1
|
Zhen Z, Xiang L, Li S, Li H, Lei Y, Chen W, Jin JM, Liang C, Tang SY. Designing a whole-cell biosensor applicable for S-adenosyl-l-methionine-dependent methyltransferases. Biosens Bioelectron 2025; 268:116904. [PMID: 39504884 DOI: 10.1016/j.bios.2024.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
This study was undertaken to develop a high-throughput screening strategy using a whole-cell biosensor to enhance methyl-group transfer, a rate-limiting step influenced by intracellular methyl donor availability and methyltransferase efficiency. An l-homocysteine biosensor was designed based on regulatory protein MetR from Escherichia coli, which rapidly reported intracellular l-homocysteine accumulation resulted from S-adenosyl-l-homocysteine (SAH) formation after methyl-group transfer. Using S-adenosyl-l-methionine (SAM) as a methyl donor, this biosensor was applied to caffeic acid 3-O-methyltransferase derived from Arabidopsis thaliana (AtComT). After several rounds of directed evolution, the modified enzyme achieved a 13.8-fold improvement when converting caffeic acid to ferulic acid. The best mutant exhibited a 5.4-fold improvement in catalytic efficiency. Characterization of beneficial mutants showed that improved O-methyltransferase dimerization greatly contributed to enzyme activity. This finding was verified when we switched and compared the N-termini involved in dimerization across different sources. Finally, with tyrosine as a substrate, the evolved AtComT mutant greatly improved ferulic acid biosynthesis, yielding 3448 mg L-1 with a conversion rate of 88.8%. These results have important implications for high-efficiency O-methyltransferase design, which will greatly benefit the biosynthesis of a wide range of natural products. In addition, the l-homocysteine biosensor has the potential for widespread applications in evaluating the efficiency of SAM-based methyl transfer.
Collapse
Affiliation(s)
- Zhen Zhen
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - La Xiang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shizhong Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongji Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanyan Lei
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wei Chen
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, 100048, Beijing, China.
| | - Chaoning Liang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Shuang-Yan Tang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
2
|
Zimmermann P, Kurth S, Pugin B, Bokulich NA. Microbial melatonin metabolism in the human intestine as a therapeutic target for dysbiosis and rhythm disorders. NPJ Biofilms Microbiomes 2024; 10:139. [PMID: 39604427 PMCID: PMC11603051 DOI: 10.1038/s41522-024-00605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Melatonin (MT) (N-acetyl-5-methoxytryptamine) is an indoleamine recognized primarily for its crucial role in regulating sleep through circadian rhythm modulation in humans and animals. Beyond its association with the pineal gland, it is synthesized in various tissues, functioning as a hormone, tissue factor, autocoid, paracoid, and antioxidant, impacting multiple organ systems, including the gut-brain axis. However, the mechanisms of extra-pineal MT production and its role in microbiota-host interactions remain less understood. This review provides a comprehensive overview of MT, including its production, actions sites, metabolic pathways, and implications for human health. The gastrointestinal tract is highlighted as an additional source of MT, with an examination of its effects on the intestinal microbiota. This review explores whether the microbiota contributes to MT in the intestine, its relationship to food intake, and the implications for human health. Due to its impacts on the intestinal microbiota, MT may be a valuable therapeutic agent for various dysbiosis-associated conditions. Moreover, due to its influence on intestinal MT levels, the microbiota may be a possible therapeutic target for treating health disorders related to circadian rhythm dysregulation.
Collapse
Affiliation(s)
- Petra Zimmermann
- Department of Community Health, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland.
