1
|
Xie R, Jiang B, Cao W, Wang S, Guo M. The dual-specificity kinase MoLKH1-mediated cell cycle, autophagy, and suppression of plant immunity is critical for development and pathogenicity of Magnaporthe oryzae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108879. [PMID: 38964088 DOI: 10.1016/j.plaphy.2024.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Cell cycle progression, autophagic cell death during appressorium development, and ROS degradation at the infection site are important for the development of rice blast disease. However, the association of cell cycle, autophagy and ROS detoxification remains largely unknown in M. oryzae. Here, we identify the dual-specificity kinase MoLKH1, which serves as an important cell cycle regulator required for appressorium formation by regulating cytokinesis and cytoskeleton in M. oryzae. MoLKH1 is transcriptionally activated by H2O2 and required for H2O2-induced autophagic cell death and suppression of ROS-activated plant defense during plant invasion of M. oryzae. In addition, the Molkh1 mutant also showed several phenotypic defects, including delayed growth, abnormal conidiation, damaged cell wall integrity, impaired glycogen and lipid transport, reduced secretion of extracellular enzymes and effectors, and attenuated virulence of M. oryzae. Nuclear localization of MoLKH1 requires the nuclear localization sequence, Lammer motif, as well as the kinase active site and ATP-binding site in this protein. Site-directed mutagenesis showed that each of them plays crucial roles in fungal growth and pathogenicity of M. oryzae. In conclusion, our results demonstrate that MoLKH1-mediated cell cycle, autophagy, and suppression of plant immunity play crucial roles in development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Rui Xie
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Bingxin Jiang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Wei Cao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Shuaishuai Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
2
|
Zhang Z, Wang S, Guo M. The CHY-type zinc finger protein MoChy1 is involved in polarized growth, conidiation, autophagy and pathogenicity of Magnaporthe oryzae. Int J Biol Macromol 2024; 268:131867. [PMID: 38670181 DOI: 10.1016/j.ijbiomac.2024.131867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Polarized growth is critical for the development of filamentous phytopathogens, and the CHY-type zinc finger protein Chy1 regulates microtubule assembly to influence polarized growth and thereby affect plant infections. However, the biological role of a Chy1 homolog MoChy1 remains unknown in Magnaporthe oryzae. We found here that the MoChy1-GFP was distributed in the cytoplasm outside the vacuole in hyphae and localized mainly to the vacuole compartments as the appressorium matured. The Mochy1 mutants showed an extremely slow growth rate, curved and branched mycelium, reduced conidiation, and a smaller size in the appressorium. Meanwhile, the Mochy1 mutants showed increased sensitivity to benomyl, damaged microtubule cytoskeleton, and mislocalized polarisome protein MoSpa2 and chitin synthase MoChs6 in hyphae. Compared to Guy11, the Mochy1 mutants exhibited increased sensitivity to H2O2, impaired ability to eliminate host-derived ROS and reduced penetration into host plants, resulting in a strong reduction in pathogenicity of Mochy1 mutants. Furthermore, the Mochy1 mutants also exhibited defects in chitin distribution, osmotic stress tolerance, and septin ring organization during appressorium differentiation and fungal development. Nonselective autophagy was negatively regulated in Mochy1 mutants compared to Guy11. In summary, MoChy1 plays multiple roles in fungal polar growth and full virulence of M. oryzae.
Collapse
Affiliation(s)
- Zhaodi Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Shuaishuai Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
3
|
Gidhi A, Jha SK, Kumar M, Mukhopadhyay K. The F-box protein encoding genes of the leaf-rust fungi Puccinia triticina: genome-wide identification, characterization and expression dynamics during pathogenesis. Arch Microbiol 2024; 206:209. [PMID: 38587657 DOI: 10.1007/s00203-024-03936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
The F-box proteins in fungi perform diverse functions including regulation of cell cycle, circadian clock, development, signal transduction and nutrient sensing. Genome-wide analysis revealed 10 F-box genes in Puccinia triticina, the causal organism for the leaf rust disease in wheat and were characterized using in silico approaches for revealing phylogenetic relationships, gene structures, gene ontology, protein properties, sequence analysis and gene expression studies. Domain analysis predicted functional domains like WD40 and LRR at C-terminus along with the obvious presence of F-box motif in N-terminus. MSA showed amino acid replacements, which might be due to nucleotide substitution during replication. Phylogenetic analysis revealed the F-box proteins with similar domains to be clustered together while some sequences were spread out in different clades, which might be due to functional diversity. The clustering of Puccinia triticina GG705409 with Triticum aestivum TaAFB4/TaAFB5 in a single clade suggested the possibilities of horizontal gene transfer during the coevolution of P. triticina and wheat. Gene ontological annotation categorized them into three classes and were functionally involved in protein degradation through the protein ubiquitination pathway. Protein-protein interaction network revealed F-box proteins to interact with other components of the SCF complex involved in protein ubiquitination. Relative expression analysis of five F-box genes in a time course experiment denoted their involvement in leaf rust susceptible wheat plants. This study provides information on structure elucidation of F-box proteins of a basidiomycetes plant pathogenic fungi and their role during pathogenesis.
Collapse
Affiliation(s)
- Anupama Gidhi
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, Jharkhand, 834003, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
4
|
Yang X, Hu Z, Yuan J, Zou R, Wang Y, Peng X, Xu S, Xie C. Functional Role of RING Ubiquitin E3 Ligase VdBre1 and VdHrd1 in the Pathogenicity and Penetration Structure Formation of Verticillium dahliae. J Fungi (Basel) 2023; 9:1037. [PMID: 37888293 PMCID: PMC10608160 DOI: 10.3390/jof9101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Verticillium dahliae, a virulent soil-borne fungus, elicits Verticillium wilt in numerous dicotyledonous plants through intricate pathogenic mechanisms. Ubiquitination, an evolutionarily conserved post-translational modification, marks and labels proteins for degradation, thereby maintaining cellular homeostasis. Within the ubiquitination cascade, ubiquitin ligase E3 demonstrates a unique capability for target protein recognition, a function often implicated in phytopathogenic virulence. Our research indicates that two ubiquitin ligase E3s, VdBre1 and VdHrd1, are intrinsically associated with virulence. Our findings demonstrate that the deletion of these two genes significantly impairs the ability of V. dahliae to colonize the vascular bundles of plants and to form typical penetration pegs. Furthermore, transcriptomic analysis suggests that VdBre1 governs the lipid metabolism pathway, while VdHrd1 participates in endoplasmic-reticulum-related processes. Western blot analyses reveal a significant decrease in histone ubiquitination and histone H3K4 trimethylation levels in the ΔVdBre1 mutant. This research illuminates the function of ubiquitin ligase E3 in V. dahliae and offers fresh theoretical perspectives. Our research identifies two novel virulence-related genes and partially explicates their roles in virulence-associated structures and gene regulatory pathways. These findings augment our understanding of the molecular mechanisms inherent to V. dahliae.
