1
|
Wu S, Tian J, Xue X, Tang Z, Huang Z, Hammock BD, Morisseau C, Li QX, Xu T. Development of a Genetically Encoded Magnetic Platform in Magnetospirillum gryphiswaldense MSR-1 for Downstream Processing of Protein Expression System. RESEARCH SQUARE 2023:rs.3.rs-2630343. [PMID: 36993437 PMCID: PMC10055543 DOI: 10.21203/rs.3.rs-2630343/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Protein downstream processing remains a challenge in protein production, especially in low yields of products, in spite of ensuring effective disruption of cell and separation of target proteins. It is complicated, expensive and time-consuming. Here, we report a novel nano-bio-purification system for producing recombinant proteins of interest with automatic purification from engineered bacteria. Results This system employed a complete genetic engineering downstream processing platform for proteins at low expression levels, referred to as a genetically encoded magnetic platform (GEMP). GEMP consists of four elements as follows. (1) A truncated phage lambda lysis cassette (RRz/Rz1) is controllable for lysis of Magnetospirillum gryphiswaldense MSR-1 (host cell). (2) A surface-expressed nuclease (NucA) is to reduce viscosity of homogenate by hydrolyzing long chain nucleic acids. (3) A bacteriogenic magnetic nanoparticle, known as magnetosome, allows an easy separation system in a magnetic field. (4) An intein realizes abscission of products (nanobodies against tetrabromobisphenol A) from magnetosome. Conclusions In this work, removal of most impurities greatly simplified the subsequent purification procedure. The system also facilitated the bioproduction of nanomaterials. The developed platform can substantially simplify industrial protein production and reduce its cost.
Collapse
Affiliation(s)
- Sha Wu
- China Agricultural University
| | | | | | | | | | | | | | | | - Ting Xu
- China Agricultural University
| |
Collapse
|
2
|
Kusuma SAF, Subroto T, Parwati I, Rukayadi Y, Fadhlillah M, Pardede RM, Berlian AV, Sabila G. Improving of pelB-Secreted MPT64 protein released by Escherichia coli BL21 (DE3) using Triton X-100 and Tween-80. J Adv Pharm Technol Res 2022; 13:171-176. [PMID: 35935695 PMCID: PMC9355052 DOI: 10.4103/japtr.japtr_25_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
pelB has been known as a successful signal peptide to translocate the protein target extracellularly in the Escherichia coli system. However, in our previous study, the yield of MPT64 protein extracellular recovery was still low and plenty of this protein was remain trapped in cytoplasm and periplasm. Recently, nonionic surfactants were efficiently reported to secrete recombinant protein extracellularly. Nonetheless, it must be clarified whether the surfactant supplementation can improve the yield of MPT64 extracellular protein significantly without giving impact on the structure of isolated MPT64 protein and can minimized the cell lysis effect. MPT64 protein secretion was carried out by comparing the effects of surfactants Tween 80 and Triton × 100 at various concentrations. Triton × 100 was able to increase the extracellular MPT64 protein gain up to 3 times higher than Tween 80 and it was in line with the greater level ratio of cell leakage of Triton × 100 compared to that of Tween 80. Similarly, the viable cell of the cultures decreased dramatically. However, both surfactants did not interfere the structure of MPT64 protein. In conclusion, Triton × 100 can be chosen as the supporting surfactant to assist the act of peptide signal in improving the resulting of MPT64 extracellular protein.