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Benoit Pugin
- Laboratory of Food Systems Biotechnology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nicholas A Bokulich
- Laboratory of Food Systems Biotechnology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Lam LPY, Lui ACW, Bartley LE, Mikami B, Umezawa T, Lo C. Multifunctional 5-hydroxyconiferaldehyde O-methyltransferases (CAldOMTs) in plant metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1671-1695. [PMID: 38198655 DOI: 10.1093/jxb/erae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024]
Abstract
Lignin, flavonoids, melatonin, and stilbenes are plant specialized metabolites with diverse physiological and biological functions, supporting plant growth and conferring stress resistance. Their biosynthesis requires O-methylations catalyzed by 5-hydroxyconiferaldehyde O-methyltransferase (CAldOMT; also called caffeic acid O-methyltransferase, COMT). CAldOMT was first known for its roles in syringyl (S) lignin biosynthesis in angiosperm cell walls and later found to be multifunctional. This enzyme also catalyzes O-methylations in flavonoid, melatonin, and stilbene biosynthetic pathways. Phylogenetic analysis indicated the convergent evolution of enzymes with OMT activities towards the monolignol biosynthetic pathway intermediates in some gymnosperm species that lack S-lignin and Selaginella moellendorffii, a lycophyte which produces S-lignin. Furthermore, neofunctionalization of CAldOMTs occurred repeatedly during evolution, generating unique O-methyltransferases (OMTs) with novel catalytic activities and/or accepting novel substrates, including lignans, 1,2,3-trihydroxybenzene, and phenylpropenes. This review summarizes multiple aspects of CAldOMTs and their related proteins in plant metabolism and discusses their evolution, molecular mechanism, and roles in biorefineries, agriculture, and synthetic biology.
Collapse
Affiliation(s)
- Lydia Pui Ying Lam
- Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita 010-0852, Japan
| | - Andy C W Lui
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
4
|
Wang L, Deng Y, Gao J, Wang B, Han H, Li Z, Zhang W, Wang Y, Fu X, Peng R, Yao Q, Tian Y, Xu J. Biosynthesis of melatonin from L-tryptophan by an engineered microbial cell factory. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:27. [PMID: 38369525 PMCID: PMC10874579 DOI: 10.1186/s13068-024-02476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND The demand for melatonin is increasing due to its health-promoting bioactivities such as antioxidant and sleep benefits. Although melatonin is present in various organisms, its low content and high extraction cost make it unsustainable. Biosynthesis is a promising alternative method for melatonin production. However, the ectopic production of melatonin in microorganisms is very difficult due to the low or insoluble expression of melatonin synthesis genes. Hence, we aim to explore the biosynthesis of melatonin using Escherichia coli as a cell factory and ways to simultaneously coordinated express genes from different melatonin synthesis pathways. RESULTS In this study, the mXcP4H gene from Xanthomonas campestris, as well as the HsAADC, HsAANAT and HIOMT genes from human melatonin synthesis pathway were optimized and introduced into E. coli via a multi-monocistronic vector. The obtained strain BL7992 successfully synthesized 1.13 mg/L melatonin by utilizing L-tryptophan (L-Trp) as a substrate in a shake flask. It was determined that the rate-limiting enzyme for melatonin synthesis is the arylalkylamine N-acetyltransferase, which is encoded by the HsAANAT gene. Targeted metabolomics analysis of L-Trp revealed that the majority of L-Trp flowed to the indole pathway in BL7992, and knockout of the tnaA gene may be beneficial for increasing melatonin production. CONCLUSIONS A metabolic engineering approach was adopted and melatonin was successfully synthesized from low-cost L-Trp in E. coli. This study provides a rapid and economical strategy for the synthesis of melatonin.
Collapse
Affiliation(s)
- Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China
| | - Yongdong Deng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Wenhui Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Yu Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China.
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China.
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China.
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China.
| |
Collapse
|
5
|
Xue C, Wang Y, He Z, Lu Z, Wu F, Wang Y, Zhen Y, Meng J, Shahzad K, Yang K, Wang M. Melatonin disturbed rumen microflora structure and metabolic pathways in vitro. Microbiol Spectr 2023; 11:e0032723. [PMID: 37929993 PMCID: PMC10714781 DOI: 10.1128/spectrum.00327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/01/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE In in vitro studies, it has been found that the effects of MLT on rumen microorganisms and metabolites can change the rumen flora structure, significantly inhibit the relative abundance of harmful Acinetobacter, and improve the relative abundance of beneficial bacteria. MLT may regulate the "arginine-glutathione" pathway, "phenylalanine, tyrosine and tryptophan biosynthesis-tryptophan generation" branch, "tryptophan-kynurenine" metabolism, and "tryptophan-tryptamine-serotonin" pathway through microorganisms.