Collapse
Affiliation(s)
- Xing Yang
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Zhijuan Hu
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Jingjie Yuan
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Run Zou
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Yilan Wang
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xuan Peng
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Shan Xu
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chengjian Xie
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
5
|
Lu K, Chen R, Yang Y, Xu H, Jiang J, Li L. Involvement of the Cell Wall-Integrity Pathway in Signal Recognition, Cell-Wall Biosynthesis, and Virulence in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:608-622. [PMID: 37140471 DOI: 10.1094/mpmi-11-22-0231-cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The fungal cell wall is the first layer exposed to the external environment. The cell wall has key roles in regulating cell functions, such as cellular stability, permeability, and protection against stress. Understanding the structure of the cell wall and the mechanism of its biogenesis is important for the study of fungi. Highly conserved in fungi, including Magnaporthe oryzae, the cell wall-integrity (CWI) pathway is the primary signaling cascade regulating cell-wall structure and function. The CWI pathway has been demonstrated to correlate with pathogenicity in many phytopathogenic fungi. In the synthesis of the cell wall, the CWI pathway cooperates with multiple signaling pathways to regulate cell morphogenesis and secondary metabolism. Many questions have arisen regarding the cooperation of different signaling pathways with the CWI pathway in regulating cell-wall synthesis and pathogenicity. In this review, we summarized the latest advances in the M. oryzae CWI pathway and cell-wall structure. We discussed the CWI pathway components and their involvement in different aspects, such as virulence factors, the possibility of the pathway as a target for antifungal therapies, and crosstalk with other signaling pathways. This information will aid in better understanding the universal functions of the CWI pathway in regulating cell-wall synthesis and pathogenicity in M. oryzae. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kailun Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Rangrang Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yi Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Hui Xu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jihong Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lianwei Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Zhang W, Wang S, Jiang B, Guo M. MoRts1, a regulatory subunit of PP2A, is required for fungal development and pathogenicity of Magnaporthe oryzae. Microbiol Res 2023; 269:127313. [PMID: 36696866 DOI: 10.1016/j.micres.2023.127313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Protein phosphatase 2 A (PP2A) is a major heterotrimeric serine/threonine protein phosphatase comprised of three subunits, including structural subunits (A), regulatory subunits (B), and catalytic subunits (C). PP2A has been widely shown to involve in a series of cell signal transduction processes such as cell metabolism, cell cycle regulation, DNA replication, gene transcription and protein translation in yeast and mammalian. However, the roles of PP2A in pathogenic fungi Magnaporthe oryzae still remain unclear. We here found that MoRts1, a gene encoding B regulatory subunit of PP2A homologous to Saccharomyces cerevisiae Rts1, showed up-regulated transcription during conidia and initially infectious stage. Subcellular localization revealed that MoRts1-eGFP was localized to the cytoplasm and septum. Targeted disruption of MoRts1 leads to a reduction of mycelial growth and sporulation, as well as the defects of hydrophobicity, melanin pigmentation and cell wall integrity (CWI). The MoRts1 mutants were less pathogenic to the host plants, compared to the Ku80 strain, and the transcriptional levels of several pathogenicity-related Rho GTPase genes, including MoCdc42, MoRho2, MoRho3, MoRho4, MoRhoX and MoRac1, were significantly decreased in the MoRts1 mutants. Besides, two splicing variants of MoRts1 with unique functions of regulating the growth and pathogenicity were identified, and the B56 domain is vital for determining the sporulation and pathogenicity of M. oryzae. Furthermore, MoRts1 was identified to interact with PP2A catalytic subunit MoPPG1 in vivo in M. oryzae. In summary, our results showed that MoRts1 is an important regulator contributing to the fungal development, and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Weiwei Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shuaishuai Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bingxin Jiang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Genome-wide association mapping reveals genes underlying population-level metabolome diversity in a fungal crop pathogen. BMC Biol 2022; 20:224. [PMID: 36209159 PMCID: PMC9548119 DOI: 10.1186/s12915-022-01422-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/27/2022] [Indexed: 11/12/2022] Open
Abstract
Background Fungi produce a wide range of specialized metabolites (SMs) involved in biotic interactions. Pathways for the production of SMs are often encoded in clusters of tightly arranged genes identified as biosynthetic gene clusters. Such gene clusters can undergo horizontal gene transfers between species and rapid evolutionary change within species. The acquisition, rearrangement, and deletion of gene clusters can generate significant metabolome diversity. However, the genetic basis underlying variation in SM production remains poorly understood. Results Here, we analyzed the metabolite production of a large population of the fungal pathogen of wheat, Zymoseptoria tritici. The pathogen causes major yield losses and shows variation in gene clusters. We performed untargeted ultra-high performance liquid chromatography-high resolution mass spectrometry to profile the metabolite diversity among 102 isolates of the same species. We found substantial variation in the abundance of the detected metabolites among isolates. Integrating whole-genome sequencing data, we performed metabolite genome-wide association mapping to identify loci underlying variation in metabolite production (i.e., metabolite-GWAS). We found that significantly associated SNPs reside mostly in coding and gene regulatory regions. Associated genes encode mainly transport and catalytic activities. The metabolite-GWAS identified also a polymorphism in the 3′UTR region of a virulence gene related to metabolite production and showing expression variation. Conclusions Taken together, our study provides a significant resource to unravel polymorphism underlying metabolome diversity within a species. Integrating metabolome screens should be feasible for a range of different plant pathogens and help prioritize molecular studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01422-z.
Collapse
|
8
|
Ouyang H, Zhang Y, Zhou H, Ma Y, Li R, Yang J, Wang X, Jin C. Deficiency of GPI Glycan Modification by Ethanolamine Phosphate Results in Increased Adhesion and Immune Resistance of Aspergillus fumigatus. Front Cell Infect Microbiol 2021; 11:780959. [PMID: 34956933 PMCID: PMC8695850 DOI: 10.3389/fcimb.2021.780959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins play important roles in maintaining the function of the cell wall and participating in pathogenic processes. The addition and removal of phosphoethanolamine (EtN-P) on the second mannose residue in the GPI anchor are vital for maturation and sorting of GPI-anchored proteins. Previously, we have shown that deletion of the gpi7, the gene that encodes an EtN-P transferase responsible for the addition of EtN-P to the second mannose residue of the GPI anchor, leads to the mislocalization of GPI-anchored proteins, abnormal polarity, reduced conidiation, and fast germination in Aspergillus fumigatus. In this report, the adherence and virulence of the A. fumigatus gpi7 deletion mutant were further investigated. The germinating conidia of the mutant exhibited an increased adhesion and a higher exposure of cell wall polysaccharides. Although the virulence was not affected, an increased adherence and a stronger inflammation response of the mutant were documented in an immunocompromised mouse model. An in vitro assay confirmed that the Δgpi7 mutant induced a stronger immune response and was more resistant to killing. Our findings, for the first time, demonstrate that in A. fumigatus, GPI anchoring is required for proper organization of the conidial cell wall. The lack of Gpi7 leads to fast germination, stronger immune response, and resistance to macrophage killing.