Collapse
Affiliation(s)
- Sri Agung Fitri Kusuma
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Bandung, West Java, Indonesia,Address for correspondence: Dr. Sri Agung Fitri Kusuma, Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Indonesia. E-mail:
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University,Research Center of Molecular Biotechnology and Bioinformatics, Padjadjaran University, Bandung, West Java, Indonesia
| | - Ida Parwati
- Department of Clinical Pathology, Faculty of Medical, Padjadjaran University, Bandung, West Java,Department of Clinical Pathology, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Sedang, Malaysia
| | - Muhammad Fadhlillah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University,Research Center of Molecular Biotechnology and Bioinformatics, Padjadjaran University, Bandung, West Java, Indonesia
| | - Ruth Michellee Pardede
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Bandung, West Java, Indonesia
| | - Alif Virisy Berlian
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Bandung, West Java, Indonesia
| | - Gina Sabila
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Bandung, West Java, Indonesia
| |
Collapse
|
3
|
Kastenhofer J, Rajamanickam V, Libiseller-Egger J, Spadiut O. Monitoring and control of E. coli cell integrity. J Biotechnol 2021; 329:1-12. [PMID: 33485861 DOI: 10.1016/j.jbiotec.2021.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Soluble expression of recombinant proteins in E. coli is often done by translocation of the product across the inner membrane (IM) into the periplasm, where it is retained by the outer membrane (OM). While the integrity of the IM is strongly coupled to viability and impurity release, a decrease in OM integrity (corresponding to increased "leakiness") leads to accumulation of product in the extracellular space, strongly impacting the downstream process. Whether leakiness is desired or not, differential monitoring and control of IM and OM integrity are necessary for an efficient E. coli bioprocess in compliance with the guidelines of Quality by Design and Process Analytical Technology. In this review, we give an overview of relevant monitoring tools, summarize the research on factors affecting E. coli membrane integrity and provide a brief discussion on how the available monitoring technology can be implemented in real-time control of E. coli cultivations.
Collapse
Affiliation(s)
- Jens Kastenhofer
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Vignesh Rajamanickam
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Julian Libiseller-Egger
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| |
Collapse
|
4
|
Kastenhofer J, Rettenbacher L, Feuchtenhofer L, Mairhofer J, Spadiut O. Inhibition of E. coli Host RNA Polymerase Allows Efficient Extracellular Recombinant Protein Production by Enhancing Outer Membrane Leakiness. Biotechnol J 2020; 16:e2000274. [PMID: 32915502 DOI: 10.1002/biot.202000274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Indexed: 12/20/2022]
Abstract
With the growing interest in continuous cultivation of Escherichia coli, secretion of product to the medium is not only a benefit, but a necessity in future bioprocessing. In this study, it is shown that induced decoupling of growth and heterologous gene expression in the E. coli X-press strain (derived from BL21(DE3)) facilitates extracellular recombinant protein production. The effect of the process parameters temperature and specific glucose consumption rate (qS ) on growth, productivity, lysis and leakiness, is investigated, to find the parameter space allowing extracellular protein production. Two model proteins are used, Protein A (SpA) and a heavy-chain single-domain antibody (VHH), and performance is compared to the industrial standard strain BL21(DE3). It is shown that inducible growth repression in the X-press strain greatly mitigates the effect of metabolic burden under different process conditions. Furthermore, temperature and qS are used to control productivity and leakiness. In the X-press strain, extracellular SpA and VHH titer reach up to 349 and 19.6 mg g-1 , respectively, comprising up to 90% of the total soluble product, while keeping cell lysis at a minimum. The findings demonstrate that the X-press strain constitutes a valuable host for extracellular production of recombinant protein with E. coli.
