein nitrogen (NPN) and total free amino acid (FAA) contents of fermented Suanyu were higher and its total volatile base nitrogen (TVB-N), thiobarbituric acid (TBARS), and biogenic amines (BAs) levels were lower than those of naturally fermented Suanyu. Therefore, B7 is a potential microbial starter for Suanyu industrial production.
Collapse
Affiliation(s)
- Jingui Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Chengxing Lin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Wei Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qin Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Ju Meng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Laping He
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Li Deng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China.
| |
Collapse
|
14
|
Álvarez-Pérez S, Dhami MK, Pozo MI, Crauwels S, Verstrepen KJ, Herrera CM, Lievens B, Jacquemyn H. Genetic admixture increases phenotypic diversity in the nectar yeast Metschnikowia reukaufii. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Factors affecting yeast ethanol tolerance and fermentation efficiency. World J Microbiol Biotechnol 2020; 36:114. [DOI: 10.1007/s11274-020-02881-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/27/2020] [Indexed: 01/01/2023]
|
16
|
de Witt RN, Kroukamp H, Van Zyl WH, Paulsen IT, Volschenk H. QTL analysis of natural Saccharomyces cerevisiae isolates reveals unique alleles involved in lignocellulosic inhibitor tolerance. FEMS Yeast Res 2020; 19:5528620. [PMID: 31276593 DOI: 10.1093/femsyr/foz047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Decoding the genetic basis of lignocellulosic inhibitor tolerance in Saccharomyces cerevisiae is crucial for rational engineering of bioethanol strains with enhanced robustness. The genetic diversity of natural strains present an invaluable resource for the exploration of complex traits of industrial importance from a pan-genomic perspective to complement the limited range of specialised, tolerant industrial strains. Natural S. cerevisiae isolates have lately garnered interest as a promising toolbox for engineering novel, genetically encoded tolerance phenotypes into commercial strains. To this end, we investigated the genetic basis for lignocellulosic inhibitor tolerance of natural S. cerevisiae isolates. A total of 12 quantitative trait loci underpinning tolerance were identified by next-generation sequencing linked bulk-segregant analysis of superior interbred pools. Our findings corroborate the current perspective of lignocellulosic inhibitor tolerance as a multigenic, complex trait. Apart from a core set of genetic variants required for inhibitor tolerance, an additional genetic background-specific response was observed. Functional analyses of the identified genetic loci revealed the uncharacterised ORF, YGL176C and the bud-site selection XRN1/BUD13 as potentially beneficial alleles contributing to tolerance to a complex lignocellulosic inhibitor mixture. We present evidence for the consideration of both regulatory and coding sequence variants for strain improvement.
Collapse
Affiliation(s)
- R N de Witt
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| | - H Kroukamp
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde, NSW 2109, Australia
| | - W H Van Zyl
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| | - I T Paulsen
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde, NSW 2109, Australia
| | - H Volschenk
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| |
Collapse
|
17
|
Lamour J, Wan C, Zhang M, Zhao X, Den Haan R. Overexpression of endogenous stress-tolerance related genes in Saccharomyces cerevisiae improved strain robustness and production of heterologous cellobiohydrolase. FEMS Yeast Res 2020; 19:5479884. [PMID: 31073597 DOI: 10.1093/femsyr/foz035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
To enable Saccharomyces cerevisiae to produce renewable fuels from lignocellulose in a consolidated bioprocess, a heterologous cellulase system must be engineered into this yeast. In addition, inherently low secretion titers and sensitivity to adverse environmental conditions must be overcome. Here, two native S. cerevisiae genes related to yeast stress tolerance, YHB1 and SET5, were overexpressed under transcriptional control of the constitutive PGK1 promoter and their effects on heterologous secretion of Talaromyces emersonii cel7A cellobiohydrolase was investigated. Transformants showed increased secreted enzyme activity that ranged from 22% to 55% higher compared to the parental strains and this did not lead to deleterious growth effects. The recombinant strains overexpressing either YHB1 or SET5 also demonstrated multi-tolerant characteristics desirable in bioethanol production, i.e. improved tolerance to osmotic and heat stress. Quantitative reverse transcriptase PCR analysis in these strains showed decreased transcription of secretion pathway genes. However, decreased unfolded protein response was also observed, suggesting novel mechanisms for enhancing enzyme production through stress modulation. Overexpression of YHB1 in an unrelated diploid strain also enhanced stress tolerance and improved ethanol productivity in medium containing acetic acid. To our knowledge, this is the first demonstration that improved heterologous secretion and environmental stress tolerance could be engineered into yeast simultaneously.
Collapse
Affiliation(s)
- Jarryd Lamour
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
| | - Chun Wan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingming Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Riaan Den Haan
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
| |
Collapse
|
18
|
Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:5163-5184. [PMID: 32337628 DOI: 10.1007/s00253-020-10602-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic material into bioethanol has progressed in the past decades; however, several challenges still exist which impede the industrial application of this technology. Identifying the challenges that exist in all unit operations is crucial and needs to be optimised, but only the barriers related to the secretion of recombinant cellulolytic enzymes in Saccharomyces cerevisiae will be addressed in this review. Fundamental principles surrounding CBP as a biomass conversion platform have been established through the successful expression of core cellulolytic enzymes, namely β-glucosidases, endoglucanases, and exoglucanases (cellobiohydrolases) in S. cerevisiae. This review will briefly address the challenges involved in the construction of an efficient cellulolytic yeast, with particular focus on the secretion efficiency of cellulases from this host. Additionally, strategies for studying enhanced cellulolytic enzyme secretion, which include both rational and reverse engineering approaches, will be discussed. One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development. Furthermore, with the advancement in next-generation sequencing, studies that utilise this method of exploiting intra-strain diversity for industrially relevant traits will be reviewed. Finally, future prospects are discussed for the creation of ideal CBP strains with high enzyme production levels.Key Points• Several challenges are involved in the construction of efficient cellulolytic yeast, in particular, the secretion efficiency of cellulases from the hosts.• Strategies for enhancing cellulolytic enzyme secretion, a core requirement for CBP host microorganism development, include both rational and reverse engineering approaches.• One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development.