Collapse
Affiliation(s)
- Chun Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Yifan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhaoyuan He
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhiqi Lu
- Ningxia Dairy Science and Innovation Center of Guangming Animal Husbandry Co., Ltd., Zhongwei, China
| | - Feifan Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yusu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jimeng Meng
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| |
Collapse
|
6
|
Boutin JA, Kennaway DJ, Jockers R. Melatonin: Facts, Extrapolations and Clinical Trials. Biomolecules 2023; 13:943. [PMID: 37371523 DOI: 10.3390/biom13060943] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Melatonin is a fascinating molecule that has captured the imagination of many scientists since its discovery in 1958. In recent times, the focus has changed from investigating its natural role as a transducer of biological time for physiological systems to hypothesized roles in virtually all clinical conditions. This goes along with the appearance of extensive literature claiming the (generally) positive benefits of high doses of melatonin in animal models and various clinical situations that would not be receptor-mediated. Based on the assumption that melatonin is safe, high doses have been administered to patients, including the elderly and children, in clinical trials. In this review, we critically review the corresponding literature, including the hypotheses that melatonin acts as a scavenger molecule, in particular in mitochondria, by trying not only to contextualize these interests but also by attempting to separate the wheat from the chaff (or the wishful thinking from the facts). We conclude that most claims remain hypotheses and that the experimental evidence used to promote them is limited and sometimes flawed. Our review will hopefully encourage clinical researchers to reflect on what melatonin can and cannot do and help move the field forward on a solid basis.
Collapse
Affiliation(s)
- J A Boutin
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandy, INSERM U1239, 76000 Rouen, France
| | - D J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide Health and Medical Science Building, North Terrace, Adelaide, SA 5006, Australia
| | - R Jockers
- Institut Cochin, Université Paris Cité, INSERM, CNRS, 75014 Paris, France
| |
Collapse
|
7
|
Lee K, Back K. Escherichia coli RimI Encodes Serotonin N-Acetyltransferase Activity and Its Overexpression Leads to Enhanced Growth and Melatonin Biosynthesis. Biomolecules 2023; 13:908. [PMID: 37371488 DOI: 10.3390/biom13060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Serotonin N-acetyltransferase (SNAT) functions as the penultimate or final enzyme in melatonin biosynthesis, depending on the substrate. The Escherichia coli orthologue of archaeal SNAT from Thermoplasma volcanium was identified as RimI (EcRimI), with 42% amino acid similarity to archaeal SNAT. EcRimI has been reported to be an N-acetyltransferase enzyme. Here, we investigated whether EcRimI also exhibits SNAT enzyme activity. To achieve this goal, we purified recombinant EcRimI and examined its SNAT enzyme kinetics. As expected, EcRimI showed SNAT activity toward various amine substrates including serotonin and 5-methoxytryptamine, with Km and Vmax values of 531 μM and 528 pmol/min/mg protein toward serotonin and 201 μM and 587 pmol/min/mg protein toward 5-methoxytryptamine, respectively. In contrast to the rimI mutant E. coli strain that showed no growth defect, the EcRimI overexpression strain exhibited a 2-fold higher growth rate than the control strain after 24 h incubation in nutrient-rich medium. The EcRimI overexpression strain produced more melatonin than the control strain in the presence of 5-methoxytryptamine. The enhanced growth effect of EcRimI overexpression was also observed under cadmium stress. The higher growth rate associated with EcRimI expression was attributed to increased protein N-acetyltransferase activity, increased synthesis of melatonin, or the combined effects of both.