Collapse
Affiliation(s)
- Jens Kastenhofer
- TU Wien, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Gumpendorfer Strasse 1a, Vienna, 1060, Austria
| | - Lukas Rettenbacher
- TU Wien, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Gumpendorfer Strasse 1a, Vienna, 1060, Austria
| | | | | | - Oliver Spadiut
- TU Wien, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Gumpendorfer Strasse 1a, Vienna, 1060, Austria
| |
Collapse
|
5
|
Schimek C, Egger E, Tauer C, Striedner G, Brocard C, Cserjan-Puschmann M, Hahn R. Extraction of recombinant periplasmic proteins under industrially relevant process conditions: Selectivity and yield strongly depend on protein titer and methodology. Biotechnol Prog 2020; 36:e2999. [PMID: 32259401 PMCID: PMC7685146 DOI: 10.1002/btpr.2999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 02/05/2023]
Abstract
In this work, we attempted to identify a method for the selective extraction of periplasmic endogenously expressed proteins, which is applicable at an industrial scale. For this purpose, we used an expression model that allows coexpression of two fluorescent proteins, each of which is specifically targeted to either the cytoplasm or periplasm. We assessed a number of scalable lysis methods (high‐pressure homogenization, osmotic shock procedures, extraction with ethylenediaminetetraacetic acid, and extraction with deoxycholate) for the ability to selectively extract periplasmic proteins rather than cytoplasmic proteins. Our main conclusion was that although we identified industrially scalable lysis conditions that significantly increased the starting purity for further purification, none of the tested conditions were selective for periplasmic protein over cytoplasmic protein. Furthermore, we demonstrated that efficient extraction of the expressed recombinant proteins was largely dependent on the overall protein concentration in the cell.
Collapse
Affiliation(s)
- Clemens Schimek
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Esther Egger
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cécile Brocard
- Biopharma Process Science, Boehringer Ingelheim RCV GmbH & Co KG, Wien, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
6
|
Ojima Y, Sawabe T, Konami K, Azuma M. Construction of hypervesiculation Escherichia coli strains and application for secretory protein production. Biotechnol Bioeng 2019; 117:701-709. [PMID: 31788781 DOI: 10.1002/bit.27239] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
Abstract
Outer membrane vesicles (OMVs) are extracellular vesicles released from the surface of Gram-negative bacteria, including Escherichia coli. Several gene-deficient mutants relating to envelope stress (nlpI and degP) and phospholipid accumulation in the outer leaflet of the outer membrane (mlaA and mlaE) increase OMV production. This study examined the combinatorial deletion of these genes in E. coli and its effect on OMV production. The nlpI and mlaE double-gene-knockout mutant (ΔmlaEΔnlpI) showed the highest OMV production. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis-based quantitative analysis showed that OMV production by strain ΔmlaEΔnlpI was ~30 times that by the wild-type (WT). In addition, to evaluate the protein secretion capacity of OMVs, a green fluorescent protein (GFP) fused with outer membrane protein W (OmpW) was expressed in OMVs. Western blot analysis showed that GFP secretion through OMVs reached 3.3 mg/L in the culture medium of strain ΔmlaEΔnlpI/gfp, 500 times that for the WT. Our approach using OMVs for extracellular protein secretion in E. coli is an entirely new concept compared with existing secretion systems.
Collapse
Affiliation(s)
- Yoshihiro Ojima
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Tomomi Sawabe
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Katsuya Konami
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Masayuki Azuma
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| |
Collapse
|
7
|
Ding N, Fu X, Ruan Y, Zhu J, Guo P, Han L, Zhang J, Hu X. Extracellular production of recombinant N-glycosylated anti-VEGFR2 monobody in leaky Escherichia coli strain. Biotechnol Lett 2019; 41:1265-1274. [PMID: 31541332 DOI: 10.1007/s10529-019-02731-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To improve the production yield of N-glycosylated anti-VEGFR2 (vascular endothelial growth factor receptor 2) monobody (FN3VEGFR2-Gly) in lpp knockout Escherichia coli cells harboring Campylobacter jejuni N-glycosylation pathway. RESULTS The leaky CLM37-Δlpp strain efficiently secreted FN3VEGFR2-Gly into culture medium. The extracellular levels of glycosylated FN3VEGFR2-Gly in CLM37-Δlpp culture medium were approximately 11 and 15 times higher compared to those in CLM37 cells via IPTG and auto-induction, respectively. In addition, the highest level of total glycosylated FN3VEGFR2-Gly (70 ± 3.4 mg/L) was found in culture medium via auto-induction. Furthermore, glycosylated FN3VEGFR2-Gly was more stable than unglycosylated FN3VEGFR2-Gly in this expression system, but their bioactivities were relatively similar. CONCLUSIONS Lpp knockout leaky E. coli strain combined with auto-induction method can enhance the extracellular production of homogenous N-glycosylated FN3VEGFR2-Gly, and facilitate the downstream protein purification. The findings of this study may provide practical implications for the large-scale production and cost-effective harvesting of N-glycosylation proteins.
