1
|
Wan Mahari WA, Wan Razali WA, Manan H, Hersi MA, Ishak SD, Cheah W, Chan DJC, Sonne C, Show PL, Lam SS. Recent advances on microalgae cultivation for simultaneous biomass production and removal of wastewater pollutants to achieve circular economy. BIORESOURCE TECHNOLOGY 2022; 364:128085. [PMID: 36220529 DOI: 10.1016/j.biortech.2022.128085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Microalgae are known for containing high value compounds and its significant role in sequestering carbon dioxide. This review mainly focuses on the emerging microalgae cultivation technologies such as nanomaterials technology that can improve light distribution during microalgae cultivation, attached cultivation and co-cultivation approaches that can improve growth and proliferation of algal cells, biomass yield and lipid accumulation in microalgal. This review includes a comprehensive discussion on the use of microbubbles technology to enhance aerated bubble capacity in photobioreactor to improve microalgal growth. This is followed by discussion on the role of microalgae as phycoremediation agent in removal of contaminants from wastewater, leading to better water quality and high productivity of shellfish. The review also includes techno-economic assessment of microalgae biorefinery technology, which is useful for scaling up the microalgal biofuel production system or integrated microalgae-shellfish cultivation system to support circular economy.
Collapse
Affiliation(s)
- Wan Adibah Wan Mahari
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Henan 450002, Zhengzhou, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Wan Aizuddin Wan Razali
- Faculty of Fisheries & Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Hidayah Manan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Mursal Abdulkadir Hersi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Sairatul Dahlianis Ishak
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Wee Cheah
- Insitute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Pau Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor, Malaysia
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Henan 450002, Zhengzhou, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310, Johor, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
2
|
Cerruti M, Kim JH, Pabst M, Van Loosdrecht MCM, Weissbrodt DG. Light intensity defines growth and photopigment content of a mixed culture of purple phototrophic bacteria. Front Microbiol 2022; 13:1014695. [DOI: 10.3389/fmicb.2022.1014695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Purple bacteria (PPB), anoxygenic photoorganoheterotrophic organisms with a hyper-versatile metabolism and high biomass yields over substrate, are promising candidates for the recovery of nutrient resources from wastewater. Infrared light is a pivotal parameter to control and design PPB-based resource recovery. However, the effects of light intensities on the physiology and selection of PPB in mixed cultures have not been studied to date. Here, we examined the effect of infrared irradiance on PPB physiology, enrichment, and growth over a large range of irradiance (0 to 350 W m−2) in an anaerobic mixed-culture sequencing batch photobioreactor. We developed an empirical mathematical model that suggests higher PPB growth rates as response to higher irradiance. Moreover, PPB adapted to light intensity by modulating the abundances of their phototrophic complexes. The obtained results provide an in-depth phylogenetic and metabolic insight the impact of irradiance on PPB. Our findings deliver the fundamental information for guiding the design of light-driven, anaerobic mixed-culture PPB processes for wastewater treatment and bioproduct valorization.