Collapse
Affiliation(s)
- Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yi Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, Beijing, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yubo Ma
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, Beijing, China
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Peng H, Dong X, Lu H, Kong X, Zha X, Wang Y. A putative F-box-domain-encoding gene AOL_s00076g207 regulates the development and pathogenicity of Arthrobotrys oligospora. J Basic Microbiol 2021; 62:74-81. [PMID: 34843126 DOI: 10.1002/jobm.202100388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 11/20/2021] [Indexed: 11/08/2022]
Abstract
F-box protein is a key component of the Skp1-cullin-F-box-type ubiquitin ligase complex (SCF-ULC) that marks its target proteins with ubiquitin for proteasomal degradation. In this study, we explored the potential role of AOL_s00076g207 (Aog207) in Arthrobotrys oligospora, a model fungus for studying nematodes-fungi interactions. The Aog207 gene encodes a putative F-box protein of the SCF-ULC. Deletion of Aog207 could inhibit mycelial growth in TYGA and PDA media. More importantly, the conidial germination rate of ΔAog207 mutants was remarkably declined compared to that of wild-type (WT) strain, and the mutant strains were more sensitive toward chemical stressors than the WT strain. In addition, ΔAog207 mutants generated fewer traps and captured fewer nematodes than WT strain. In summary, Aog207 disruption significantly affected the pathogenicity, mycelial growth, conidial germination, environmental adaptation and trap formation of A. oligospora. These findings may facilitate a better understanding of the nematode predation mechanism of A. oligospora and provide an experimental basis for developing biological control agents against nematodes.
Collapse
Affiliation(s)
- Hui Peng
- School of Life Sciences, Anhui University, Hefei, Anhui, China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Xinyuan Dong
- School of Life Sciences, Anhui University, Hefei, Anhui, China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Hengqian Lu
- School of Life Sciences, Anhui University, Hefei, Anhui, China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Xiaowei Kong
- School of Life Sciences, Anhui University, Hefei, Anhui, China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Xiangdong Zha
- School of Life Sciences, Anhui University, Hefei, Anhui, China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| |
Collapse
|
10
|
Cao C, Xue C. More Than Just Cleaning: Ubiquitin-Mediated Proteolysis in Fungal Pathogenesis. Front Cell Infect Microbiol 2021; 11:774613. [PMID: 34858882 PMCID: PMC8631298 DOI: 10.3389/fcimb.2021.774613] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin-proteasome mediated protein turnover is an important regulatory mechanism of cellular function in eukaryotes. Extensive studies have linked the ubiquitin-proteasome system (UPS) to human diseases, and an array of proteasome inhibitors have been successfully developed for cancer therapy. Although still an emerging field, research on UPS regulation of fungal development and virulence has been rapidly advancing and has generated considerable excitement in its potential as a target for novel drugs. In this review, we summarize UPS composition and regulatory function in pathogenic fungi, especially in stress responses, host adaption, and fungal pathogenesis. Emphasis will be given to UPS regulation of pathogenic factors that are important for fungal pathogenesis. We also discuss future potential therapeutic strategies for fungal infections based on targeting UPS pathways.
Collapse
Affiliation(s)
- Chengjun Cao
- Public Health Research Institute, Rutgers University, New Brunswick, NJ, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, New Brunswick, NJ, United States
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, Newark, NJ, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
11
|
Zheng C, Zhang W, Zhang S, Yang G, Tan L, Guo M. Class I myosin mediated endocytosis and polarization growth is essential for pathogenicity of Magnaporthe oryzae. Appl Microbiol Biotechnol 2021; 105:7395-7410. [PMID: 34536105 DOI: 10.1007/s00253-021-11573-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
In eukaryotes, myosin provides the necessary impetus for a series of physiological processes, including organelle movement, cytoplasmic flow, cell division, and mitosis. Previously, three members of myosin were identified in Magnaporthe oryzae, with class II and class V myosins playing important roles in intracellular transport, fungal growth, and pathogenicity. However, limited is known about the biological function of the class I myosin protein in the rice blast fungus. Here, we found that Momyo1 is highly expressed during conidiation and infection. Functional characterization of this gene via RNA interference (RNAi) revealed that Momyo1 is required for vegetative growth, conidiation, melanin pigmentation, and pathogenicity of M. oryzae. The Momyo1 knockdown mutant is defective in formation of appressorium-like structures (ALS) at the hyphal tips. In addition, Momyo1 also displays defects on cell wall integrity, hyphal hydrophobicity, extracellular enzyme activities, endocytosis, and formation of the Spitzenkörper. Furthermore, Momyo1 was identified to physically interact with the MoShe4, a She4p/Dim1p orthologue potentially involved in endocytosis, polarization of the actin cytoskeleton. Overall, our findings provide a novel insight into the regulatory mechanism of Momyo1 that is involved in fungal growth, cell wall integrity, endocytosis, and virulence of M. oryzae. KEY POINTS: • Momyo1 is required for vegetative growth and pigmentation of M. oryzae. • Momyo1 is essential for cell wall integrity and endocytosis of M. oryzae. • Momyo1 is involved in hyphal surface hydrophobicity of M. oryzae.
Collapse
Affiliation(s)
- Chengcheng Zheng
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
| | - Weiwei Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
| | - Shulin Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
| | - Guogen Yang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
| | - Leyong Tan
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China.