Collapse
Affiliation(s)
- Kyungjin Lee
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoungwhan Back
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
8
|
Xiao S, Wang Z, Wang B, Hou B, Cheng J, Bai T, Zhang Y, Wang W, Yan L, Zhang J. Expanding the application of tryptophan: Industrial biomanufacturing of tryptophan derivatives. Front Microbiol 2023; 14:1099098. [PMID: 37032885 PMCID: PMC10076799 DOI: 10.3389/fmicb.2023.1099098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Tryptophan derivatives are various aromatic compounds produced in the tryptophan metabolic pathway, such as 5-hydroxytryptophan, 5-hydroxytryptamine, melatonin, 7-chloro-tryptophan, 7-bromo-tryptophan, indigo, indirubin, indole-3-acetic acid, violamycin, and dexoyviolacein. They have high added value, widely used in chemical, food, polymer and pharmaceutical industry and play an important role in treating diseases and improving life. At present, most tryptophan derivatives are synthesized by biosynthesis. The biosynthesis method is to combine metabolic engineering with synthetic biology and system biology, and use the tryptophan biosynthesis pathway of Escherichia coli, Corynebacterium glutamicum and other related microorganisms to reconstruct the artificial biosynthesis pathway, and then produce various tryptophan derivatives. In this paper, the characteristics, applications and specific biosynthetic pathways and methods of these derivatives were reviewed, and some strategies to increase the yield of derivatives and reduce the production cost on the basis of biosynthesis were introduced in order to make some contributions to the development of tryptophan derivatives biosynthesis industry.
Collapse
Affiliation(s)
- Shujian Xiao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Hou
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lixiu Yan
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| |
Collapse
|
9
|
Xie X, Ding D, Bai D, Zhu Y, Sun W, Sun Y, Zhang D. Melatonin biosynthesis pathways in nature and its production in engineered microorganisms. Synth Syst Biotechnol 2022; 7:544-553. [PMID: 35087957 PMCID: PMC8761603 DOI: 10.1016/j.synbio.2021.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Melatonin is a biogenic amine that can be found in plants, animals and microorganism. The metabolic pathway of melatonin is different in various organisms, and biosynthetic endogenous melatonin acts as a molecular signal and antioxidant protection against external stress. Microbial synthesis pathways of melatonin are similar to those of animals but different from those of plants. At present, the method of using microorganism fermentation to produce melatonin is gradually prevailing, and exploring the biosynthetic pathway of melatonin to modify microorganism is becoming the mainstream, which has more advantages than traditional chemical synthesis. Here, we review recent advances in the synthesis, optimization of melatonin pathway. l-tryptophan is one of the two crucial precursors for the synthesis of melatonin, which can be produced through a four-step reaction. Enzymes involved in melatonin synthesis have low specificity and catalytic efficiency. Site-directed mutation, directed evolution or promotion of cofactor synthesis can enhance enzyme activity and increase the metabolic flow to promote microbial melatonin production. On the whole, the status and bottleneck of melatonin biosynthesis can be improved to a higher level, providing an effective reference for future microbial modification.
Collapse
Affiliation(s)
- Xiaotong Xie
- Dalian Polytechnic University, Dalian, 116000, PR China
| | - Dongqin Ding
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Danyang Bai
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Yaru Zhu
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Wei Sun
- Tianjin University of science and technology, Tianjin, 300308, PR China
| | - Yumei Sun
- Dalian Polytechnic University, Dalian, 116000, PR China
- Corresponding author.