Collapse
|
19
|
Agave Leaves as a Substrate for the Production of Cellulases by Penicillium sp . and the Obtainment of Reducing Sugars. J CHEM-NY 2020. [DOI: 10.1155/2020/6092165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lignocellulosic biomass can be used to obtain fermentable sugars by enzymatic hydrolysis, and also it serves as a carbon source to produce cellulases by solid-state fermentation. In this study, we propose the use of leaves of Agave salmiana as a carbon source to produce cellulases by the fungus Penicillium sp., isolated from the same plant. The crude enzymatic extract was used to obtain sugars from the hydrolysis of the parenchymal cells of the leaves. The enzymes produced were characterized (endoglucanase 14.4 U/g; exoglucanase 3.5 U/g; β-glucosidase 4.14 U/g). The enzymes showed activities at elevated temperatures: 50°C for endoglucanase and exoglucanase and 70°C for β-glucosidase. Furthermore, the crude enzymatic extract obtained was able to hydrolyze the parenchyma in 51.6% in 48 h. The evidence presented in this paper shows the potential of the agave leaves as a source of carbon in the production of enzymes by fermentation with the consequent production of reducing sugars. In addition, the enzymes produced by Penicillium sp. could be used in the production of bioethanol, since they work at high temperatures.
Collapse
|
20
|
Dakal TC, Dhabhai B. Current status of genetic & metabolic engineering and novel QTL mapping-based strategic approach in bioethanol production. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Boboescu IZ, Damay J, Chang JKW, Beigbeder JB, Duret X, Beauchemin S, Lalonde O, Lavoie JM. Ethanol production from residual lignocellulosic fibers generated through the steam treatment of whole sorghum biomass. BIORESOURCE TECHNOLOGY 2019; 292:121975. [PMID: 31445238 DOI: 10.1016/j.biortech.2019.121975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Cellulosic ethanol could play a major role in the upcoming circular-economy once the process complexity, low carbohydrate extraction yields and high costs are resolved. To this purpose, different steam-treatment severity factors were employed on whole sweet sorghum biomass, followed by the delignification and hydrolysis of resulted lignocellulose fibers. A modified ASTM International (American Society for Testing and Material) standard cellulose hydrolysis approach as well as a newly developed SACH (Sulfuric Acid Cellulose Hydrolysis) process were used, recovering up to 24.3 wt% of cellulosic carbohydrates. This amounted to a total extractable and constitutive carbohydrate recovery of 51.7 wt% (dry basis) when a mild steam-treatment of whole sorghum biomass and the SACH cellulose hydrolysis were employed. An ethanol potential of 6378 L/ha/year was determined, comparable to values obtained from biomass such as sugarcane in warmer climates, supporting thus the opportunity of implementing this novel approach on a wider scale.
Collapse
Affiliation(s)
- Iulian-Zoltan Boboescu
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada
| | - Jérémie Damay
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada
| | - James Kong Win Chang
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada
| | - Jean-Baptiste Beigbeder
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada
| | - Xavier Duret
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada
| | - Sophie Beauchemin
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada
| | | | - Jean-Michel Lavoie
- Biomass Technology Laboratory (BTL), Department of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, QC, Canada.
| |
Collapse
|
22
|
Davison SA, den Haan R, van Zyl WH. Identification of superior cellulase secretion phenotypes in haploids derived from natural Saccharomyces cerevisiae isolates. FEMS Yeast Res 2019; 19:5154912. [PMID: 30388213 DOI: 10.1093/femsyr/foy117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/31/2018] [Indexed: 01/11/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is considered an important host for consolidated bioprocessing and the production of high titres of recombinant cellulases is required for efficient hydrolysis of lignocellulosic substrates to fermentable sugars. Since recombinant protein secretion profiles vary highly among different strain backgrounds, careful selection of robust strains with optimal secretion profiles is of crucial importance. Here, we construct and screen sets of haploid derivatives, derived from natural strain isolates YI13, FINI and YI59, for improved general cellulase secretion. This report details a novel approach that combines secretion profiles of strains and phenotypic responses to stresses known to influence the secretion pathway for the development of a phenotypic screen to isolate strains with improved secretory capacities. A clear distinction was observed between the YI13 haploid derivatives and industrial and laboratory counterparts, Ethanol Red and S288c, respectively. By using sub-lethal concentrations of the secretion stressor tunicamycin and cell wall stressor Congo Red, YI13 haploid derivative strains demonstrated tolerance profiles related to their heterologous secretion profiles. Our results demonstrated that a new screening technique combined with a targeted mating approach could produce a pool of novel strains capable of high cellulase secretion.