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China.
| |
Collapse
|
12
|
Liu W, Triplett L, Chen XL. Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:99-124. [PMID: 33909479 DOI: 10.1146/annurev-phyto-021320-010948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Posttranslational modifications (PTMs) play crucial roles in regulating protein function and thereby control many cellular processes and biological phenotypes in both eukaryotes and prokaryotes. Several recent studies illustrate how plant fungal and bacterial pathogens use these PTMs to facilitate development, stress response, and host infection. In this review, we discuss PTMs that have key roles in the biological and infection processes of plant-pathogenic fungi and bacteria. The emerging roles of PTMs during pathogen-plant interactions are highlighted. We also summarize traditional tools and emerging proteomics approaches for PTM research. These discoveries open new avenues for investigating the fundamental infection mechanisms of plant pathogens and the discovery of novel strategies for plant disease control.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Lindsay Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA;
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
13
|
Sadat MA, Ullah MW, Bashar KK, Hossen QMM, Tareq MZ, Islam MS. Genome-wide identification of F-box proteins in Macrophomina phaseolina and comparison with other fungus. J Genet Eng Biotechnol 2021; 19:46. [PMID: 33761027 PMCID: PMC7991009 DOI: 10.1186/s43141-021-00143-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
Background In fungi, like other eukaryotes, protein turnover is an important cellular process for the controlling of various cellular functions. The ubiquitin-proteasome pathway degrades some selected intracellular proteins and F-box proteins are one of the important components controlling protein degradation. F-box proteins are well studied in different model plants however, their functions in the fungi are not clear yet. This study aimed to identify the genes involved in protein degradation for disease development in the Macrophomina phaseolina fungus. Results In this research, in silico studies were done to understand the distribution of F-box proteins in pathogenic fungi including Macrophomina phaseolina fungus. Genome-wide analysis indicates that M. phaseolina fungus contained thirty-one F-box proteins throughout its chromosomes. In addition, there are 17, 37, 16, and 21 F-box proteins have been identified from Puccinia graminis, Colletotrichum graminicola, Ustilago maydis, and Phytophthora infestans, respectively. Analyses revealed that selective fungal genomes contain several additional functional domains along with F-box domain. Sequence alignment showed the substitution of amino acid in several F-box proteins; however, gene duplication was not found among these proteins. Phylogenetic analysis revealed that F-box proteins having similar functional domain was highly diverse form each other showing the possibility of various function. Analysis also found that MPH_00568 and MPH_05531 were closely related to rice blast fungus F-box protein MGG_00768 and MGG_13065, respectively, may play an important role for blast disease development. Conclusion This genome-wide analysis of F-box proteins will be useful for characterization of candidate F-box proteins to understand the molecular mechanisms leading to disease development of M. phaseolina in the host plants. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00143-0.
Collapse
Affiliation(s)
- Md Abu Sadat
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh.
| | - Md Wali Ullah
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Kazi Khayrul Bashar
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Quazi Md Mosaddeque Hossen
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Zablul Tareq
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Shahidul Islam
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| |
Collapse
|
14
|
Zhang X, Zhang Z, Chen XL. The Redox Proteome of Thiol Proteins in the Rice Blast Fungus Magnaporthe oryzae. Front Microbiol 2021; 12:648894. [PMID: 33776980 PMCID: PMC7987659 DOI: 10.3389/fmicb.2021.648894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Redox modification, a post-translational modification, has been demonstrated to be significant for many physiological pathways and biological processes in both eukaryotes and prokaryotes. However, little is known about the global profile of protein redox modification in fungi. To explore the roles of redox modification in the plant pathogenic fungi, a global thiol proteome survey was performed in the model fungal pathogen Magnaporthe oryzae. A total of 3713 redox modification sites from 1899 proteins were identified through a mix sample containing mycelia with or without oxidative stress, conidia, appressoria, and invasive hyphae of M. oryzae. The identified thiol-modified proteins were performed with protein domain, subcellular localization, functional classification, metabolic pathways, and protein–protein interaction network analyses, indicating that redox modification is associated with a wide range of biological and cellular functions. These results suggested that redox modification plays important roles in fungal growth, conidium formation, appressorium formation, as well as invasive growth. Interestingly, a large number of pathogenesis-related proteins were redox modification targets, suggesting the significant roles of redox modification in pathogenicity of M. oryzae. This work provides a global insight into the redox proteome of the pathogenic fungi, which built a groundwork and valuable resource for future studies of redox modification in fungi.
Collapse
Affiliation(s)
- Xinrong Zhang
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, China
| | - Zhenhua Zhang
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
F-box only and CUE proteins are crucial ubiquitination-associated components for conidiation and pathogenicity in the rice blast fungus, Magnaporthe oryzae. Fungal Genet Biol 2020; 144:103473. [DOI: 10.1016/j.fgb.2020.103473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/11/2020] [Accepted: 09/19/2020] [Indexed: 11/21/2022]
|
16
|
Kalmar JG, Oh Y, Dean RA, Muddiman DC. Comparative Proteomic Analysis of Wild Type and Mutant Lacking an SCF E3 Ligase F-Box Protein in Magnaporthe oryzae. J Proteome Res 2020; 19:3761-3768. [PMID: 32692924 DOI: 10.1021/acs.jproteome.0c00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnaporthe oryzae (M. oryzae) is a pathogenic, filamentous fungus that is a primary cause of rice blast disease. The M. oryzae protein MGG_13065, SCF E3 ubiquitin ligase complex F-box protein, has been identified as playing a crucial role in the infection process, specifically, as part of the ubiquitin mediated proteolysis pathway. Proteins targeted by MGG_13065 E3 ligase are first phosphorylated and then ubiquitinated by E3 ligase. In this study, we used a label-free quantitative global proteomics technique to probe the role of ubiquitination and phosphorylation in the mechanism of how E3 ligase regulates change in virulence of M. oryzae. To do this, we compared the WT M. oryzae 70-15 strain with a gene knock out (E3 ligase KO) strain. After applying a ≥ 5 normalized spectral count cutoff, a total of 4432 unique proteins were identified comprised of 4360 and 4372 in the WT and E3 ligase KO samples, respectively. Eighty proteins drastically increased in abundance, while 65 proteins decreased in abundance in the E3 ligase KO strain. Proteins (59) were identified only in the WT strain; 13 of these proteins had both phosphorylation and ubiquitination post-translational modifications. Proteins (71) were revealed to be only in the E3 ligase KO strain; 23 of the proteins have both phosphorylation and ubiquitination post-translational modifications. Several of these proteins were associated with key biological processes. These data greatly assist in the selection of future genes for functional studies and enable mechanistic insight related to virulence.
