1
|
Habibi R, Zibaee I, Talebi R, Behravan J, Tarighi S, Brejnrod A, Kjøller AH, Sørensen SJ, Madsen JS. L-asparaginase-driven antibiosis in Pseudomonas fluorescens EK007: A promising biocontrol strategy against fire blight. Int J Biol Macromol 2024; 281:136402. [PMID: 39383903 DOI: 10.1016/j.ijbiomac.2024.136402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Fire blight, caused by Erwinia amylovora, is a destructive bacterial disease affecting pear and apple trees. The biocontrol ability of Pseudomonas fluorescens EK007 suppresses E. amylovora through competitive exclusion. In this study, EK007 was isolated from the pear phylloplane and characterized as an effective biological agent through antibacterial compounds. To identify the mechanisms underlying EK007's biocontrol activity, physiological tests, transposon insertion mutant libraries, allelic exchange, and whole-genome sequencing were performed. A transposon mutation in the massC homolog gene, part of the massetolide A lipopeptide biosynthesis cluster, reduced the biocontrol efficiency. Allelic exchange confirmed cyclic lipopeptide (CLP) as part of the mechanism. Additionally, a gacA mutant isolated by transposon mutagenesis showed deficient inhibition activity. Culture conditions and nutritional sources clearly influenced EK007's antimicrobial activity against E. amylovora. Growth yield generally correlated with antibiotic production, with amino acids and iron affecting production. Asparagine and aspartate shut down biocontrol activity. This study presents preliminary findings on a novel CLP that may contribute to EK007's antibacterial activity against E. amylovora. While EK007 shows promise as a biocontrol candidate compared to related strains, these results are based solely on in vitro studies, highlighting the need for further investigations to evaluate its efficacy in natural environments.
Collapse
Affiliation(s)
- Roghayeh Habibi
- Section of Phytopathology, Department of Plant Protection, Ferdowsi University of Mashhad, Iran; Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Idin Zibaee
- Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran-North branch (ABRII), Rasht, Iran.
| | - Reza Talebi
- Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran-North branch (ABRII), Rasht, Iran.
| | - Javad Behravan
- Section of Pharmaceutical Biotechnology, Department of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Saeed Tarighi
- Section of Phytopathology, Department of Plant Protection, Ferdowsi University of Mashhad, Iran
| | - Asker Brejnrod
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Annelise Helene Kjøller
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Boiangiu RS, Brinza I, Honceriu I, Mihasan M, Hritcu L. Insights into Pharmacological Activities of Nicotine and 6-Hydroxy-L-nicotine, a Bacterial Nicotine Derivative: A Systematic Review. Biomolecules 2023; 14:23. [PMID: 38254623 PMCID: PMC10813004 DOI: 10.3390/biom14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The purported cognitive benefits associated with nicotine and its metabolites in the brain are a matter of debate. In this review, the impact of the pharmacologically active metabolite of a nicotine derivative produced by bacteria named 6-hydroxy-L-nicotine (6HLN) on memory, oxidative stress, and the activity of the cholinergic system in the brain was examined. A search in the PubMed, Science Direct, Web of Science, and Google Scholar databases, limiting entries to those published between 1992 and 2023, was conducted. The search focused specifically on articles about nicotine metabolites, memory, oxidative stress, and cholinergic system activity, as well as enzymes or pathways related to nicotine degradation in bacteria. The preliminary search resulted in 696 articles, and following the application of exclusion criteria, 212 articles were deemed eligible for inclusion. This review focuses on experimental studies supporting nicotine catabolism in bacteria, and the chemical and pharmacological activities of nicotine and its metabolite 6HLN.