Collapse
Affiliation(s)
- Steffi A Davison
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Willem Heber van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
23
|
de Witt RN, Kroukamp H, Volschenk H. Proteome response of two natural strains of Saccharomyces cerevisiae with divergent lignocellulosic inhibitor stress tolerance. FEMS Yeast Res 2019; 19:5145847. [PMID: 30371771 DOI: 10.1093/femsyr/foy116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022] Open
Abstract
Strains of Saccharomyces cerevisiae with improved tolerance to plant hydrolysates are of utmost importance for the cost-competitive production of value-added chemicals and fuels. However, engineering strategies are constrained by a lack of understanding of the yeast response to complex inhibitor mixtures. Natural S. cerevisiae isolates display niche-specific phenotypic and metabolic diversity, encoded in their DNA, which has evolved to overcome external stresses, utilise available resources and ultimately thrive in their challenging environments. Industrial and laboratory strains, however, lack these adaptations due to domestication. Natural strains can serve as a valuable resource to mitigate engineering constraints by studying the molecular mechanisms involved in phenotypic variance and instruct future industrial strain improvement to lignocellulosic hydrolysates. We, therefore, investigated the proteomic changes between two natural S. cerevisiae isolates when exposed to a lignocellulosic inhibitor mixture. Comparative shotgun proteomics revealed that isolates respond by regulating a similar core set of proteins in response to inhibitor stress. Furthermore, superior tolerance was linked to NAD(P)/H and energy homeostasis, concurrent with inhibitor and reactive oxygen species detoxification processes. We present several candidate proteins within the redox homeostasis and energy management cellular processes as possible targets for future modification and study. Data are available via ProteomeXchange with identifier PXD010868.
Collapse
Affiliation(s)
- R N de Witt
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch, 7600, Western Cape, South Africa
| | - H Kroukamp
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde NSW 2109, Australia
| | - H Volschenk
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch, 7600, Western Cape, South Africa
| |
Collapse
|
24
|
Favaro L, Jansen T, van Zyl WH. Exploring industrial and naturalSaccharomyces cerevisiaestrains for the bio-based economy from biomass: the case of bioethanol. Crit Rev Biotechnol 2019; 39:800-816. [DOI: 10.1080/07388551.2019.1619157] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Trudy Jansen
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | | |
Collapse
|
25
|
Camargo JZ, Nascimento VM, Stefanello I, Andrade Silva CAD, Gonçalves FA, Perdomo IC, Vilela DM, Simionatto S, Pereira RM, da Paz MF, Leite RSR, Lafayette Neves Gelinski JM, Fonseca GG. Biochemical evaluation, molecular characterization and identification of novel yeast strains isolated from Brazilian savannah fruits, chicken litter and a sugar and alcohol mill with biotechnological potential for biofuel and food industries. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Damay J, Boboescu IZ, Duret X, Lalonde O, Lavoie JM. A novel hybrid first and second generation hemicellulosic bioethanol production process through steam treatment of dried sorghum biomass. BIORESOURCE TECHNOLOGY 2018; 263:103-111. [PMID: 29734064 DOI: 10.1016/j.biortech.2018.04.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Sweet sorghum was subjected to an impregnation step, which recovered most of the 1st generation sugars, prior to a steam-treatment extraction of the 2nd generation sugars, at three different severity factors (SF). A medium severity (3.56 SF) treatment proved to be an optimal compromise between the amount of sugars extracted and the fermentation inhibitors generated following the subsequent depolymerization approaches applied on the broth. Next, a series of detoxification approaches (ozonation, overliming and a combination of both) were investigated following a concentration and depolymerization step. Results show that higher steam-treatment severity required more intense detoxification steps. However, when combining the 1st and 2nd generation streams at a 2:1 ratio, the inhibitors did not affect the fermentation process and ethanol yields above 90% of the theoretical maximum were achieved.
Collapse
Affiliation(s)
- Jérémie Damay
- Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Québec, Canada
| | - Iulian-Zoltan Boboescu
- Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Québec, Canada
| | - Xavier Duret
- Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Québec, Canada
| | - Olivier Lalonde
- Agri-recherche, 1008 5(ème) rang, La Présentation, Québec, Canada
| | - Jean-Michel Lavoie
- Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
27
|
Boboescu IZ, Gélinas M, Beigbeder JB, Lavoie JM. A two-step optimization strategy for 2nd generation ethanol production using softwood hemicellulosic hydrolysate as fermentation substrate. BIORESOURCE TECHNOLOGY 2017; 244:708-716. [PMID: 28822282 DOI: 10.1016/j.biortech.2017.07.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Ethanol production using waste biomass represents a very attractive approach. However, there are considerable challenges preventing a wide distribution of these novel technologies. Thus, a fractional-factorial screening of process variables and Saccharomyces cerevisiae yeast inoculum conditions was performed using a synthetic fermentation media. Subsequently, a response-surface methodology was developed for maximizing ethanol yields using a hemicellulosic solution generated through the chemical hydrolysis of steam treatment broth obtained from residual softwood biomass. In addition, nutrient supplementation using starch-based ethanol production by-products was investigated. An ethanol yield of 74.27% of the theoretical maximum was observed for an initial concentration of 65.17g/L total monomeric sugars. The two-step experimental strategy used in this work represents the first successful attempt to developed and use a model to make predictions regarding the optimal ethanol production using both softwood feedstock residues as well as 1st generation ethanol production by-products.
