1
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Kawadkar M, Mandloi AS, Saxena V, Tamadaddi C, Sahi C, Dhote VV. Noscapine alleviates cerebral damage in ischemia-reperfusion injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:669-683. [PMID: 33106921 DOI: 10.1007/s00210-020-02005-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
With high unmet medical needs, stroke remains an intensely focused research area. Although noscapine is a neuroprotective agent, its mechanism of action in ischemic-reperfusion (I-R) injury is yet to be ascertained. We investigated the effect of noscapine on the molecular mechanisms of cell damage using yeast, and its neuroprotection on cerebral I-R injury in rats. Yeast, both wild-type and Δtrx2 strains, was evaluated for cell growth and viability, and oxidative stress to assess the noscapine effect at 8, 10, 12, and 20 μg/ml concentrations. The neuroprotective activity of noscapine (5 and 10 mg/kg; po for 8 days) was investigated in rats using middle cerebral artery occlusion-induced I-R injury. Infarct volume, neurological deficit, oxidative stress, myeloperoxidase activity, and histological alterations were determined in I-R rats. In vitro yeast assays exhibited significant antioxidant activity and enhanced cell tolerance against oxidative stress after noscapine treatment. Similarly, noscapine pretreatment significantly reduced infarct volume and edema in the brain. The neurological deficit was decreased and oxidative stress biomarkers, superoxide dismutase activity and glutathione levels, were significantly increased while lipid peroxidation showed significant decrease in comparison to vehicle-treated I-R rats. Myeloperoxidase activity, an indicator of inflammation, was also reduced significantly in treated rats; histological changes were attenuated with noscapine. The study demonstrates the protective effect of noscapine in yeast and I-R rats by improving cell viability and attenuating neuronal damage, respectively. This protective activity of noscapine could be attributed to potent free radical scavenging and inhibition of inflammation in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Manisha Kawadkar
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, VidyaVihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Avinash S Mandloi
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, VidyaVihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Vidhu Saxena
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, VidyaVihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Chetana Tamadaddi
- Chaperone and Stress Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, 462066, India
| | - Chandan Sahi
- Chaperone and Stress Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, 462066, India
| | - Vipin V Dhote
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, VidyaVihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India.
| |
Collapse
|
3
|
Gowsalya R, Ravi C, Nachiappan V. Human OVCA2 and its homolog FSH3-induced apoptosis in Saccharomyces cerevisiae. Curr Genet 2021; 67:631-640. [PMID: 33715035 DOI: 10.1007/s00294-021-01171-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 01/26/2023]
Abstract
Mammalian ovarian tumor suppressor candidate 2 (OVCA2) gene belongs to the family of serine hydrolase (FSH). This study aimed to elucidate the functional similarities of OVCA2 with its yeast homolog genes (FSH1, FSH2, and FSH3) regarding apoptosis. We found that the expression of OVCA2 in Saccharomyces cerevisiae increased production of reactive oxygen species (ROS), decreased cell growth, disturbed mitochondrial morphology, reduced membrane potential, increased chromatin condensation, and externalization of phosphatidylserine (PS) (annexin V/propidium iodide staining) indicating induced apoptotic cell death in yeast. We also showed that complementation of OVCA2 in fsh3Δ cells reduced cell growth and increased the apoptotic phenotypes. Collectively, our results suggest that complementation of human OVCA2 in fsh3Δ cells induced apoptosis in S. cerevisiae.
Collapse
Affiliation(s)
- Ramachandran Gowsalya
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620024, India
| | - Chidambaram Ravi
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620024, India
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620024, India.
| |
Collapse
|
4
|
Coronas-Serna JM, Valenti M, Del Val E, Fernández-Acero T, Rodríguez-Escudero I, Mingo J, Luna S, Torices L, Pulido R, Molina M, Cid VJ. Modeling human disease in yeast: recreating the PI3K-PTEN-Akt signaling pathway in Saccharomyces cerevisiae. Int Microbiol 2019; 23:75-87. [PMID: 31218536 DOI: 10.1007/s10123-019-00082-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
The yeast Saccharomyces cerevisiae is a model organism that has been thoroughly exploited to understand the universal mechanisms that govern signaling pathways. Due to its ease of manipulation, humanized yeast models that successfully reproduce the function of human genes permit the development of highly efficient genetic approaches for molecular studies. Of special interest are those pathways related to human disease that are conserved from yeast to mammals. However, it is also possible to engineer yeast cells to implement functions that are naturally absent in fungi. Along the years, we have reconstructed several aspects of the mammalian phosphatidylinositol 3-kinase (PI3K) pathway in S. cerevisiae. Here, we briefly review the use of S. cerevisiae as a tool to study human oncogenes and tumor suppressors, and we present an overview of the models applied to the study of the PI3K oncoproteins, the tumor suppressor PTEN, and the Akt protein kinase. We discuss the application of these models to study the basic functional properties of these signaling proteins, the functional assessment of their clinically relevant variants, and the design of feasible platforms for drug discovery.
Collapse
Affiliation(s)
- Julia María Coronas-Serna
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Marta Valenti
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Elba Del Val
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Teresa Fernández-Acero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Janire Mingo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Sandra Luna
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Leire Torices
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Gowsalya R, Ravi C, Kannan M, Nachiappan V. FSH3 mediated cell death is dependent on NUC1 in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 19:5333309. [DOI: 10.1093/femsyr/foz017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Family of Serine Hydrolases (FSH) members FSH1, FSH2 and FSH3 in Saccharomyces cerevisiae share conserved sequences with the human candidate tumor suppressor OVCA2. In this study, hydrogen peroxide (H2O2) exposure increased the expression of both mRNA and protein levels of FSH3 in wild-type (WT) yeast cells. The deletion of FSH3 improved the yeast growth rate under H2O2-induction as compared to WT control cells. The overexpression of FSH3 in WT yeast cells caused an apoptotic phenotype, including accumulation of reaction oxygen species, decreased cell viability and cell death. The double deletions fsh1Δ fsh2Δ, fsh1Δ fsh3Δ and fsh2Δ fsh3Δ displayed increased growth compared to WT cells. However, the overexpression of FSH3 effectively inhibited cell growth in all double deletions. Moreover, the overexpression of FSH3 in cells lacking NUC1 did not cause any growth defect in the presence or absence of H2O2. Our results suggest that FSH3 induced apoptosis of yeast in a NUC1 dependent manner.
Collapse
Affiliation(s)
- Ramachandran Gowsalya
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli – 620 024, Tamil Nadu, India
| | - Chidambaram Ravi
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli – 620 024, Tamil Nadu, India
| | - Muthukumar Kannan
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli – 620 024, Tamil Nadu, India
| |
Collapse
|