Collapse
|
3
|
Pastore M, Primavera A, Milocco A, Barbera E, Sforza E. Tuning the Solid Retention Time to Boost Microalgal Productivity and Carbon Exploitation in an Industrial Pilot-Scale LED Photobioreactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martina Pastore
- Interdepartemental Centre Giorgio Levi Cases, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Alessandra Primavera
- Danieli and C. Officine Meccaniche S.p.A., Via Nazionale 41, Buttrio 33042, UD, Italy
| | - Alessio Milocco
- Danieli and C. Officine Meccaniche S.p.A., Via Nazionale 41, Buttrio 33042, UD, Italy
| | - Elena Barbera
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Eleonora Sforza
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
4
|
Oruganti RK, Katam K, Show PL, Gadhamshetty V, Upadhyayula VKK, Bhattacharyya D. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered 2022; 13:10412-10453. [PMID: 35441582 PMCID: PMC9161886 DOI: 10.1080/21655979.2022.2056823] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
The scarcity of water resources and environmental pollution have highlighted the need for sustainable wastewater treatment. Existing conventional treatment systems are energy-intensive and not always able to meet stringent disposal standards. Recently, algal-bacterial systems have emerged as environmentally friendly sustainable processes for wastewater treatment and resource recovery. The algal-bacterial systems work on the principle of the symbiotic relationship between algae and bacteria. This paper comprehensively discusses the most recent studies on algal-bacterial systems for wastewater treatment, factors affecting the treatment, and aspects of resource recovery from the biomass. The algal-bacterial interaction includes cell-to-cell communication, substrate exchange, and horizontal gene transfer. The quorum sensing (QS) molecules and their effects on algal-bacterial interactions are briefly discussed. The effect of the factors such as pH, temperature, C/N/P ratio, light intensity, and external aeration on the algal-bacterial systems have been discussed. An overview of the modeling aspects of algal-bacterial systems has been provided. The algal-bacterial systems have the potential for removing micropollutants because of the diverse possible interactions between algae-bacteria. The removal mechanisms of micropollutants - sorption, biodegradation, and photodegradation, have been reviewed. The harvesting methods and resource recovery aspects have been presented. The major challenges associated with algal-bacterial systems for real scale implementation and future perspectives have been discussed. Integrating wastewater treatment with the algal biorefinery concept reduces the overall waste component in a wastewater treatment system by converting the biomass into a useful product, resulting in a sustainable system that contributes to the circular bioeconomy.
Collapse
Affiliation(s)
- Raj Kumar Oruganti
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India
| | - Keerthi Katam
- Department of Civil Engineering, École Centrale School of Engineering, Mahindra University, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Malaysia
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid, South Dakota, USA
| | | | - Debraj Bhattacharyya
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India
| |
Collapse
|
5
|
Barten R, Chin-On R, de Vree J, van Beersum E, Wijffels RH, Barbosa M, Janssen M. Growth parameter estimation and model simulation for three industrially relevant microalgae: Picochlorum, Nannochloropsis, and Neochloris. Biotechnol Bioeng 2022; 119:1416-1425. [PMID: 35119109 PMCID: PMC9303635 DOI: 10.1002/bit.28052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 11/20/2022]
Abstract
Multiple models have been developed in the field to simulate growth and product accumulation of microalgal cultures. These models heavily depend on the accurate estimation of growth parameters. In this paper growth parameters are presented for three industrially relevant microalgae species: Nannochloropsis sp., Neochloris oleoabundans, and Picochlorum sp. (BPE23). Dedicated growth experiments were done in photobioreactors to determine the maximal biomass yield on light and maintenance rate, while oxygen evolution experiments were performed to estimate the maximal specific growth rate. Picochlorum sp. exhibited the highest specific growth rate of 4.98 ± 0.24 day−1 and the lowest specific maintenance rate of 0.079 day−1, whereas N. oleoabundans showed the highest biomass yield on light of 1.78 gx·molph−1. The measured growth parameters were used in a simple kinetic growth model for verification. When simulating growth under light conditions as found at Bonaire (12 °N, 68° W), Picochlorum sp. displayed the highest areal biomass productivity of 32.2 g.m−2·day−1 and photosynthetic efficiency of 2.8%. The presented growth parameters show to be accurate compared to experimental data and can be used for model calibration by scientists and industrial communities in the field.
Collapse
Affiliation(s)
- Robin Barten
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Rocca Chin-On
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.,Water- en Energiebedrijf Bonaire, Kralendijk, Bonaire
| | - Jeroen de Vree
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ellen van Beersum
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.,Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway
| | - Maria Barbosa
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Janssen
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
6
|
Marchetto F, Roverso M, Righetti D, Bogialli S, Filippini F, Bergantino E, Sforza E. Bioremediation of Per- and Poly-Fluoroalkyl Substances (PFAS) by Synechocystis sp. PCC 6803: A Chassis for a Synthetic Biology Approach. Life (Basel) 2021; 11:1300. [PMID: 34947832 PMCID: PMC8707875 DOI: 10.3390/life11121300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/09/2023] Open
Abstract
One of the main concerns in industrialized countries is represented by per- and poly-fluoroalkyl substances (PFAS), persistent contaminants hardly to be dealt with by conventional wastewater treatment processes. Phyco-remediation was proposed as a green alternative method to treat wastewater. Synechocystis sp. PCC6803 is a unicellular photosynthetic organism candidate for bioremediation approaches based on synthetic biology, as it is able to survive in a wide range of polluted waters. In this work, we assessed the possibility of applying Synechocystis in PFAS-enriched waters, which was never reported in the previous literature. Respirometry was applied to evaluate short-term toxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), which did not affect growth up to 0.5 and 4 mg L-1, respectively. Continuous and batch systems were used to assess the long-term effects, and no toxicity was highlighted for both compounds at quite high concentration (1 mg L-1). A partial removal was observed for PFOS and PFOA, (88% and 37%, with removal rates of about 0.15 and 0.36 mg L-1 d-1, respectively). Measurements in fractionated biomass suggested a role for Synechocystis in the sequestration of PFAS: PFOS is mainly internalized in the cell, while PFOA is somehow transformed by still unknown pathways. A preliminary bioinformatic search gave hints on transporters and enzymes possibly involved in such sequestration/transformation processes, opening the route to metabolic engineering in the perspective application of this cyanobacterium as a new phyco-remediation tool, based on synthetic biology.