Collapse
Affiliation(s)
| | | | | | - Marius Mihasan
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| | - Lucian Hritcu
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| |
Collapse
|
3
|
Rid Enhances the 6-Hydroxypseudooxynicotine Dehydrogenase Reaction in Nicotine Degradation by Agrobacterium tumefaciens S33. Appl Environ Microbiol 2021; 87:AEM.02769-20. [PMID: 33514517 DOI: 10.1128/aem.02769-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/17/2021] [Indexed: 02/03/2023] Open
Abstract
Agrobacterium tumefaciens S33 degrades nicotine through a hybrid of the pyridine and pyrrolidine pathways. The oxidation of 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoyl-semialdehyde-pyridine by 6-hydroxypseudooxynicotine dehydrogenase (Pno) is an important step in the breakdown of the N-heterocycle in this pathway. Although Pno has been characterized, the reaction is not fully understood; what is known is that it starts at a high speed followed by a rapid drop in the reaction rate, leading to the formation of a very small amount of product. In this study, we speculated that an unstable imine intermediate that is toxic with regard to the metabolism is produced in the reaction. We found that a Rid protein (designated Rid-NC) encoded by a gene in the nicotine-degrading gene cluster enhanced the reaction. Rid is a widely distributed family of small proteins with various functions, and some subfamilies have deaminase activity to eliminate the toxicity of the reactive intermediate, imine. Biochemical analyses showed that Rid-NC relieved the toxicity of the presumed imine intermediate produced in the Pno reaction and that, in the presence of Rid-NC, Pno maintained a high level of activity and the amount of the reaction product was increase by at least 5-fold. Disruption of the rid-NC gene led to slower growth of strain S33 on nicotine. The mechanism of Rid-NC-mediated detoxification of the imine intermediate was discussed. A phylogenetic analysis indicated that Rid-NC belongs to the rarely studied Rid6 subfamily. These results further our understanding of the biochemical mechanism of nicotine degradation and provide new insights into the function of the Rid6 subfamily proteins.IMPORTANCE Rid is a family of proteins that participate in metabolite damage repair and is widely distributed in different organisms. In this study, we found that Rid-NC, which belongs to the Rid6 subfamily, promoted the 6-hydroxypseudooxynicotine dehydrogenase (Pno) reaction in the hybrid of the pyridine and pyrrolidine pathways for nicotine degradation by Agrobacterium tumefaciens S33. Rid-NC hydrolyzed the presumed reactive imine intermediate produced in the reaction to remove its toxicity on Pno. The finding furthers our understanding of the metabolic process of the toxic N-heterocyclic aromatic compounds in microorganisms. This study demonstrated that the Rid family of proteins also functions in the metabolism of N-heterocyclic aromatic alkaloids, in addition to the amino acid metabolism, and that Rid6-subfamily proteins also have deaminase activity, similar to the RidA subfamily. The ability of reactive imines to damage a non-pyridoxal-5'-phosphate-dependent enzyme was reported. This study provides new insights into the function of the Rid family of proteins.
Collapse
|
4
|
Additional Role of Nicotinic Acid Hydroxylase for the Transformation of 3-Succinoyl-Pyridine by Pseudomonas sp. Strain JY-Q. Appl Environ Microbiol 2021; 87:AEM.02740-20. [PMID: 33397698 DOI: 10.1128/aem.02740-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023] Open
Abstract
Nicotine and nicotinic acid (NA) are both considered to be representatives of N-heterocyclic aromatic compounds, and their degradation pathways have been revealed in Pseudomonas species. However, the cooccurrence of these two pathways has only been observed in Pseudomonas sp. strain JY-Q. The nicotine pyrrolidine catabolism pathway of strain JY-Q consists of the functional modules Nic1, Spm, and Nic2. The module enzyme, 3-succinoylpyridine monooxygenase (Spm), catalyzes transformation of 3-succinoyl-pyridine (SP) to 6-hydroxy-3-succinoyl-pyridine (HSP). There exist two homologous but not identical Spm enzymes (namely, Spm1 and Spm2) in JY-Q. However, when spm1 and spm2 were both in-frame deleted, the mutant still grew well in basic salt medium (BSM) supplemented with nicotine as the sole carbon/nitrogen nutrition, suggesting that there exists an alternative pathway responsible for SP catabolism in JY-Q. NicAB, an enzyme accounting for NA hydroxylation, contains reorganized domains similar to those of Spm. When the JY-Q_nicAB gene (nicAB in strain JY-Q) was introduced into another Pseudomonas strain, one that is unable to degrade NA, the resultant recombinant strain exhibited the ability to transform SP to HSP, but without the ability to metabolize NA. Here, we conclude that NicAB in strain JY-Q exhibits an additional role in SP transformation. The other genes in the NA cluster, NicXDFE (Nic2 homolog), then also exhibit a role in subsequent HSP metabolism for energy yield. This finding also suggests that the cooccurrence of nicotine and NA degradation genes in strain JY-Q represents an advantage for JY-Q, making it more effective and flexible for the degradation of nicotine.IMPORTANCE 3-Succinoyl-pyridine (SP) and 6-hydroxy-3-succinoyl-pyridine (HSP) are both valuable chemical precursors to produce insecticides and hypotensive agents. SP and HSP could be renewable through the nicotine microbial degradation pathway, in which 3-succinoylpyridine monooxygenases (Spm) account for transforming SP into HSP in Pseudomonas sp. strain JY-Q. However, when two homologous Spm genes (spm1 and spm2) were knocked out, the mutant retained the ability to degrade nicotine. Thus, in addition to Spm, JY-Q should have an alternative pathway for SP conversion. In this research, we showed that JY-Q_NicAB was responsible for this alternative SP conversion. Both of the primary functions for nicotinic acid dehydrogenation and the additional function for SP metabolism were detected in a recombinant strain harboring JY-Q_NicAB. As a result, both nicotinic acid and nicotine degradation pathways in JY-Q contribute to its remarkable nicotine tolerance and nicotine degradation availability. These findings also provide one more metabolic engineering strategy for accumulation for value-added intermediates.