Collapse
Affiliation(s)
- Iulian-Zoltan Boboescu
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Malorie Gélinas
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Jean-Baptiste Beigbeder
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Jean-Michel Lavoie
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
28
|
Kroukamp H, den Haan R, la Grange DC, Sibanda N, Foulquié‐Moreno MR, Thevelein JM, van Zyl WH. Strain Breeding Enhanced Heterologous Cellobiohydrolase Secretion by
Saccharomyces cerevisiae
in a Protein Specific Manner. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/10/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Heinrich Kroukamp
- Department of MicrobiologyUniversity of StellenboschStellenboschSouth Africa
| | - Riaan den Haan
- Department of BiotechnologyUniversity of Western CapeBellvilleSouth Africa
| | - Daniël C. la Grange
- Unit of Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Ntsako Sibanda
- Department of Biochemistry, Microbiology and BiotechnologyUniversity of LimpopoSovengaSouth Africa
| | - Maria R. Foulquié‐Moreno
- Institute of Botany and MicrobiologyKU LeuvenLeuven‐HeverleeBelgium
- Department of Molecular Microbiology, VIBLeuven‐HeverleeBelgium
| | - Johan M. Thevelein
- Institute of Botany and MicrobiologyKU LeuvenLeuven‐HeverleeBelgium
- Department of Molecular Microbiology, VIBLeuven‐HeverleeBelgium
| | - Willem H. van Zyl
- Department of MicrobiologyUniversity of StellenboschStellenboschSouth Africa
| |
Collapse
|
29
|
Mating of natural Saccharomyces cerevisiae strains for improved glucose fermentation and lignocellulosic inhibitor tolerance. Folia Microbiol (Praha) 2017; 63:155-168. [PMID: 28887734 DOI: 10.1007/s12223-017-0546-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
Natural Saccharomyces cerevisiae isolates from vineyards in the Western Cape, South Africa were evaluated for ethanol production in industrial conditions associated with the production of second-generation biofuels. The strains displayed high phenotypic diversity including the ability to grow at 45 °C and in the presence of 20% (v/v) ethanol, strain YI13. Strains HR4 and YI30 were inhibitor-tolerant under aerobic and oxygen-limited conditions, respectively. Spore-to-spore hybridization generated progeny that displayed heterosis, including increased ethanol productivity and improved growth in the presence of a synthetic inhibitor cocktail. Hybrid strains HR4/YI30#6 and V3/YI30#6 were able to grow at a high salt concentration (2 mol/L NaCl) with V3/YI30#6 also able to grow at a high temperature (45 °C). Strains HR4/YI30#1 and #3 were inhibitor-tolerant, with strain HR4/YI30#3 having similar productivity (0.36 ± 0.0036 g/L per h) as the superior parental strain, YI30 (0.35 ± 0.0058 g/L per h). This study indicates that natural S. cerevisiae strains display phenotypic variation and heterosis can be achieved through spore-to-spore hybridization. Several of the phenotypes (temperature-, osmo-, and inhibitor tolerance) displayed by both the natural strains and the generated progeny were at the maximum conditions reported for S. cerevisiae strains.
Collapse
|
30
|
On-line identification of fermentation processes for ethanol production. Bioprocess Biosyst Eng 2017; 40:989-1006. [PMID: 28391378 DOI: 10.1007/s00449-017-1762-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
Abstract
A strategy for monitoring fermentation processes, specifically, simultaneous saccharification and fermentation (SSF) of corn mash, was developed. The strategy covered the development and use of first principles, semimechanistic and unstructured process model based on major kinetic phenomena, along with mass and energy balances. The model was then used as a reference model within an identification procedure capable of running on-line. The on-line identification procedure consists on updating the reference model through the estimation of corrective parameters for certain reaction rates using the most recent process measurements. The strategy makes use of standard laboratory measurements for sugars quantification and in situ temperature and liquid level data. The model, along with the on-line identification procedure, has been tested against real industrial data and have been able to accurately predict the main variables of operational interest, i.e., state variables and its dynamics, and key process indicators. The results demonstrate that the strategy is capable of monitoring, in real time, this complex industrial biomass fermentation. This new tool provides a great support for decision-making and opens a new range of opportunities for industrial optimization.
Collapse
|
31
|
Mukherjee V, Radecka D, Aerts G, Verstrepen KJ, Lievens B, Thevelein JM. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:216. [PMID: 28924451 PMCID: PMC5597992 DOI: 10.1186/s13068-017-0899-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/04/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Non-conventional yeasts present a huge, yet barely exploited, resource of yeast biodiversity for industrial applications. This presents a great opportunity to explore alternative ethanol-fermenting yeasts that are more adapted to some of the stress factors present in the harsh environmental conditions in second-generation (2G) bioethanol fermentation. Extremely tolerant yeast species are interesting candidates to investigate the underlying tolerance mechanisms and to identify genes that when transferred to existing industrial strains could help to design more stress-tolerant cell factories. For this purpose, we performed a high-throughput phenotypic evaluation of a large collection of non-conventional yeast species to identify the tolerance limits of the different yeast species for desirable stress tolerance traits in 2G bioethanol production. Next, 12 multi-tolerant strains were selected and used in fermentations under different stressful conditions. Five strains out of which, showing desirable fermentation characteristics, were then evaluated in small-scale, semi-anaerobic fermentations with lignocellulose hydrolysates. RESULTS Our results revealed the phenotypic landscape of many non-conventional yeast species which have not been previously characterized for tolerance to stress conditions relevant for bioethanol production. This has identified for each stress condition evaluated several extremely tolerant non-Saccharomyces yeasts. It also revealed multi-tolerance in several yeast species, which makes those species good candidates to investigate the molecular basis of a robust general stress tolerance. The results showed that some non-conventional yeast species have similar or even better fermentation efficiency compared to S. cerevisiae in the presence of certain stressful conditions. CONCLUSION Prior to this study, our knowledge on extreme stress-tolerant phenotypes in non-conventional yeasts was limited to only few species. Our work has now revealed in a systematic way the potential of non-Saccharomyces species to emerge either as alternative host species or as a source of valuable genetic information for construction of more robust industrial S. serevisiae bioethanol production yeasts. Striking examples include yeast species like Pichia kudriavzevii and Wickerhamomyces anomalus that show very high tolerance to diverse stress factors. This large-scale phenotypic analysis has yielded a detailed database useful as a resource for future studies to understand and benefit from the molecular mechanisms underlying the extreme phenotypes of non-conventional yeast species.