Collapse
Affiliation(s)
- Francesca Marchetto
- Department of Industrial Engineering DII, University of Padova, 35131 Padova, Italy; (F.M.); (D.R.)
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (M.R.); (S.B.)
| | - Davide Righetti
- Department of Industrial Engineering DII, University of Padova, 35131 Padova, Italy; (F.M.); (D.R.)
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.F.); (E.B.)
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (M.R.); (S.B.)
| | - Francesco Filippini
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.F.); (E.B.)
| | | | - Eleonora Sforza
- Department of Industrial Engineering DII, University of Padova, 35131 Padova, Italy; (F.M.); (D.R.)
| |
Collapse
|
7
|
Battaglino B, Arduino A, Pagliano C, Sforza E, Bertucco A. Optimization of Light and Nutrients Supply to Stabilize Long-Term Industrial Cultivation of Metabolically Engineered Cyanobacteria: A Model-Based Analysis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Beatrice Battaglino
- BioSolar Lab, Applied Science and Technology Department, Politecnico di Torino, Environment Park, Via Livorno 60, 10144 Torino, Italy
| | - Alessandro Arduino
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Cristina Pagliano
- BioSolar Lab, Applied Science and Technology Department, Politecnico di Torino, Environment Park, Via Livorno 60, 10144 Torino, Italy
| | - Eleonora Sforza
- Department of Industrial Engineering, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Alberto Bertucco
- Department of Industrial Engineering, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
8
|
León-Saiki GM, Ferrer Ledo N, Lao-Martil D, van der Veen D, Wijffels RH, Martens DE. Metabolic modelling and energy parameter estimation of Tetradesmus obliquus. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Poddar N, Sen R, Martin GJ. Glycerol and nitrate utilisation by marine microalgae Nannochloropsis salina and Chlorella sp. and associated bacteria during mixotrophic and heterotrophic growth. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Sforza E, Calvaruso C, La Rocca N, Bertucco A. Luxury uptake of phosphorus in Nannochloropsis salina : Effect of P concentration and light on P uptake in batch and continuous cultures. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Johnson TJ, Katuwal S, Anderson GA, Gu L, Zhou R, Gibbons WR. Photobioreactor cultivation strategies for microalgae and cyanobacteria. Biotechnol Prog 2018. [DOI: 10.1002/btpr.2628] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tylor J. Johnson
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
- Dept. of MicrobiologyThe University of TennesseeKnoxville TN37996
| | - Sarmila Katuwal
- Agricultural and Biosystems Engineering Dept.South Dakota State UniversityBrookings SD57007
| | - Gary A. Anderson
- Agricultural and Biosystems Engineering Dept.South Dakota State UniversityBrookings SD57007
| | - Liping Gu
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Ruanbao Zhou
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
- BioSNTR, South Dakota State UniversityBrookings SD57007
| | - William R. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| |
Collapse
|
12
|
Perin G, Simionato D, Bellan A, Carone M, Occhipinti A, Maffei ME, Morosinotto T. Cultivation in industrially relevant conditions has a strong influence on biological properties and performances of Nannochloropsis gaditana genetically modified strains. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
A mathematical model to guide genetic engineering of photosynthetic metabolism. Metab Eng 2017; 44:337-347. [DOI: 10.1016/j.ymben.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/18/2017] [Accepted: 11/05/2017] [Indexed: 01/13/2023]
|
14
|
de Mooij T, Nejad ZR, van Buren L, Wijffels RH, Janssen M. Effect of photoacclimation on microalgae mass culture productivity. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Pfaffinger CE, Schöne D, Trunz S, Löwe H, Weuster-Botz D. Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Novel micro-photobioreactor design and monitoring method for assessing microalgae response to light intensity. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Ooms MD, Dinh CT, Sargent EH, Sinton D. Photon management for augmented photosynthesis. Nat Commun 2016; 7:12699. [PMID: 27581187 PMCID: PMC5025804 DOI: 10.1038/ncomms12699] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/22/2016] [Indexed: 11/09/2022] Open