Collapse
|
5
|
The carB Gene of Escherichia coli BL21(DE3) is Associated with Nematicidal Activity against the Root-Knot Nematode Meloidogyne javanica. Pathogens 2021; 10:pathogens10020222. [PMID: 33670696 PMCID: PMC7923116 DOI: 10.3390/pathogens10020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 11/26/2022] Open
Abstract
Biological nematicides have been widely used to lower the losses generated by phytoparasitic nematodes. The purpose of this study was to evaluate the nematicidal effects of Escherichia coli BL21(DE3) against Meloidogyne javanica and to identify nematicide-related genes. Culture filtrates of BL21(DE3) caused juvenile mortality and inhibited egg hatching in a dose-dependent manner. In the greenhouse, treatment of tomato seedlings with BL21(DE3) culture filtrates at 50 and 100% concentrations not only reduced the amount of M. javanica egg masses and galls, but improved plant root and shoot fresh weight. Culture filtrate analysis indicated that the nematicidal active ingredients of strain BL21(DE3) were non-proteinaceous, heat and cold resistant, sensitive to pH and volatile. To identify the genes associated with nematicidal activity, a BL21(DE3) library of 5000 mutants was produced using Tn5 transposase insertion. The culture filtrate of the MB12 mutant showed no nematicidal activity after 72 h of treatment and thermal asymmetrical interlaced PCR demonstrated that the carB gene was disrupted. Nematicidal activity was restored when the pH of the MB12 culture filtrate was adjusted to the original pH value (4.15) or following MB12 complementation with the carB gene, confirming a role for carB in mediating pH value and nematicidal activity. The outcomes of this pilot study indicate that BL21(DE3) is a potential microorganism for the continuable biological control of root-knot nematode in tomato and that carB affects the nematicidal activity of BL21(DE3) by modulating the pH environment.
Collapse
|
6
|
Yu M, Zhang G, Jiang J, Du L, Zhao Y. Lysobacter enzymogenes Employs Diverse Genes for Inhibiting Hypha Growth and Spore Germination of Soybean Fungal Pathogens. PHYTOPATHOLOGY 2020; 110:593-602. [PMID: 31774360 DOI: 10.1094/phyto-09-19-0356-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lysobacter enzymogenes strain C3 (LeC3) is a potential biocontrol agent for plant diseases caused by fungi and oomycetes. Understanding the interaction between LeC3 and soybean pathogens at the molecular level could help improve its biocontrol efficacy. In this study, we obtained mutants with decreased abilities in inhibiting hypha growth of the white mold pathogen Sclerotinia sclerotiorum. Insertion sites for 50 mutants, which no longer inhibited S. sclerotiorum hypha growth in dual cultural assay, were determined and seven mutants were selected for further characterization. These seven mutants also completely lost their abilities in suppressing spore germination of Fusarium virguliforme, the causal agent of soybean sudden death syndrome. Furthermore, mutation of the seven genes, which encode diguanylate cyclase, transcriptional regulators from the TetR family, hemolysin III family channel protein, type IV secretion system VirB10 protein, phenol hydroxylase, and phosphoadenosine phosphosulfate reductase, respectively, led to reduced production or secretion of four extracellular enzymes and heat-stable antifungal factor (HSAF). These results suggest that these seven genes play important roles in L. enzymogenes in suppressing hypha growth and spore germination of fungal pathogens, probably by influencing production or secretion of extracellular enzymes and HSAF.