| | - Dawei Zhang
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Corresponding author. Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| |
Collapse
|
10
|
Jiao J, Xia Y, Zhang Y, Wu X, Liu C, Feng J, Zheng X, Song S, Bai T, Song C, Wang M, Pang H. Phenylalanine 4-Hydroxylase Contributes to Endophytic Bacterium Pseudomonas fluorescens' Melatonin Biosynthesis. Front Genet 2021; 12:746392. [PMID: 34868217 PMCID: PMC8634680 DOI: 10.3389/fgene.2021.746392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Melatonin acts both as an antioxidant and as a growth regulatory substance in plants. Pseudomonas fluorescens endophytic bacterium has been shown to produce melatonin and increase plant resistance to abiotic stressors through increasing endogenous melatonin. However, in bacteria, genes are still not known to be melatonin-related. Here, we reported that the bacterial phenylalanine 4-hydroxylase (PAH) may be involved in the 5-hydroxytryptophan (5-HTP) biosynthesis and further influenced the subsequent production of melatonin in P. fluorescens. The purified PAH protein of P. fluorescens not only hydroxylated phenylalanine but also exhibited l-tryptophan (l-Trp) hydroxylase activity by converting l-Trp to 5-HTP in vitro. However, bacterial PAH displayed lower activity and affinity for l-Trp than l-phenylalanine. Notably, the PAH deletion of P. fluorescens blocked melatonin production by causing a significant decline in 5-HTP levels and thus decreased the resistance to abiotic stress. Overall, this study revealed a possible role for bacterial PAH in controlling 5-HTP and melatonin biosynthesis in bacteria, and expanded the current knowledge of melatonin production in microorganisms.
Collapse
Affiliation(s)
- Jian Jiao
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Yan Xia
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yingli Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xueli Wu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shangwei Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Miaomiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Hongguang Pang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Zhang Y, He Y, Zhang N, Gan J, Zhang S, Dong Z. Combining protein and metabolic engineering strategies for biosynthesis of melatonin in Escherichia coli. Microb Cell Fact 2021; 20:170. [PMID: 34454478 PMCID: PMC8403405 DOI: 10.1186/s12934-021-01662-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Melatonin has attracted substantial attention because of its excellent prospects for both medical applications and crop improvement. The microbial production of melatonin is a safer and more promising alternative to chemical synthesis approaches. Researchers have failed to produce high yields of melatonin in common heterologous hosts due to either the insolubility or low enzyme activity of proteins encoded by gene clusters related to melatonin biosynthesis. RESULTS Here, a combinatorial gene pathway for melatonin production was successfully established in Escherichia coli by combining the physostigmine biosynthetic genes from Streptomyces albulus and gene encoding phenylalanine 4-hydroxylase (P4H) from Xanthomonas campestris and caffeic acid 3-O-methyltransferase (COMT) from Oryza sativa. A threefold improvement of melatonin production was achieved by balancing the expression of heterologous proteins and adding 3% glycerol. Further protein engineering and metabolic engineering were conducted to improve the conversion of N-acetylserotonin (NAS) to melatonin. Construction of COMT variant containing C303F and V321T mutations increased the production of melatonin by fivefold. Moreover, the deletion of speD gene increased the supply of S-adenosylmethionine (SAM), an indispensable cofactor of COMT, which doubled the yield of melatonin. In the final engineered strain EcMEL8, the production of NAS and melatonin reached 879.38 ± 71.42 mg/L and 136.17 ± 1.33 mg/L in a shake flask. Finally, in a 2-L bioreactor, EcMEL8 produced 1.06 ± 0.07 g/L NAS and 0.65 ± 0.11 g/L melatonin with tryptophan supplementation. CONCLUSIONS This study established a novel combinatorial pathway for melatonin biosynthesis in E. coli and provided alternative strategies for improvement of melatonin production.
Collapse
Affiliation(s)
- Yanfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yongzhi He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Nan Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - JiaJia Gan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shan Zhang
- Shenzhen Siyomicro Bio-Tech C., LTD, No. 39 Qingfeng Avenue, Baolong Community, Longgang District, Shenzhen, 518116, People's Republic of China.
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
12
|
Zhang Z, Zhang Y. Melatonin in plants: what we know and what we don’t. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Melatonin is an endogenous micromolecular compound of indoleamine with multiple physiological functions in various organisms. In plants, melatonin is involved in growth and development, as well as in responses to biotic and abiotic stresses. Furthermore, melatonin functions in phytohormone-mediated signal transduction pathways. There are multiple melatonin biosynthesis pathways, and the melatonin content in plants is greatly affected by intrinsic genetic characteristics and external environmental factors. Although melatonin biosynthesis has been extensively studied in model plants, it remains uncharacterized in most plants. This article focuses on current knowledge on the biosynthesis, regulation and application of melatonin, particularly for fruit quality and preservation. In addition, it highlights the links between melatonin and other hormones, as well as future research directions.