Abstract
Microalgae and cyanobacteria are some of nature's finest examples of solar energy conversion systems, effortlessly transforming inorganic carbon into complex molecules through photosynthesis. The efficiency of energy-dense hydrocarbon production by photosynthetic organisms is determined in part by the light collected by the microorganisms. Therefore, optical engineering has the potential to increase the productivity of algae cultivation systems used for industrial-scale biofuel synthesis. Herein, we explore and report emerging and promising material science and engineering innovations for augmenting microalgal photosynthesis. Photosynthetic microalgae could provide an ecologically sustainable route to produce solar biofuels and high-value chemicals. Here, the authors review various optical management strategies used to manipulate the incident light in order to increase the efficiency of microalgae biofuel production.
Collapse
Affiliation(s)
- Matthew D. Ooms
- Department of Mechanical and Industrial Engineering and Institute for Sustainable Energy, University of Toronto, 5 Kings College Rd., Toronto, Ontario, Canada M5S3G8
| | - Cao Thang Dinh
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario, Canada M5S3G4
| | - Edward H. Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario, Canada M5S3G4
| | - David Sinton
- Department of Mechanical and Industrial Engineering and Institute for Sustainable Energy, University of Toronto, 5 Kings College Rd., Toronto, Ontario, Canada M5S3G8
| |
Collapse
|
18
|
Benvenuti G, Lamers PP, Breuer G, Bosma R, Cerar A, Wijffels RH, Barbosa MJ. Microalgal TAG production strategies: why batch beats repeated-batch. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:64. [PMID: 26985237 PMCID: PMC4793540 DOI: 10.1186/s13068-016-0475-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/02/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND For a commercially feasible microalgal triglyceride (TAG) production, high TAG productivities are required. The operational strategy affects TAG productivity but a systematic comparison between different strategies is lacking. For this, physiological responses of Nannochloropsis sp. to nitrogen (N) starvation and N-rich medium replenishment were studied in lab-scale batch and repeated-batch (part of the culture is periodically harvested and N-rich medium is re-supplied) cultivations under continuous light, and condensed into a mechanistic model. RESULTS The model, which successfully described both strategies, was used to identify potential improvements for both batch and repeated-batch and compare the two strategies on optimized TAG yields on light (amount of TAGs produced per mol of supplied PAR photons). TAG yields on light, for batch, from 0.12 (base case at high light) to 0.49 g molph (-1) (at low light and with improved strain) and, for repeated-batch, from 0.07 (base case at high light) to 0.39 g molph (-1) (at low light with improved strain and optimized repeated-batch settings). The base case yields are in line with the yields observed in current state-of-the-art outdoor TAG production. CONCLUSIONS For continuous light, an optimized batch process will always result in higher TAG yield on light compared to an optimized repeated-batch process. This is mainly because repeated-batch cycles start with N-starved cells. Their reduced photosynthetic capacity leads to inefficient light use during the regrowth phase which results in lower overall TAG yields compared to a batch process.
Collapse
Affiliation(s)
- Giulia Benvenuti
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Packo P. Lamers
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Guido Breuer
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Rouke Bosma
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Ana Cerar
- />Microbiology, Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - René H. Wijffels
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- />Biosciences and Aquaculture, Nordland University, 8049 Bodø, Norway
| | - Maria J. Barbosa
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|