Collapse
Affiliation(s)
- Vaskar Mukherjee
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, VIB Center of Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Louvain, Belgium
- Laboratory for Enzyme, Fermentation and Brewing Technology (EFBT), Department of Microbial and Molecular Systems, KU Leuven, Technology Campus Ghent, Gebroeders De Smetstraat 1, B-9000 Ghent, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A, B-2860, Sint-Katelijne Waver, Belgium
- Present Address: Lundberg Laboratory, Department of Marine Sciences, University of Gothenburg, Medicinaregatan 9C, 41390 Göteborg, Sweden
| | - Dorota Radecka
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, VIB Center of Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Louvain, Belgium
| | - Guido Aerts
- Laboratory for Enzyme, Fermentation and Brewing Technology (EFBT), Department of Microbial and Molecular Systems, KU Leuven, Technology Campus Ghent, Gebroeders De Smetstraat 1, B-9000 Ghent, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Systems Biology, VIB Center for Microbiology, KU Leuven, Gaston Geenslaan 1, B-3001 Louvain, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A, B-2860, Sint-Katelijne Waver, Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, VIB Center of Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Louvain, Belgium
| |
Collapse
|
32
|
Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 2016; 100:8241-54. [PMID: 27470141 DOI: 10.1007/s00253-016-7735-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022]
Abstract
Enzyme cost is a major impediment to second-generation (2G) cellulosic ethanol production. One strategy to reduce enzyme cost is to engineer enzyme production capacity in a fermentative microorganism to enable consolidated bio-processing (CBP). Ideally, a strain with a high secretory phenotype, high fermentative capacity as well as an innate robustness to bioethanol-specific stressors, including tolerance to products formed during pre-treatment and fermentation of lignocellulosic substrates should be used. Saccharomyces cerevisiae is a robust fermentative yeast but has limitations as a potential CBP host, such as low heterologous protein secretion titers. In this study, we evaluated natural S. cerevisiae isolate strains for superior secretion activity and other industrially relevant characteristics needed during the process of lignocellulosic ethanol production. Individual cellulases namely Saccharomycopsis fibuligera Cel3A (β-glucosidase), Talaromyces emersonii Cel7A (cellobiohydrolase), and Trichoderma reesei Cel5A (endoglucanase) were utilized as reporter proteins. Natural strain YI13 was identified to have a high secretory phenotype, demonstrating a 3.7- and 3.5-fold higher Cel7A and Cel5A activity, respectively, compared to the reference strain S288c. YI13 also demonstrated other industrially relevant characteristics such as growth vigor, high ethanol titer, multi-tolerance to high temperatures (37 and 40 °C), ethanol (10 % w/v), and towards various concentrations of a cocktail of inhibitory compounds commonly found in lignocellulose hydrolysates. This study accentuates the value of natural S. cerevisiae isolate strains to serve as potential robust and highly productive chassis organisms for CBP strain development.
Collapse
|
33
|
The Hidden Complexity of Mendelian Traits across Natural Yeast Populations. Cell Rep 2016; 16:1106-1114. [PMID: 27396326 DOI: 10.1016/j.celrep.2016.06.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/15/2016] [Accepted: 06/10/2016] [Indexed: 11/21/2022] Open
Abstract
Mendelian traits are considered to be at the lower end of the complexity spectrum of heritable phenotypes. However, more than a century after the rediscovery of Mendel's law, the global landscape of monogenic variants, as well as their effects and inheritance patterns within natural populations, is still not well understood. Using the yeast Saccharomyces cerevisiae, we performed a species-wide survey of Mendelian traits across a large population of isolates. We generated offspring from 41 unique parental pairs and analyzed 1,105 cross/trait combinations. We found that 8.9% of the cases were Mendelian. Further tracing of causal variants revealed background-specific expressivity and modified inheritances, gradually transitioning from Mendelian to complex traits in 30% of the cases. In fact, when taking into account the natural population diversity, the hidden complexity of traits could be substantial, confounding phenotypic predictability even for simple Mendelian traits.
Collapse
|
34
|
Wang D, Li FL, Wang SA. Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:96. [PMID: 27134653 PMCID: PMC4851821 DOI: 10.1186/s13068-016-0511-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/19/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae is an important eukaryotic workhorse in traditional and modern biotechnology. At present, only a few S. cerevisiae strains have been extensively used as engineering hosts. Recently, an astonishing genotypic and phenotypic diversity of S. cerevisiae was disclosed in natural populations. We suppose that some natural strains can be recruited as superior host candidates in bioengineering. This study engineered a natural S. cerevisiae strain with advantages in inulin utilization to produce ethanol from inulin resources by consolidated bioprocess. Rational engineering strategies were employed, including secretive co-expression of heterologous exo- and endo-inulinases, repression of a protease, and switch between haploid and diploid strains. RESULTS Results from co-expressing endo- and exo-inulinase genes showed that the extracellular inulinase activity increased 20 to 30-fold in engineered S. cerevisiae strains. Repression of the protease PEP4 influenced cell physiology in late stationary phase. Comparison between haploid and diploid engineered strains indicated that diploid strains were superior to haploid strains in ethanol production albeit not in production and secretion of inulinases. Ethanol fermentation from both inulin and Jerusalem artichoke tuber powder was dramatically improved in most engineered strains. Ethanol yield achieved in the ultimate diploid strain JZD-InuMKCP was close to the theoretical maximum. Productivity achieved in the strain JZD-InuMKCP reached to 2.44 and 3.13 g/L/h in fermentation from 200 g/L inulin and 250 g/L raw Jerusalem artichoke tuber powder, respectively. To our knowledge, these are the highest productivities reported up to now in ethanol fermentation from inulin resources. CONCLUSIONS Although model S. cerevisiae strains are preferentially used as hosts in bioengineering, some natural strains do have specific excellent properties. This study successfully engineered a natural S. cerevisiae strain for efficient ethanol production from inulin resources by consolidated bioprocess, which indicated the feasibility of natural strains used as bioengineering hosts. This study also presented different properties in enzyme secretion and ethanol fermentation between haploid and diploid engineering strains. These findings provided guidelines for host selection in bioengineering.