Collapse
Affiliation(s)
- Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Guiying Zhang
- Department of Plant Protection, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiasong Jiang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, U.S.A
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, U.S.A
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| |
Collapse
|
7
|
Xia Z, Lei L, Zhang HY, Wei HL. Characterization of the ModABC Molybdate Transport System of Pseudomonas putida in Nicotine Degradation. Front Microbiol 2018; 9:3030. [PMID: 30627117 PMCID: PMC6295455 DOI: 10.3389/fmicb.2018.03030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas putida J5 is an efficient nicotine-degrading bacterial strain that catabolizes nicotine through the pyrrolidine pathway. In our previous study, we used Tn5 transposon mutagenesis to investigate nicotine metabolism-associated genes, and 18 nicotine degradation-deficient mutants were isolated from 16,324 Tn5-transformants. Three of the mutants were Tn5 inserts into the modABC gene cluster that encoded an ABC-type, high-affinity, molybdate transporter. In-frame deletion of the modABC genes abolished the nicotine-degrading ability of strain J5, and complementation with modABC either from P. putida or Arthrobacter oxidans restored the degrading activity of the mutant to wild-type level. Nicotine degradation of J5 was inhibited markedly by addition of tungstate, a specific antagonist of molybdate. Molybdate at a non-physiologically high concentration (100 μM) fully restored nicotine-degrading activity and recovered growth of the modABC mutant in a nicotine minimal medium. Transcriptional analysis revealed that the expression of modABC was up-regulated at low molybdate concentrations and down-regulated at high moybdate concentrations, which indicated that at least one other system was able to transport molybdate, but with lower affinity. These results suggested that the molybdate transport system was essential to nicotine metabolism in P. putida J5.
Collapse
Affiliation(s)
- Zhenyuan Xia
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Yunnan Academy of Tobacco Agricultural Science, Kunming, China
| | - Liping Lei
- Yunnan Academy of Tobacco Agricultural Science, Kunming, China
| | - Hong-Yue Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Lei Wei
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Wang H, Zhu P, Zhang Y, Sun K, Lu Z. ndpT encodes a new protein involved in nicotine catabolism by Sphingomonas melonis TY. Appl Microbiol Biotechnol 2018; 102:10171-10181. [PMID: 30229322 DOI: 10.1007/s00253-018-9371-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/28/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022]
Abstract
Sphingomonas melonis TY utilizes nicotine as a sole source of carbon, nitrogen, and energy to grow. One of the genes in its ndp catabolic cluster, ndpT, encodes a hypothetical transporter. Since no transporter for nicotine has been identified in microorganisms, we investigated whether NdpT is responsible for nicotine transport. ndpT was induced by nicotine, and gene knockout and complementation studies clearly indicated that ndpT is essential for the catabolism of nicotine in strain TY. NdpT-GFP was located at the periphery of the cells, suggesting that NdpT is a membrane protein. Uptake assays with L-[14C] nicotine illustrated that nicotine uptake in strain TY is mediated by a constitutively synthesized permease with a Km of 0.362 ± 0.07 μM and a Vmax of 0.762 ± 0.068 μmol min-1 (mg cell dry weight)-1 and that ndpT may play a role in nicotine exclusion. Hence, we consider NdpT a nicotine catabolism-related protein.
Collapse
Affiliation(s)
- Haixia Wang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Panpan Zhu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Ying Zhang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Kaikai Sun
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Zhenmei Lu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
9
|
Fitzpatrick PF. The enzymes of microbial nicotine metabolism. Beilstein J Org Chem 2018; 14:2295-2307. [PMID: 30202483 PMCID: PMC6122326 DOI: 10.3762/bjoc.14.204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022] Open
Abstract
Because of nicotine's toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized for Arthrobacter nicotinovorans, in which the first reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon-nitrogen bond in the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been described, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes involved.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| |
Collapse
|
10
|
Li A, Qiu J, Chen D, Ye J, Wang Y, Tong L, Jiang J, Chen J. Characterization and Genome Analysis of a Nicotine and Nicotinic Acid-Degrading Strain Pseudomonas putida JQ581 Isolated from Marine. Mar Drugs 2017; 15:md15060156. [PMID: 28561771 PMCID: PMC5484106 DOI: 10.3390/md15060156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/10/2017] [Accepted: 05/25/2017] [Indexed: 11/17/2022] Open
Abstract
The presence of nicotine and nicotinic acid (NA) in the marine environment has caused great harm to human health and the natural environment. Therefore, there is an urgent need to use efficient and economical methods to remove such pollutants from the environment. In this study, a nicotine and NA-degrading bacterium—strain JQ581—was isolated from sediment from the East China Sea and identified as a member of Pseudomonas putida based on morphology, physio-biochemical characteristics, and 16S rDNA gene analysis. The relationship between growth and nicotine/NA degradation suggested that strain JQ581 was a good candidate for applications in the bioaugmentation treatment of nicotine/NA contamination. The degradation intermediates of nicotine are pseudooxynicotine (PN) and 3-succinoyl-pyridine (SP) based on UV, high performance liquid chromatography, and liquid chromatography-mass spectrometry analyses. However, 6-hydroxy-3-succinoyl-pyridine (HSP) was not detected. NA degradation intermediates were identified as 6-hydroxynicotinic acid (6HNA). The whole genome of strain JQ581 was sequenced and analyzed. Genome sequence analysis revealed that strain JQ581 contained the gene clusters for nicotine and NA degradation. This is the first report where a marine-derived Pseudomonas strain had the ability to degrade nicotine and NA simultaneously.