Collapse
Affiliation(s)
- Ning Ding
- Academic Centre for Medical Research, Medical College, Dalian University, Liaoning, 116622, China
- School of Life Science and Medicine, Dalian University of Technology, Liaoning, 124000, China
| | - Xin Fu
- Academic Centre for Medical Research, Medical College, Dalian University, Liaoning, 116622, China
| | - Yao Ruan
- Academic Centre for Medical Research, Medical College, Dalian University, Liaoning, 116622, China
| | - Jing Zhu
- Academic Centre for Medical Research, Medical College, Dalian University, Liaoning, 116622, China
| | - Pingping Guo
- Academic Centre for Medical Research, Medical College, Dalian University, Liaoning, 116622, China
| | - Lichi Han
- Academic Centre for Medical Research, Medical College, Dalian University, Liaoning, 116622, China
| | - Jianing Zhang
- School of Life Science and Medicine, Dalian University of Technology, Liaoning, 124000, China.
| | - Xuejun Hu
- Academic Centre for Medical Research, Medical College, Dalian University, Liaoning, 116622, China.
| |
Collapse
|
8
|
Burdette LA, Leach SA, Wong HT, Tullman-Ercek D. Developing Gram-negative bacteria for the secretion of heterologous proteins. Microb Cell Fact 2018; 17:196. [PMID: 30572895 PMCID: PMC6302416 DOI: 10.1186/s12934-018-1041-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/08/2018] [Indexed: 11/10/2022] Open
Abstract
Gram-negative bacteria are attractive hosts for recombinant protein production because they are fast growing, easy to manipulate, and genetically stable in large cultures. However, the utility of these microbes would expand if they also could secrete the product at commercial scales. Secretion of biotechnologically relevant proteins into the extracellular medium increases product purity from cell culture, decreases downstream processing requirements, and reduces overall cost. Thus, researchers are devoting significant attention to engineering Gram-negative bacteria to secrete recombinant proteins to the extracellular medium. Secretion from these bacteria operates through highly specialized systems, which are able to translocate proteins from the cytosol to the extracellular medium in either one or two steps. Building on past successes, researchers continue to increase the secretion efficiency and titer through these systems in an effort to make them viable for industrial production. Efforts include modifying the secretion tags required for recombinant protein secretion, developing methods to screen or select rapidly for clones with higher titer or efficiency, and improving reliability and robustness of high titer secretion through genetic manipulations. An additional focus is the expression of secretion machineries from pathogenic bacteria in the "workhorse" of biotechnology, Escherichia coli, to reduce handling of pathogenic strains. This review will cover recent advances toward the development of high-expressing, high-secreting Gram-negative production strains.