Collapse
Affiliation(s)
- Da Wang
- />Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- />University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Fu-Li Li
- />Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Shi-An Wang
- />Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| |
Collapse
|
35
|
Nidelet T, Brial P, Camarasa C, Dequin S. Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments. Microb Cell Fact 2016; 15:58. [PMID: 27044358 PMCID: PMC4820951 DOI: 10.1186/s12934-016-0456-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background S. cerevisiae has attracted considerable interest in recent years as a model for ecology and evolutionary biology, revealing a substantial genetic and phenotypic diversity. However, there is a lack of knowledge on the diversity of metabolic networks within this species. Results To identify the metabolic and evolutionary constraints that shape metabolic fluxes in S. cerevisiae, we used a dedicated constraint-based model to predict the central carbon metabolism flux distribution of 43 strains from different ecological origins, grown in wine fermentation conditions. In analyzing these distributions, we observed a highly contrasted situation in flux variability, with quasi-constancy of the glycolysis and ethanol synthesis yield yet high flexibility of other fluxes, such as the pentose phosphate pathway and acetaldehyde production. Furthermore, these fluxes with large variability showed multimodal distributions that could be linked to strain origin, indicating a convergence between genetic origin and flux phenotype. Conclusions Flux variability is pathway-dependent and, for some flux, a strain origin effect can be found. These data highlight the constraints shaping the yeast operative central carbon network and provide clues for the design of strategies for strain improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0456-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thibault Nidelet
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France.
| | - Pascale Brial
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - Carole Camarasa
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - Sylvie Dequin
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| |
Collapse
|
36
|
Snoek T, Verstrepen KJ, Voordeckers K. How do yeast cells become tolerant to high ethanol concentrations? Curr Genet 2016; 62:475-80. [PMID: 26758993 DOI: 10.1007/s00294-015-0561-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 12/24/2022]
Abstract
The brewer's yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast's exceptional ethanol tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance.
Collapse
Affiliation(s)
- Tim Snoek
- VIB Laboratory for Systems Biology, Gaston Geenslaan 1, 3001, Leuven, Belgium.,CMPG Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium.,The Novo Nordisk Foundation Center for Biosustainability, Copenhagen, Denmark
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, Gaston Geenslaan 1, 3001, Leuven, Belgium.,CMPG Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Karin Voordeckers
- VIB Laboratory for Systems Biology, Gaston Geenslaan 1, 3001, Leuven, Belgium. .,CMPG Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium.
| |
Collapse
|
37
|
Favaro L, Corte L, Roscini L, Cagnin L, Tiecco M, Colabella C, Berti A, Basaglia M, Cardinali G, Casella S. A novel FTIR-based approach to evaluate the interactions between lignocellulosic inhibitory compounds and their effect on yeast metabolism. RSC Adv 2016. [DOI: 10.1039/c6ra08859g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
FTIR analysis revealed antagonistic effects between lignocellulosic inhibitory compounds through the metabolomic alterations induced on differentS. cerevisiaestrains.
Collapse
Affiliation(s)
- Lorenzo Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE)
- University of Padova
- Italy
| | - Laura Corte
- Department of Pharmaceutical Sciences-Microbiology
- University of Perugia
- I-06121 Perugia
- Italy
| | - Luca Roscini
- Department of Pharmaceutical Sciences-Microbiology
- University of Perugia
- I-06121 Perugia
- Italy
| | - Lorenzo Cagnin
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE)
- University of Padova
- Italy
| | - Matteo Tiecco
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials
- Department of Chemistry, Biology and Biotechnology
- University of Perugia
- Italy
| | - Claudia Colabella
- Department of Pharmaceutical Sciences-Microbiology
- University of Perugia
- I-06121 Perugia
- Italy
| | - Antonio Berti
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE)
- University of Padova
- Italy
| | - Marina Basaglia
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE)
- University of Padova
- Italy
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences-Microbiology
- University of Perugia
- I-06121 Perugia
- Italy
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials
| | - Sergio Casella
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE)
- University of Padova
- Italy
| |
Collapse
|
38
|
Kostas ET, White DA, Du C, Cook DJ. Selection of yeast strains for bioethanol production from UK seaweeds. JOURNAL OF APPLIED PHYCOLOGY 2016; 28:1427-1441. [PMID: 27057090 PMCID: PMC4789230 DOI: 10.1007/s10811-015-0633-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/24/2015] [Accepted: 05/24/2015] [Indexed: 05/13/2023]
Abstract
Macroalgae (seaweeds) are a promising feedstock for the production of third generation bioethanol, since they have high carbohydrate contents, contain little or no lignin and are available in abundance. However, seaweeds typically contain a more diverse array of monomeric sugars than are commonly present in feedstocks derived from lignocellulosic material which are currently used for bioethanol production. Hence, identification of a suitable fermentative microorganism that can utilise the principal sugars released from the hydrolysis of macroalgae remains a major objective. The present study used a phenotypic microarray technique to screen 24 different yeast strains for their ability to metabolise individual monosaccharides commonly found in seaweeds, as well as hydrolysates following an acid pre-treatment of five native UK seaweed species (Laminaria digitata, Fucus serratus, Chondrus crispus, Palmaria palmata and Ulva lactuca). Five strains of yeast (three Saccharomyces spp, one Pichia sp and one Candida sp) were selected and subsequently evaluated for bioethanol production during fermentation of the hydrolysates. Four out of the five selected strains converted these monomeric sugars into bioethanol, with the highest ethanol yield (13 g L-1) resulting from a fermentation using C. crispus hydrolysate with Saccharomyces cerevisiae YPS128. This study demonstrated the novel application of a phenotypic microarray technique to screen for yeast capable of metabolising sugars present in seaweed hydrolysates; however, metabolic activity did not always imply fermentative production of ethanol.