Collapse
Affiliation(s)
- Aiwen Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiguo Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dongzhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuhong Wang
- Nanjing Yuanheng Institute for Environmental Studies Co., Ltd., Nanjing 210049, China.
| | - Lu Tong
- Nanjing Yuanheng Institute for Environmental Studies Co., Ltd., Nanjing 210049, China.
| | - Jiandong Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
11
|
Enhanced production of poly-3-hydroxybutyrate by recombinant Escherichia coli containing NAD kinase and phbCAB operon. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0194-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Du H, Pang M, Dong Y, Wu Y, Wang N, Liu J, Awan F, Lu C, Liu Y. Identification and Characterization of an Aeromonas hydrophila Oligopeptidase Gene pepF Negatively Related to Biofilm Formation. Front Microbiol 2016; 7:1497. [PMID: 27713736 PMCID: PMC5032638 DOI: 10.3389/fmicb.2016.01497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/07/2016] [Indexed: 01/02/2023] Open
Abstract
Bacterial biofilms are involved in adaptation to complex environments and are responsible for persistent bacterial infections. Biofilm formation is a highly complex process during which multifarious genes work together regularly. In this study, we screened the EZ-Tn5 transposon mutant library to identify genes involved in biofilm formation of Aeromonas hydrophila. A total of 24 biofilm-associated genes were identified, the majority of which encoded proteins related to cell structure, transcription and translation, gene regulation, growth and metabolism. The mutant strain TM90, in which a gene encoding oligopeptidase F (pepF) was disturbed, showed significant upregulation of biofilm formation compared to the parental strain. The TM90 colony phenotype was smaller, more transparent, and splendent. The adhesive ability of TM90 to HEp-2 cells was significantly increased compared with the parental strain. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the enhanced-biofilm mutant TM90 was highly attenuated relative to the wild-type strain. In conclusion, the pepF gene is demonstrated for the first time to be a negative factor for biofilm formation and is involved in A. hydrophila pathogenicity.
Collapse
Affiliation(s)
- Hechao Du
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Maoda Pang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Yuhao Dong
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Yafeng Wu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Nannan Wang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Jin Liu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Furqan Awan
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
13
|
Su J, Zou X, Huang L, Bai T, Liu S, Yuan M, Chou SH, He YW, Wang H, He J. DgcA, a diguanylate cyclase from Xanthomonas oryzae pv. oryzae regulates bacterial pathogenicity on rice. Sci Rep 2016; 6:25978. [PMID: 27193392 PMCID: PMC4872155 DOI: 10.1038/srep25978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/26/2016] [Indexed: 12/28/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice blight disease as well as a serious phytopathogen worldwide. It is also one of the model organisms for studying bacteria-plant interactions. Current progress in bacterial signal transduction pathways has identified cyclic di-GMP as a major second messenger molecule in controlling Xanthomonas pathogenicity. However, it still remains largely unclear how c-di-GMP regulates the secretion of bacterial virulence factors in Xoo. In this study, we focused on the important roles played by DgcA (XOO3988), one of our previously identified diguanylate cyclases in Xoo, through further investigating the phenotypes of several dgcA-related mutants, namely, the dgcA-knockout mutant ΔdgcA, the dgcA overexpression strain OdgcA, the dgcA complemented strain CdgcA and the wild-type strain. The results showed that dgcA negatively affected virulence, EPS production, bacterial autoaggregation and motility, but positively triggered biofilm formation via modulating the intracellular c-di-GMP levels. RNA-seq data further identified 349 differentially expressed genes controlled by DgcA, providing a foundation for a more solid understanding of the signal transduction pathways in Xoo. Collectively, the present study highlights DgcA as a major regulator of Xoo virulence, and can serve as a potential target for preventing rice blight diseases.
Collapse
Affiliation(s)
- Jianmei Su
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xia Zou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Liangbo Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tenglong Bai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shu Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haihong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510650, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|