Collapse
|
17
|
The deubiquitinating enzyme MoUbp8 is required for infection-related development, pathogenicity, and carbon catabolite repression in Magnaporthe oryzae. Appl Microbiol Biotechnol 2020; 104:5081-5094. [PMID: 32274561 DOI: 10.1007/s00253-020-10572-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/29/2020] [Accepted: 03/22/2020] [Indexed: 12/22/2022]
Abstract
Deubiquitination is an essential regulatory step in the Ub-dependent pathway. Deubiquitinating enzymes (DUBs) mediate the removal of ubiquitin moieties from substrate proteins, which are involved in many regulatory mechanisms. As a component of the DUB module (Ubp8/Sgf11/Sus1/Sgf73) in the SAGA (Spt-Ada-Gcn5-acetyltransferase) complex, Ubp8 plays a crucial role in both Saccharomyces cerevisiae and humans. In S. cerevisiae, Ubp8-mediated deubiquitination regulates transcriptional activation processes. To investigate the contributions of Ubp8 to physiological and pathological development of filamentous fungi, we generated the deletion mutant of ortholog MoUBP8 (MGG-03527) in Magnaporthe oryzae (syn. Pyricularia oryzae). The ΔMoubp8 strain showed reduced sporulation, pathogenicity, and resistance to distinct stresses. Even though the conidia of the ΔMoubp8 mutant were delayed in appressorium formation, the normal and abnormal (none-septum or one-septum) conidia could finally form appressoria. Reduced melanin in the ΔMoubp8 mutant is highly responsible for the attenuated pathogenicity since the appressoria of the ΔMoubp8 mutant was much more fragile than those of the wild type, due to the defective turgidity. The weakened ability to detoxify or scavenge host-derived reactive oxygen species (ROS) further restricted the invasion of the pathogen. We also showed that carbon derepression, on the one hand, rendered the ΔMoubp8 strain highly sensitive to allyl alcohol, on the other hand, it enhances the resistance of the MoUBP8 defective strain to deoxyglucose. Overall, we suggest that MoUbp8 is not only required for sporulation, melanin formation, appressoria development, and pathogenicity but also involved in carbon catabolite repression of M. oryzae.
Collapse
|
18
|
Zhang S, Lin C, Zhou T, Zhang LH, Deng YZ. Karyopherin MoKap119-mediated nuclear import of cyclin-dependent kinase regulator MoCks1 is essential for Magnaporthe oryzae pathogenicity. Cell Microbiol 2019; 22:e13114. [PMID: 31487436 DOI: 10.1111/cmi.13114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022]
Abstract
Nuclear import of proteins relies on nuclear import receptors called importins/karyopherins (Kaps), whose functions were reported in yeasts, fungi, plants, and animal cells, including cell cycle control, morphogenesis, stress sensing/response, and also fungal pathogenecity. However, limited is known about the physiological function and regulatory mechanism of protein import in the rice-blast fungus Magnaporthe oryzae. Here, we identified an ortholog of β-importin in M. oryzae encoded by an ortholog of KAP119 gene. Functional characterisation of this gene via reverse genetics revealed that it is required for vegetative growth, conidiation, melanin pigmentation, and pathogenicity of M. oryzae. The mokap119Δ mutant was also defective in formation of appressorium-like structure from hyphal tips. By affinity assay and liquid chromatography-tandem mass spectrometry, we identified potential MoKap119-interacting proteins and further verified that MoKap119 interacts with the cyclin-dependent kinase subunit MoCks1 and mediates its nuclear import. Transcriptional profiling indicated that MoKap119 may regulate transcription of infection-related genes via MoCks1 regulation of MoSom1. Overall, our findings provide a novel insight into the regulatory mechanism of M. oryzae pathogenesis likely by MoKap119-mediated nuclear import of the cyclin-dependent kinase subunit MoCks1.
Collapse
Affiliation(s)
- Shulin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Chaoxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Tian Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Abstract
The ascomycete fungus Magnapothe oryzae is the causal agent of rice blast disease, leading to severe loss in cultivated rice production worldwide. In this study, we identified a conserved type 2 glycosyltransferase named MoGt2 in M. oryzae. The mogt2Δ targeted gene deletion mutants exhibited pleiotropic defects in vegetative growth, conidiation, stress response, hyphal appressorium-mediated penetration, and pathogenicity. Furthermore, conserved glycosyltransferase domains are critical for MoGt2 function. The comparative transcriptome analysis revealed potential target genes under MoGt2 regulation in M. oryzae conidiation. Identification of potential glycoproteins modified by MoGt2 provided information on its regulatory mechanism of gene expression and biological functions. Overall, our study represents the first report of type 2 glycosyltransferase function in M. oryzae infection-related morphogenesis and pathogenesis. Magnaporthe oryzae causes the rice blast disease, which is one of the most serious diseases of cultivated rice worldwide. Glycosylation is an important posttranslational modification of secretory and membrane proteins in all eukaryotes, catalyzed by glycosyltransferases (GTs). In this study, we identified and characterized a type 2 glycosyltransferase, MoGt2, in M. oryzae. Targeted gene deletion mutants of MoGT2 (mogt2Δ strains) were nonpathogenic and were impaired in vegetative growth, conidiation, and appressorium formation at hyphal tips. Moreover, MoGT2 plays an important role in stress tolerance and hydrophobin function of M. oryzae. Site-directed mutagenesis analysis showed that conserved glycosyltransferase domains (DxD and QxxRW) are critical for biological functions of MoGt2. MoGT2 deletion led to altered glycoproteins during M. oryzae conidiation. By liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified several candidate proteins as potential substrates of MoGt2, including several heat shock proteins, two coiled-coil domain-containing proteins, aminopeptidase 2, and nuclease domain-containing protein 1. On the other hand, we found that a conidiation-related gene, genes involved in various metabolism pathways, and genes involved in cell wall integrity and/or osmotic response were differentially regulated in the mogt2Δ mutant, which may potentially contribute to its condiation defects. Taken together, our results show that MoGt2 is important for infection-related morphogenesis and pathogenesis in M. oryzae. IMPORTANCE The ascomycete fungus Magnapothe oryzae is the causal agent of rice blast disease, leading to severe loss in cultivated rice production worldwide. In this study, we identified a conserved type 2 glycosyltransferase named MoGt2 in M. oryzae. The mogt2Δ targeted gene deletion mutants exhibited pleiotropic defects in vegetative growth, conidiation, stress response, hyphal appressorium-mediated penetration, and pathogenicity. Furthermore, conserved glycosyltransferase domains are critical for MoGt2 function. The comparative transcriptome analysis revealed potential target genes under MoGt2 regulation in M. oryzae conidiation. Identification of potential glycoproteins modified by MoGt2 provided information on its regulatory mechanism of gene expression and biological functions. Overall, our study represents the first report of type 2 glycosyltransferase function in M. oryzae infection-related morphogenesis and pathogenesis.