Collapse
Affiliation(s)
- Emily T. Kostas
- />The University of Nottingham, Sutton Bonington Campus, Bioenergy and Brewing Science Building, Loughborough, Leicestershire LE12 5RD UK
| | - Daniel A. White
- />Plymouth Marine Laboratory, Prospect Pl, Plymouth, Devon PL1 3DH UK
| | - Chenyu Du
- />The University of Nottingham, Sutton Bonington Campus, Bioenergy and Brewing Science Building, Loughborough, Leicestershire LE12 5RD UK
| | - David J. Cook
- />The University of Nottingham, Sutton Bonington Campus, Bioenergy and Brewing Science Building, Loughborough, Leicestershire LE12 5RD UK
| |
Collapse
|
39
|
Voordeckers K, Kominek J, Das A, Espinosa-Cantú A, De Maeyer D, Arslan A, Van Pee M, van der Zande E, Meert W, Yang Y, Zhu B, Marchal K, DeLuna A, Van Noort V, Jelier R, Verstrepen KJ. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways. PLoS Genet 2015; 11:e1005635. [PMID: 26545090 PMCID: PMC4636377 DOI: 10.1371/journal.pgen.1005635] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Abstract
Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. Organisms can evolve resistance to specific stress factors, which allows them to thrive in environments where non-adapted organisms fail to grow. However, the molecular mechanisms that underlie adaptation to complex stress factors that interfere with basic cellular processes are poorly understood. In this study, we reveal how yeast populations adapt to high ethanol concentrations, an ecologically and industrially relevant stress that is still poorly understood. We exposed six independent populations of genetically identical yeast cells to gradually increasing ethanol levels, and we monitored the changes in their DNA sequence over a two-year period. Together with novel computational analyses, we could identify the mutational dynamics and molecular mechanisms underlying increased ethanol resistance. Our results show how adaptation to high ethanol is complex and can be reached through different mutational pathways. Together, our study offers a detailed picture of how populations adapt to a complex continuous stress and identifies several mutations that increase ethanol resistance, which opens new routes to obtain superior biofuel yeast strains.
Collapse
Affiliation(s)
- Karin Voordeckers
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Jacek Kominek
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Anupam Das
- CMPG Laboratory of Predictive Genetics and Multicellular Systems, KU Leuven, Leuven, Belgium
| | - Adriana Espinosa-Cantú
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Dries De Maeyer
- CMPG Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Information Technology (INTEC, iMINDS), University of Ghent, Ghent, Belgium
| | - Ahmed Arslan
- CMPG Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium
| | - Michiel Van Pee
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Elisa van der Zande
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Wim Meert
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Yudi Yang
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Bo Zhu
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Kathleen Marchal
- CMPG Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Information Technology (INTEC, iMINDS), University of Ghent, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, University of Ghent, Ghent, Belgium
| | - Alexander DeLuna
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Vera Van Noort
- CMPG Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium
| | - Rob Jelier
- CMPG Laboratory of Predictive Genetics and Multicellular Systems, KU Leuven, Leuven, Belgium
| | - Kevin J. Verstrepen
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
40
|
A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers. Appl Environ Microbiol 2015; 81:8202-14. [PMID: 26407881 DOI: 10.1128/aem.02464-15] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/15/2015] [Indexed: 01/29/2023] Open
Abstract
Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, "Saaz" and "Frohberg." This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma.
Collapse
|
41
|
Zheng YL, Wang SA. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations. PLoS One 2015; 10:e0133889. [PMID: 26244846 PMCID: PMC4526645 DOI: 10.1371/journal.pone.0133889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/03/2015] [Indexed: 11/17/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.
Collapse
Affiliation(s)
- Yan-Lin Zheng
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shi-An Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
42
|
Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 2015; 15:fov053. [PMID: 26126524 DOI: 10.1093/femsyr/fov053] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2015] [Indexed: 01/18/2023] Open
Abstract
Saccharomyces cerevisiae has been used for millennia in the production of food and beverages and is by far the most studied yeast species. Currently, it is also the most used microorganism in the production of first-generation bioethanol from sugar or starch crops. Second-generation bioethanol, on the other hand, is produced from lignocellulosic feedstocks that are pretreated and hydrolyzed to obtain monomeric sugars, mainly D-glucose, D-xylose and L-arabinose. Recently, S. cerevisiae recombinant strains capable of fermenting pentose sugars have been generated. However, the pretreatment of the biomass results in hydrolysates with high osmolarity and high concentrations of inhibitors. These compounds negatively influence the fermentation process. Therefore, robust strains with high stress tolerance are required. Up to now, more than 2000 yeast species have been described and some of these could provide a solution to these limitations because of their high tolerance to the most predominant stress conditions present in a second-generation bioethanol reactor. In this review, we will summarize what is known about the non-conventional yeast species showing unusual tolerance to these stresses, namely Zygosaccharomyces rouxii (osmotolerance), Kluyveromyces marxianus and Ogataea (Hansenula) polymorpha (thermotolerance), Dekkera bruxellensis (ethanol tolerance), Pichia kudriavzevii (furan derivatives tolerance) and Z. bailii (acetic acid tolerance).