Collapse
|
13
|
Costa JH, Mohanapriya G, Bharadwaj R, Noceda C, Thiers KLL, Aziz S, Srivastava S, Oliveira M, Gupta KJ, Kumari A, Sircar D, Kumar SR, Achra A, Sathishkumar R, Adholeya A, Arnholdt-Schmitt B. ROS/RNS Balancing, Aerobic Fermentation Regulation and Cell Cycle Control - a Complex Early Trait ('CoV-MAC-TED') for Combating SARS-CoV-2-Induced Cell Reprogramming. Front Immunol 2021; 12:673692. [PMID: 34305903 PMCID: PMC8293103 DOI: 10.3389/fimmu.2021.673692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
In a perspective entitled 'From plant survival under severe stress to anti-viral human defense' we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named 'ReprogVirus' was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the 'ReprogVirus platform' was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to 'RegroVirus' complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called 'CoV-MAC-TED'. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target 'CoV-MAC-TED' in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that 'de-stressing' disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.
Collapse
Affiliation(s)
- José Hélio Costa
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Gunasekaran Mohanapriya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Revuru Bharadwaj
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biotechnology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Shahid Aziz
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Shivani Srivastava
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources, Institute (TERI), TERI Gram, Gurugram, India
| | - Manuela Oliveira
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Mathematics and CIMA - Center for Research on Mathematics and Its Applications, Universidade de Évora, Évora, Portugal
| | - Kapuganti Jagadis Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Debabrata Sircar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sarma Rajeev Kumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Arvind Achra
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Microbiology, Atal Bihari Vajpayee Institute of Medical Sciences & Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Ramalingam Sathishkumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Alok Adholeya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources, Institute (TERI), TERI Gram, Gurugram, India
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| |
Collapse
|
14
|
Hu W, Tang J, Zhang Z, Tang Q, Yan Y, Wang P, Wang X, Liu Q, Guo X, Jin M, Zhang Y, Di R, Chu M. Polymorphisms in the ASMT and ADAMTS1 gene may increase litter size in goats. Vet Med Sci 2020; 6:775-787. [PMID: 32529744 PMCID: PMC7738733 DOI: 10.1002/vms3.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prolificacy of most local goat breeds in China is low. Jining Grey goat is one of the most prolific goat breeds in China, it is an important goat breed for the rural economy. ASMT (acetylserotonin O‐methyltransferase) and ADAMTS1 (ADAM metallopeptidase with thrombospondin type 1 motif) are essential for animal reproduction. Single nucleotide polymorphisms (SNPs) of ASMT and ADAMTS1 genes in the highly prolific breed (Jining Grey goats), medium prolific breed (Boer goats and Guizhou White goats) and low prolific breeds (Angora goats, Liaoning Cashmere goats and Inner Mongolia Cashmere goats) were detected by polymerase chain reaction‐restriction fragment length polymorphism and sequencing. Two SNPs (g.158122T>C, g.158700G>A) of ASMT gene and two SNPs (g.7979798A>G, g.7979477C>T) of ADAMTS1 gene were identified. For g.158122T>C of ASMT gene, further analysis revealed that genotype TC or CC had 0.66 (p < 0.05) or 0.75 (p < 0.05) kids more than those with genotype TT in Jining Grey goats. No significant difference (p > 0.05) was found in litter size between TC and CC genotypes. The SNP (g.158122T>C) caused a p.Tyr298His change and this SNP mutation resulted in changes in protein binding sites and macromolecule‐binding sites. The improvement in reproductive performance may be due to changes in the structure of ASMT protein. For g.7979477C>T of ADAMTS1 gene, Jining Grey does with genotype CT or TT had 0.82 (p < 0.05) or 0.86 (p < 0.05) more kids than those with genotype CC. No significant difference (p > 0.05) was found in litter size between CT or TT genotypes. These results preliminarily indicated that C allele (g.158122T>C) of ASMT gene and T allele (g.7979477C>T) of ADAMTS1 gene are potential molecular markers which could improve litter size of Jining Grey goats and be used in goat breeding.