Collapse
|
20
|
Shi H, Chen N, Zhu X, Liang S, Li L, Wang J, Lu J, Lin F, Liu X. F‐box proteins MoFwd1, MoCdc4 and MoFbx15 regulate development and pathogenicity in the rice blast fungusMagnaporthe oryzae. Environ Microbiol 2019; 21:3027-3045. [DOI: 10.1111/1462-2920.14699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/05/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Huan‐Bin Shi
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| | - Nan Chen
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| | - Xue‐Ming Zhu
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| | - Shuang Liang
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| | - Lin Li
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| | - Jiao‐Yu Wang
- Institute of Plant Protection MicrobiologyZhejiang Academy of Agricultural Science Hangzhou 310021 China
| | - Jian‐Ping Lu
- College of Life SciencesZhejiang University Hangzhou 310058 China
| | - Fu‐Cheng Lin
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| | - Xiao‐Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology InstituteZhejiang University Hangzhou 310058 China
| |
Collapse
|
21
|
Tang W, Jiang H, Zheng Q, Chen X, Wang R, Yang S, Zhao G, Liu J, Norvienyeku J, Wang Z. Isopropylmalate isomerase MoLeu1 orchestrates leucine biosynthesis, fungal development, and pathogenicity in Magnaporthe oryzae. Appl Microbiol Biotechnol 2018; 103:327-337. [PMID: 30357439 DOI: 10.1007/s00253-018-9456-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 01/16/2023]
Abstract
The biosynthesis of branched-chain amino acids (BCAAs) is conserved in fungi and plants, but not in animals. The Leu1 gene encodes isopropylmalate isomerase that catalyzes the conversion of α-isopropylmalate into β-isopropylmalate in the second step of leucine biosynthesis in yeast. Here, we identified and characterized the functions of MoLeu1, an ortholog of yeast Leu1 in the rice blast fungus Magnaporthe oryzae. The transcriptional level of MoLEU1 was increased during conidiation and in infectious stages. Cellular localization analysis indicated that MoLeu1 localizes to the cytoplasm at all stages of fungal development. Targeted gene deletion of MoLEU1 led to leucine auxotrophy, and phenotypic analysis of the generated ∆Moleu1 strain revealed that MoLeu1-mediated leucine biosynthesis was required for vegetative growth, asexual development, and pathogenesis of M. oryzae. We further observed that invasive hyphae produced by the ∆Moleu1 strain were mainly limited to the primary infected host cells. The application of exogenous leucine fully restored vegetative growth and partially restored conidiation as well as pathogenicity defects in the ∆Moleu1 strain. In summary, our results suggested that MoLeu1-mediated leucine biosynthesis crucially promotes vegetative growth, conidiogenesis, and pathogenicity of M. oryzae. This study helps unveil the regulatory mechanisms that are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Haolang Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiaojia Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuehang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rufeng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuai Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guiyuan Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiao Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Justice Norvienyeku
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Institute of Ocean Science, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
22
|
Guo M, Gao F, Zhu X, Nie X, Pan Y, Gao Z. Correction to: MoGrr1, a novel F-box protein, is involved in conidiogenesis and cell wall integrity and is critical for the full virulence of Magnaporthe oryzae. Appl Microbiol Biotechnol 2018; 102:9867-9869. [PMID: 30328492 DOI: 10.1007/s00253-018-9412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is an error in the Original Publication. Two images were mistakenly edited in Fig.6 (panel (a)) and Fig.7 (panel (a). Please find below the corrected figures.
Collapse
Affiliation(s)
- Min Guo
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| | - Fei Gao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaolei Zhu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xiang Nie
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - YueMin Pan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Zhimou Gao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
23
|
Lim Y, Kim K, Lee Y. SUMOylation is required for fungal development and pathogenicity in the rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:2134-2148. [PMID: 29633464 PMCID: PMC6638150 DOI: 10.1111/mpp.12687] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 05/26/2023]
Abstract
Amongst the various post-translational modifications (PTMs), SUMOylation is a conserved process of attachment of a small ubiquitin-related modifier (SUMO) to a protein substrate in eukaryotes. This process regulates many important biological mechanisms, including transcriptional regulation, protein stabilization, cell cycle, DNA repair and pathogenesis. However, the functional role of SUMOylation is not well understood in plant-pathogenic fungi, including the model fungal pathogen Magnaporthe oryzae. In this study, we elucidated the roles of four SUMOylation-associated genes that encode one SUMO protein (MoSMT3), two E1 enzymes (MoAOS1 and MoUBA2) and one E2 enzyme (MoUBC9) in fungal development and pathogenicity. Western blot assays showed that SUMO modification was abolished in all deletion mutants. MoAOS1 and MoUBA2 were mainly localized in the nucleus, whereas MoSMT3 and MoUBC9 were localized in both the nucleus and cytoplasm. However, the four SUMOylation-associated proteins were predominantly localized in the nucleus under oxidative stress conditions. Deletion mutants for each of the four genes were viable, but showed significant defects in mycelial growth, conidiation, septum formation, conidial germination, appressorium formation and pathogenicity. Several proteins responsible for conidiation were predicted to be SUMOylated, suggesting that conidiation is controlled at the post-translational level by SUMOylation. In addition to infection-related development, SUMOylation also played important roles in resistance to nutrient starvation, DNA damage and oxidative stresses. Therefore, SUMOylation is required for infection-related fungal development, stress responses and pathogenicity in M. oryzae. This study provides new insights into the role of SUMOylation in the molecular mechanisms of pathogenesis of the rice blast fungus and other plant pathogens.
Collapse
Affiliation(s)
- You‐Jin Lim
- Department of Agricultural BiotechnologySeoul National UniversitySeoul 08826South Korea
| | - Ki‐Tae Kim
- Department of Agricultural BiotechnologySeoul National UniversitySeoul 08826South Korea
| | - Yong‐Hwan Lee
- Department of Agricultural BiotechnologySeoul National UniversitySeoul 08826South Korea
- Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul 08826South Korea
| |
Collapse
|
24
|
Zhang M, Sun X, Cui L, Yin Y, Zhao X, Pan S, Wang W. The Plant Infection Test: Spray and Wound-Mediated Inoculation with the Plant Pathogen Magnaporthe Grisea. J Vis Exp 2018:57675. [PMID: 30124637 PMCID: PMC6126619 DOI: 10.3791/57675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Plants possess a powerful system to defend themselves against potential threats by pathogenic fungi. For agriculturally important plants, however, current measures to combat such pathogens have proved too conservative and, thus, not sufficiently effective, and they can potentially pose environmental risks. Therefore, it is extremely necessary to identify host-resistance factors to assist in controlling plant diseases naturally through the identification of resistant germplasm, the isolation and characterization of resistance genes, and the molecular breeding of resistant cultivars. In this regard, there is need to establish an accurate, rapid, and large-scale inoculation method to breed and develop plant resistance genes. The rice blast fungal pathogen Magnaporthe grisea causes severe disease symptoms and yield losses. Recently, M. grisea has emerged as a model organism for studying the mechanisms of plant-fungal pathogen interactions. Hence, we report the development of a plant virulence test method that is specific for M. grisea. This method provides for both spray inoculation with a conidial suspension and wounding inoculation with mycelium cubes or droplets of conidial suspension. The key step of the wounding inoculation method for detached rice leaves is to make wounds on plant leaves, which avoids any interference caused by host penetration resistance. This spray/wounding protocol contributes to the rapid, accurate, and large-scale screening of the pathotypes of M. grisea isolates. This integrated and systematic plant infection method will serve as an excellent starting point for gaining a broad perspective of issues in plant pathology.