Collapse
Affiliation(s)
- Dorota Radecka
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Vaskar Mukherjee
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Flanders, Belgium
| | - Raquel Quintilla Mateo
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marija Stojiljkovic
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
43
|
New sources and methods to isolate vinasse-tolerant wild yeasts efficient in ethanol production. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1095-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
44
|
Pozo MI, Herrera CM, Van den Ende W, Verstrepen K, Lievens B, Jacquemyn H. The impact of nectar chemical features on phenotypic variation in two related nectar yeasts. FEMS Microbiol Ecol 2015; 91:fiv055. [PMID: 25994159 DOI: 10.1093/femsec/fiv055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 11/14/2022] Open
Abstract
Floral nectars become easily colonized by microbes, most often species of the ascomycetous yeast genus Metschnikowia. Although it is known that nectar composition can vary tremendously among plant species, most probably corresponding to the nutritional requirements of their main pollinators, far less is known about how variation in nectar chemistry affects intraspecific variation in nectarivorous yeasts. Because variation in nectar traits probably affects growth and abundance of nectar yeasts, nectar yeasts can be expected to display large phenotypic variation in order to cope with varying nectar conditions. To test this hypothesis, we related variation in the phenotypic landscape of a vast collection of nectar-living yeast isolates from two Metschnikowia species (M. reukaufii and M. gruessii) to nectar chemical traits using non-linear redundancy analyses. Nectar yeasts were collected from 19 plant species from different plant families to include as much variation in nectar chemical traits as possible. As expected, nectar yeasts displayed large variation in phenotypic traits, particularly in traits related to growth performance in carbon sources and inhibitors, which was significantly related to the host plant from which they were isolated. Total sugar concentration and relative fructose content significantly explained the observed variation in the phenotypic profile of the investigated yeast species, indicating that sugar concentration and composition are the key traits that affect phenotypic variation in nectarivorous yeasts.
Collapse
Affiliation(s)
- María I Pozo
- KU Leuven, Biology Department, Plant Population and Conservation Biology, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium
| | - Carlos M Herrera
- Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio s/n, 41092 Sevilla, Spain
| | - Wim Van den Ende
- Laboratory for Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Kevin Verstrepen
- Flemish Institute for Biotechnology, Laboratory for Systems Biology & Centre of Microbial and Plant Genetics (CMPG) Laboratory for Genetics and Genomics, Department of Microbial and Molecular Systems (M2S), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, Fortsesteenweg 30 A, B-2860 Sint-Katelijne-Waver, Belgium
| | - Hans Jacquemyn
- KU Leuven, Biology Department, Plant Population and Conservation Biology, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium
| |
Collapse
|
45
|
Hussain A, Kangwa M, Abo-Elwafa AG, Fernandez-Lahore M. Influence of operational parameters on the fluid-side mass transfer resistance observed in a packed bed bioreactor. AMB Express 2015; 5:25. [PMID: 25977875 PMCID: PMC4416096 DOI: 10.1186/s13568-015-0111-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/26/2015] [Indexed: 12/30/2022] Open
Abstract
The influence of mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; flow rate, glucose concentration and polymers (chitosan). Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on external mass transfer by substrate consumption time, lag phase and ethanol production. The results indicate that coating has a significant effect on the lag phase duration, being 30-40 min higher than non-coated beads. After lag phase, no significant change was observed in both types of beads on consumption of glucose with the same flow rate. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external mass transfer as a result of increase in flow rate as glucose is easily transported to and from the beads surface by diffusion. It is observed that chitosan acts as barrier for transfer of substrate and products, in and out of beads, at initial time of fermentation as it shows longer lag phase for chitosan coated beads than non-coated. Glucose consumption at low flow rate was lower as compared to higher flow rates. The optimum combination of parameters consisting of higher flow rates 30-90 ml/min and between 10 and 20 g/l of glucose was found for maximum production of ethanol.
Collapse
|
46
|
Assessing the potential of wild yeasts for bioethanol production. J Ind Microbiol Biotechnol 2014; 42:39-48. [PMID: 25413210 DOI: 10.1007/s10295-014-1544-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Bioethanol fermentations expose yeasts to a new, complex and challenging fermentation medium with specific inhibitors and sugar mixtures depending on the type of carbon source. It is, therefore, suggested that the natural diversity of yeasts should be further exploited in order to find yeasts with good ethanol yield in stressed fermentation media. In this study, we screened more than 50 yeast isolates of which we selected five isolates with promising features. The species Candida bombi, Wickerhamomyces anomalus and Torulaspora delbrueckii showed better osmo- and hydroxymethylfurfural tolerance than Saccharomyces cerevisiae. However, S. cerevisiae isolates had the highest ethanol yield in fermentation experiments mimicking high gravity fermentations (25 % glucose) and artificial lignocellulose hydrolysates (with a myriad of inhibitors). Interestingly, among two tested S. cerevisiae strains, a wild strain isolated from an oak tree performed better than Ethanol Red, a S. cerevisiae strain which is currently commonly used in industrial bioethanol fermentations. Additionally, a W. anomalus strain isolated from sugar beet thick juice was found to have a comparable ethanol yield, but needed longer fermentation time. Other non-Saccharomyces yeasts yielded lower ethanol amounts.
Collapse
|