Collapse
Affiliation(s)
- Lisa Ann Burdette
- Department of Chemical and Biomolecular Engineering, University of California-Berkeley, Berkeley, USA
- Present Address: Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Samuel Alexander Leach
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, USA
| | - Han Teng Wong
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, USA
- Present Address: Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, USA
| |
Collapse
|
9
|
Kleiner-Grote GRM, Risse JM, Friehs K. Secretion of recombinant proteins from E. coli. Eng Life Sci 2018; 18:532-550. [PMID: 32624934 DOI: 10.1002/elsc.201700200] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
The microorganism Escherichia coli is commonly used for recombinant protein production. Despite several advantageous characteristics like fast growth and high protein yields, its inability to easily secrete recombinant proteins into the extracellular medium remains a drawback for industrial production processes. To overcome this limitation, a multitude of approaches to enhance the extracellular yield and the secretion efficiency of recombinant proteins have been developed in recent years. Here, a comprehensive overview of secretion mechanisms for recombinant proteins from E. coli is given and divided into three main sections. First, the structure of the E. coli cell envelope and the known natural secretion systems are described. Second, the use and optimization of different one- or two-step secretion systems for recombinant protein production, as well as further permeabilization methods are discussed. Finally, the often-overlooked role of cell lysis in secretion studies and its analysis are addressed. So far, effective approaches for increasing the extracellular protein concentration to more than 10 g/L and almost 100% secretion efficiency exist, however, the large range of optimization methods and their combinations suggests that the potential for secretory protein production from E. coli has not yet been fully realized.
Collapse
Affiliation(s)
| | - Joe M Risse
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| | - Karl Friehs
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| |
Collapse
|
10
|
Zhou Y, Lu Z, Wang X, Selvaraj JN, Zhang G. Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2017; 102:1545-1556. [DOI: 10.1007/s00253-017-8700-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
|
11
|
Su L, Jiang Q, Yu L, Wu J. Enhanced extracellular production of recombinant proteins in Escherichia coli by co-expression with Bacillus cereus phospholipase C. Microb Cell Fact 2017; 16:24. [PMID: 28178978 PMCID: PMC5299778 DOI: 10.1186/s12934-017-0639-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our laboratory has reported a strategy for improving the extracellular production of recombinant proteins through co-expression with Thermobifida fusca cutinase, which increases membrane permeability via its phospholipid hydrolysis activity. However, the foam generated by the lysophospholipid product makes the fermentation process difficult to control in a fermentor. Phospholipase C (PLC) catalyzes the hydrolysis of phospholipids to produce sn1,2-diacylglycerides and organic phosphate, which do not induce foam formation. Therefore, co-expression with Bacillus cereus PLC was investigated as a method to improve the extracellular production of recombinant proteins. RESULTS When B. cereus PLC was expressed in Escherichia coli without its signal peptide, 95.3% of the total PLC activity was detected in the culture supernatant. PLC expression enhanced membrane permeability without obvious cell lysis. Then, six test enzymes, three secretory and three cytosolic, were co-expressed with B. cereus PLC. The enhancement of extracellular production correlated strongly with the molecular mass of the test enzyme. Extracellular production of Streptomyces sp. FA1 xylanase (43 kDa), which had the lowest molecular mass among the secretory enzymes, was 4.0-fold that of its individual expression control. Extracellular production of glutamate decarboxylase (51 kDa), which had the lowest molecular mass among the cytosolic enzymes, reached 26.7 U/mL; 88.3% of the total activity produced. This strategy was effectively scaled up using a 3-L fermentor. No obvious foam was generated during this fermentation process. CONCLUSIONS This is the first study to detail the enhanced extracellular production of recombinant proteins through co-expression with PLC. This new strategy, which is especially appropriate for lower molecular mass proteins, allows large-scale protein production in an easily controlled fermentation process.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Qi Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Lingang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
12
|
Ultra scale-down approaches to enhance the creation of bioprocesses at scale: impacts of process shear stress and early recovery stages. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Wurm DJ, Slouka C, Bosilj T, Herwig C, Spadiut O. How to trigger periplasmic release in recombinant Escherichia coli: A comparative analysis. Eng Life Sci 2016; 17:215-222. [PMID: 32624769 DOI: 10.1002/elsc.201600168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/01/2016] [Accepted: 08/23/2016] [Indexed: 11/10/2022] Open
Abstract
Recombinant protein production in Escherichia coli usually leads to accumulation of the product inside the cells. To capture the product, cells are harvested, resuspended, and lysed. However, in cases where the product is transported to the periplasm, selective disruption of the outer membrane leads to much purer crude extracts compared to complete cell lysis, as only 4-8% of the native E. coli host cell proteins are located in the periplasmic space. A variety of different strategies to enable selective release of the product from the periplasm is available. However, in most of these studies cells are harvested before they are resuspended in permeabilization agent and no differentiation between leakiness and lysis is made. Here, we tested and compared different strategies to trigger leakiness. In contrast to other studies, we performed these experiments during cultivation and quantified both leakiness and lysis. In summary, we recommend incubation with 350 mM TRIS at constant pH for several hours followed by a mild heat treatment up to 38°C to trigger leakiness with only minimal lysis. This study represents a comparative summary of different strategies to trigger E. coli leakiness and describes a solid basis for further experiments in this field.