Collapse
Affiliation(s)
- Mengyu Zhang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture
| | - Xuan Sun
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture
| | - Lie Cui
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture
| | - Yue Yin
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture
| | - Xinyu Zhao
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture
| | - Song Pan
- College of Plant Protection, State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University
| | - Weixiang Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture;
| |
Collapse
|
25
|
Pan Y, Pan R, Tan L, Zhang Z, Guo M. Pleiotropic roles of O-mannosyltransferase MoPmt4 in development and pathogenicity of Magnaporthe oryzae. Curr Genet 2018; 65:223-239. [DOI: 10.1007/s00294-018-0864-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
|
26
|
VdPLP, A Patatin-Like Phospholipase in Verticillium dahliae, Is Involved in Cell Wall Integrity and Required for Pathogenicity. Genes (Basel) 2018. [PMID: 29534051 PMCID: PMC5867883 DOI: 10.3390/genes9030162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The soil-borne ascomycete fungus Verticillium dahliae causes vascular wilt disease and can seriously diminish the yield and quality of important crops. Functional analysis of growth- and pathogenicity-related genes is essential for revealing the pathogenic molecular mechanism of V. dahliae. Phospholipase is an important virulence factor in fungi that hydrolyzes phospholipids into fatty acid and other lipophilic substances and is involved in hyphal development. Thus far, only a few V. dahliae phospholipases have been identified, and their involvement in V. dahliae development and pathogenicity remains unknown. In this study, the function of the patatin-like phospholipase gene in V. dahliae (VdPLP, VDAG_00942) is characterized by generating gene knockout and complementary mutants. Vegetative growth and conidiation of VdPLP deletion mutants (ΔVdPLP) were significantly reduced compared with wild type and complementary strains, but more microsclerotia formed. The ΔVdPLP mutants were very sensitive to the cell-wall-perturbing agents: calcofluor white (CFW) and Congo red (CR). The transcriptional level of genes related to the cell wall integrity (CWI) pathway and chitin synthesis were downregulated, suggesting that VdPLP has a pivotal role in the CWI pathway and chitin synthesis in V. dahliae. ΔVdPLP strains were distinctly impaired in in their virulence and ability to colonize Nicotiana benthamiana roots. Our results demonstrate that VdPLP regulates hyphal growth and conidial production and is involved in stabilizing the cell wall, thus mediating the pathogenicity of V. dahliae.
Collapse
|
27
|
Qin S, Ji C, Li Y, Wang Z. Comparative Transcriptomic Analysis of Race 1 and Race 4 of Fusarium oxysporum f. sp. cubense Induced with Different Carbon Sources. G3 (BETHESDA, MD.) 2017; 7:2125-2138. [PMID: 28468818 PMCID: PMC5499122 DOI: 10.1534/g3.117.042226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/30/2017] [Indexed: 12/13/2022]
Abstract
The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the "Gros Michel" banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity.
Collapse
Affiliation(s)
- Shiwen Qin
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Chunyan Ji
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yunfeng Li
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Zhenzhong Wang
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
28
|
Guo M, Tan L, Nie X, Zhang Z. A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae. Virulence 2017; 8:1335-1354. [PMID: 28448785 DOI: 10.1080/21505594.2017.1323156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In eukaryotic organisms, myosin proteins are the major ring components that are involved in cytokinesis. To date, little is known about the biologic functions of myosin proteins in Magnaporthe oryzae. In this study, insertional mutagenesis conducted in M. oryzae led to identification of Momyo2, a pathogenicity gene predicted to encode a class-II myosin protein homologous to Saccharomyces cerevisiae Myo1. According to qRT-PCR, Momyo2 is highly expressed during early infectious stage. When this gene was disrupted, the resultant mutant isolates were attenuated in virulence on rice and barley. These were likely caused by defective mycelial growth and frequent emergence of branch hyphae and septum. The Momyo2 mutants were also defective in conidial and appressorial development, characterized by abnormal conidia and appressoria. These consequently resulted in plant tissue penetration defects that the wild type strain lacked, and mutants being less pathogenic. Cytorrhysis assay, CFW staining of appressorium and monitoring of protoplast release suggested that appressorial wall was altered, presumably affecting the level of turgor pressure within appressorium. Furthermore, impairments in conidial germination, glycogen metabolites, tolerance to exogenous stresses and scavenging of host-derived reactive oxygen species were associated with defects on appressorium mediated penetration, and therefore attenuated the virulence of Momyo2 mutants. Taken together, these results suggest that Momyo2 plays pleiotropic roles in fungal development, and is required for the full pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Min Guo
- a Department of Plant Pathology , College of Plant Protection, Anhui Agricultural University , Hefei , China
| | - Leyong Tan
- a Department of Plant Pathology , College of Plant Protection, Anhui Agricultural University , Hefei , China
| | - Xiang Nie
- a Department of Plant Pathology , College of Plant Protection, Anhui Agricultural University , Hefei , China
| | - Zhengguang Zhang
- b Department of Plant Pathology , College of Plant Protection, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
29
|
Liu XH, Zhao YH, Zhu XM, Zeng XQ, Huang LY, Dong B, Su ZZ, Wang Y, Lu JP, Lin FC. Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Sci Rep 2017; 7:40018. [PMID: 28067330 PMCID: PMC5220305 DOI: 10.1038/srep40018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/01/2016] [Indexed: 11/09/2022] Open
Abstract
Autophagy is the major intracellular degradation system by which cytoplasmic materials are delivered to and degraded in the vacuole/lysosome in eukaryotic cells. MoAtg14 in M. oryzae, a hitherto uncharacterized protein, is the highly divergent homolog of the yeast Atg14 and the mammal BARKOR. The MoATG14 deletion mutant exhibited collapse in the center of the colonies, poor conidiation and a complete loss of virulence. Significantly, the ΔMoatg14 mutant showed delayed breakdown of glycogen, less lipid bodies, reduced turgor pressure in the appressorium and impaired conidial autophagic cell death. The autophagic process was blocked in the ΔMoatg14 mutant, and the autophagic degradation of the marker protein GFP-MoAtg8 was interrupted. GFP-MoAtg14 co-localized with mCherry-MoAtg8 in the aerial hypha. In addition, a conserved coiled-coil domain was predicted in the N-terminal region of the MoAtg14 protein, a domain which could mediate the interaction between MoAtg14 and MoAtg6. The coiled-coil domain of the MoAtg14 protein is essential for its function in autophagy and pathogenicity.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Hui Zhao
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ming Zhu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Qing Zeng
- State Intellectual Property Office of the People's Republic of China, Beijing, 100080, China
| | - Lu-Yao Huang
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bo Dong
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Zhen-Zhu Su
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China.,Agricultural Technology Extension Center, Zhejiang University, Hangzhou, 310058, China
| | - Yao Wang
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
30
|
Shi HB, Chen GQ, Chen YP, Dong B, Lu JP, Liu XH, Lin FC. MoRad6-mediated ubiquitination pathways are essential for development and pathogenicity in Magnaporthe oryzae. Environ Microbiol 2016; 18:4170-4187. [PMID: 27581713 DOI: 10.1111/1462-2920.13515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/28/2016] [Indexed: 01/19/2023]
Abstract
The ubiquitin system modulates protein functions through targeting substrates for ubiquitination. Here, E2 conjugating enzyme MoRad6-related ubiquitination pathways are identified and analyzed in Magnaporthe oryzae, the causal agent of rice blast disease. Disruption of MoRad6 leads to severe defects in growth, sporulation, conidial germination, appressorium formation, and plant infection. To depict the functions of MoRad6, three putative ubiquitin ligases, MoRad18, MoBre1 and MoUbr1, are also characterized. Deletion of MoRad18 causes minor phenotypic changes, while MoBre1 is required for growth, conidiation and pathogenicity in M. oryzae. Defects in ΔMobre1 likely resulted from the reduction in di- and tri-methylation level of Histone 3 lysine 4 (H3K4). Notably, MoUbr1 is crucial for conidial adhesion and germination, possibly by degrading components of cAMP/PKA and mitogen-activated protein kinase (MAPK) Pmk1 signaling pathways via the N-end rule pathway. Germination failure of ΔMoubr1 conidia could be rescued by elevation of cAMP level or enhanced Pmk1 phosphorylation resulting from further deletion of MoIra1, the M. oryzae homolog of yeast Ira1/2. These reveal vital effects of cAMP/PKA and MAPK Pmk1 signaling on conidial germination in M. oryzae. Altogether, our results suggest that MoRad6-mediated ubiquitination pathways are essential for the infection-related development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Huan-Bin Shi
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Guo-Qing Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ya-Ping Chen
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
31
|
Liu XH, Ning GA, Huang LY, Zhao YH, Dong B, Lu JP, Lin FC. Calpains are involved in asexual and sexual development, cell wall integrity and pathogenicity of the rice blast fungus. Sci Rep 2016; 6:31204. [PMID: 27502542 PMCID: PMC4977516 DOI: 10.1038/srep31204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/14/2016] [Indexed: 01/03/2023] Open
Abstract
Calpains are ubiquitous and well-conserved proteins that belong to the calcium-dependent, non-lysosomal cysteine protease family. In this study, 8 putative calpains were identified using Pfam domain analysis and BlastP searches in M. oryzae. Three single gene deletion mutants (ΔMocapn7, ΔMocapn9 and ΔMocapn14) and two double gene deletion mutants (ΔMocapn4ΔMocapn7 and ΔMocapn9ΔMocapn7) were obtained using the high-throughput gene knockout system. The calpain disruption mutants showed defects in colony characteristics, conidiation, sexual reproduction and cell wall integrity. The mycelia of the ΔMocapn7, ΔMocapn4ΔMocapn7 and ΔMocapn9ΔMocapn7 mutants showed reduced pathogenicity on rice and barley.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Guo-Ao Ning
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Lu-Yao Huang
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Ya-Hui Zhao
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Bo Dong
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fu-Cheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
32
|
Guo M, Tan L, Nie X, Zhu X, Pan Y, Gao Z. The Pmt2p-Mediated Protein O-Mannosylation Is Required for Morphogenesis, Adhesive Properties, Cell Wall Integrity and Full Virulence of Magnaporthe oryzae. Front Microbiol 2016; 7:630. [PMID: 27199956 PMCID: PMC4852298 DOI: 10.3389/fmicb.2016.00630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
Protein O-mannosylation is a type of O-glycosylation that is characterized by the addition of mannose residues to target proteins, and is initially catalyzed by evolutionarily conserved protein O-mannosyltransferases (PMTs). In this study, three members of PMT were identified in Magnaporthe oryzae, and the pathogenic roles of MoPmt2, a member of PMT2 subfamily, were analyzed. We found that MoPmt2 is a homolog of Saccharomyces cerevisiae Pmt2 and could complement yeast Pmt2 function in resistance to CFW. Quantitative RT-PCR revealed that MoPmt2 is highly expressed during conidiation, and targeted disruption of MoPmt2 resulted in defects in conidiation and conidia morphology. The MoPmt2 mutants also showed a distinct reduction in fungal growth, which was associated with severe alterations in hyphal polarity. In addition, we found that the MoPmt2 mutants severely reduced virulence on both rice plants and barley leaves. The subsequent examination revealed that the fungal adhesion, conidial germination, CWI and invasive hyphae growth in host cells are responsible for defects on appressorium mediated penetration, and thus attenuated the pathogenicity of MoPmt2 mutants. Taken together, our results suggest that protein O-mannosyltransferase MoPmt2 plays essential roles in fungal growth and development, and is required for the full pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Min Guo
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Leyong Tan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Xiang Nie
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Xiaolei Zhu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Yuemin Pan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Zhimou Gao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| |
Collapse
|
33
|
Qi Z, Liu M, Dong Y, Yang J, Zhang H, Zheng X, Zhang Z. Orotate phosphoribosyl transferase MoPyr5 is involved in uridine 5'-phosphate synthesis and pathogenesis of Magnaporthe oryzae. Appl Microbiol Biotechnol 2016; 100:3655-66. [PMID: 26810198 DOI: 10.1007/s00253-016-7323-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/28/2023]
Abstract
Orotate phosphoribosyl transferase (OPRTase) plays an important role in de novo and salvage pathways of nucleotide synthesis and is widely used as a screening marker in genetic transformation. However, the function of OPRTase in plant pathogens remains unclear. In this study, we characterized an ortholog of Saccharomyces cerevisiae Ura5, the OPRTase MoPyr5, from the rice blast fungus Magnaporthe oryzae. Targeted gene disruption revealed that MoPyr5 is required for mycelial growth, appressorial turgor pressure and penetration into plant tissues, invasive hyphal growth, and pathogenicity. Interestingly, the ∆Mopyr5 mutant is also involved in mycelial surface hydrophobicity. Exogenous uridine 5'-phosphate (UMP) restored vegetative growth and rescued the defect in pathogenicity on detached barley and rice leaf sheath. Collectively, our results show that MoPyr5 is an OPRTase for UMP biosynthesis in M. oryzae and indicate that UTP biosynthesis is closely linked with vegetative growth, cell wall integrity, and pathogenicity of fungus. Our results also suggest that UMP biosynthesis would be a good target for the development of novel fungicides against M. oryzae.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yanhan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Jie Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| |
Collapse
|