Collapse
Affiliation(s)
- David J Wurm
- Research Division Biochemical Engineering Institute of Chemical Engineering Vienna University of Technology Vienna Austria
| | - Christoph Slouka
- Research Division Biochemical Engineering Institute of Chemical Engineering Vienna University of Technology Vienna Austria
| | - Tadej Bosilj
- Research Division Biochemical Engineering Institute of Chemical Engineering Vienna University of Technology Vienna Austria
| | - Christoph Herwig
- Research Division Biochemical Engineering Institute of Chemical Engineering Vienna University of Technology Vienna Austria.,Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses Institute of Chemical Engineering Vienna University of Technology Vienna Austria
| | - Oliver Spadiut
- Research Division Biochemical Engineering Institute of Chemical Engineering Vienna University of Technology Vienna Austria.,Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses Institute of Chemical Engineering Vienna University of Technology Vienna Austria
| |
Collapse
|
14
|
Tripathi NK. Production and Purification of Recombinant Proteins fromEscherichia coli. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201600002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Voulgaris I, Chatel A, Hoare M, Finka G, Uden M. Evaluation of options for harvest of a recombinant E. Coli fermentation producing a domain antibody using ultra scale-down techniques and pilot-scale verification. Biotechnol Prog 2016; 32:382-92. [PMID: 26698375 PMCID: PMC4991298 DOI: 10.1002/btpr.2220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/06/2015] [Indexed: 01/21/2023]
Abstract
Ultra scale‐down (USD) methods operating at the millilitre scale were used to characterise full‐scale processing of E. coli fermentation broths autolysed to different extents for release of a domain antibody. The focus was on the primary clarification stages involving continuous centrifugation followed by depth filtration. The performance of this sequence was predicted by USD studies to decrease significantly with increased extents of cell lysis. The use of polyethyleneimine reagent was studied to treat the lysed cell broth by precipitation of soluble contaminants such as DNA and flocculation of cell debris material. The USD studies were used to predict the impact of this treatment on the performance and here it was found that the fermentation could be run to maximum productivity using an acceptable clarification process (e.g., a centrifugation stage operating at 0.11 L/m2 equivalent gravity settling area per hour followed by a resultant required depth filter area of 0.07 m2/L supernatant). A range of USD predictions was verified at the pilot scale for centrifugation followed by depth filtration. © 2016 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 32:382–392, 2016
Collapse
Affiliation(s)
- Ioannis Voulgaris
- Dept. of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, UCL, Gower St, London, WC1E 6BT.,Biopharm Process Research, BioPharm R&D, GlaxoSmithKline, R&D, Stevenage, SG1 2NY
| | - Alex Chatel
- Dept. of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, UCL, Gower St, London, WC1E 6BT
| | - Mike Hoare
- Dept. of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, UCL, Gower St, London, WC1E 6BT
| | - Gary Finka
- Biopharm Process Research, BioPharm R&D, GlaxoSmithKline, R&D, Stevenage, SG1 2NY
| | - Mark Uden
- Biopharm Process Research, BioPharm R&D, GlaxoSmithKline, R&D, Stevenage, SG1 2NY
| |
Collapse
|