Collapse
Affiliation(s)
- Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qianqian Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yan Yan
- Bioengineering College, Chongqing University, Chongqing, PR China
| | - Pinqing Wang
- Bioengineering College, Chongqing University, Chongqing, PR China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mei Jin
- College of Life Science, Liaoning Normal University, Dalian, PR China
| | - Yingjie Zhang
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, PR China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
15
|
Que Z, Ma T, Shang Y, Ge Q, Zhang Q, Xu P, Zhang J, Francoise U, Liu X, Sun X. Microorganisms: Producers of Melatonin in Fermented Foods and Beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4799-4811. [PMID: 32248679 DOI: 10.1021/acs.jafc.0c01082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Melatonin has recently been detected in fermented beverages and foods, in which microorganism metabolism is highly important. The existing literature knowledge discusses the direction for future studies in this review. Evidence shows that many species of microorganisms could synthesize melatonin. However, the actual concentrations of melatonin in fermented foods and beverages range from picograms per milliliter to nanograms per milliliter. Different types of microorganisms, different raw materials, different culture environments, the presence or absence of precursors, high or low alcohol content, and different detection methods are all possible reasons for the huge difference of melatonin levels. Thus far, there have been relatively few studies on the melatonin synthesis pathway microorganisms. Thus, referring to the synthetic pathway of plants and animals, the putative melatonin biosynthesis pathway of microorganisms is presented. It will be significant to discuss whether all species of microorganisms have the capacity to synthesize melatonin and what the biological functions of melatonin are in microorganisms. Melatonin plays a lot of important roles in microorganisms, particularly in enhancing the tolerance of environment stress. Also, the loss of melatonin concentration in commercially available fermented foods and beverages is a ubiquitous trend, and how to solve this problem is a new field to be further explored.
Collapse
Affiliation(s)
- Zhiluo Que
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
| | - Tingting Ma
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
| | - Yi Shang
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
| | - Qian Ge
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
- Quality Standards and Testing Institute of Agricultural Technology, Yinchuan, Ningxia 750002, People's Republic of China
| | - Qianwen Zhang
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Pingkang Xu
- College of Science, Department of Chemistry, Food Science and Technology Programme, National University of Singapore, Singapore 119077, Singapore
| | - Junxiang Zhang
- School of Wine, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Uwamahoro Francoise
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
| | - Xu Liu
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
| | - Xiangyu Sun
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
| |
Collapse
|
16
|
Ma N, Zhang J, Reiter RJ, Ma X. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation. Med Res Rev 2020; 40:606-632. [PMID: 31420885 DOI: 10.1002/med.21628] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Nowadays, melatonin, previously considered only as a pharmaceutical product for rhythm regulation and sleep aiding, has shown its potential as a co-adjuvant treatment in intestinal diseases, however, its mechanism is still not very clear. A firm connection between melatonin at a physiologically relevant concentration and the gut microbiota and inflammation has recently established. Herein, we summarize their crosstalk and focus on four novelties. First, how melatonin is synthesized and degraded in the gut and exerts potentially diverse phenotypic effects through its diverse metabolites. Second, how melatonin mediates the activation and proliferation of intestinal mucosal immune cells with paracrine and autocrine properties. By modulating T/B cells, mast cells, macrophages and dendritic cells, melatonin immunomodulatory involved in regulating T-cell differentiation, intervening T/B cell interaction and attenuating the production of pro-inflammatory factors, achieving its antioxidant action via specific receptors. Third, how melatonin exerts antimicrobial action and modulates microbial components, such as lipopolysaccharide, amyloid-β peptides via nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) or signal transducers and activators of transcription (STAT1) pathway to modulate intestinal immune function in immune-pineal axis. The last, how melatonin mediates the effect of intestinal bacterial activity signals on the body rhythm system through the NF-κB pathway and influences the mucosal epithelium oscillation via clock gene expression. These processes are achieved at mitochondrial and nuclear levels to control the host immune cell development. Considering unclear mechanisms and undiscovered actions of melatonin in gut-microbiome-immune axis, it's time to reveal them and provide new insight for the outlook of melatonin as a potential therapeutic target in the treatment and management of intestinal diseases.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Zhang
- Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Internal Medicine and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
17
|
Guo SH, Xu TF, Shi TC, Jin XQ, Feng MX, Zhao XH, Zhang ZW, Meng JF. Cluster bagging promotes melatonin biosynthesis in the berry skins of Vitis vinifera cv. Cabernet Sauvignon and Carignan during development and ripening. Food Chem 2019; 305:125502. [PMID: 31606692 DOI: 10.1016/j.foodchem.2019.125502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 09/07/2019] [Indexed: 12/27/2022]
Abstract
Melatonin, a tryptophan derivative, is an important functional component in grape berries. We investigated the effect of cluster bagging on melatonin biosynthesis in the berries of two wine grape cultivars, Cabernet Sauvignon and Carignan, during fruit development and ripening. Cluster bagging delayed fruit coloring and ripening, and bag-treated berries of both grape cultivars synthesized more melatonin and most of the precursor compounds including L-tryptophan, N-acetylserotonin, tryptamine, and serotonin compared to those exposed to light (control) conditions. Interestingly, 5-methoxytryptamine was only detected in the berries of Carignan and not of Cabernet Sauvignon, both in the cluster bagging and control groups. In addition, melatonin and most of its precursors, decreased after veraison. VvSNAT1 and VvT5H expression levels were positively correlated with melatonin content. Our findings suggested that melatonin synthesis pathways differ among grape cultivars, and that VvSNAT1 and VvT5H may show key regulatory roles in the melatonin synthesis of grape berries.
Collapse
Affiliation(s)
- Shui-Huan Guo
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Teng-Fei Xu
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian-Ci Shi
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu-Qiao Jin
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming-Xin Feng
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xian-Hua Zhao
- College of Life Sciences and Enology, Taishan University, Taian, Shandong 271021, China
| | - Zhen-Wen Zhang
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Heyang Experimental and Demonstrational Stations for Grape, Northwest A&F University, Heyang, Shaanxi 715300, China.
| | - Jiang-Fei Meng
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Heyang Experimental and Demonstrational Stations for Grape, Northwest A&F University, Heyang, Shaanxi 715300, China.
| |
Collapse
|
18
|
Kanwar MK, Yu J, Zhou J. Phytomelatonin: Recent advances and future prospects. J Pineal Res 2018; 65:e12526. [PMID: 30256447 DOI: 10.1111/jpi.12526] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
Melatonin (MEL) has been revealed as a phylogenetically conserved molecule with a ubiquitous distribution from primitive photosynthetic bacteria to higher plants, including algae and fungi. Since MEL is implicated in numerous plant developmental processes and stress responses, the exploration of its functions in plant has become a rapidly progressing field with the new paradigm of involvement in plants growth and development. The pleiotropic involvement of MEL in regulating the transcripts of numerous genes confirms its vital involvement as a multi-regulatory molecule that architects many aspects of plant development. However, the cumulative research in plants is still preliminary and fragmentary in terms of its established functions compared to what is known about MEL physiology in animals. This supports the need for a comprehensive review that summarizes the new aspects pertaining to its functional role in photosynthesis, phytohormonal interactions under stress, cellular redox signaling, along with other regulatory roles in plant immunity, phytoremediation, and plant microbial interactions. The present review covers the latest advances on the mechanistic roles of phytomelatonin. While phytomelatonin is a sovereign plant growth regulator that can interact with the functions of other plant growth regulators or hormones, its qualifications as a complete phytohormone are still to be established. This review also showcases the yet to be identified potentials of phytomelatonin that will surely encourage the plant scientists to uncover new functional aspects of phytomelatonin in plant growth and development, subsequently improving its status as a potential new phytohormone.
Collapse
Affiliation(s)
- Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
19
|
Arnao MB, Hernández-Ruiz J. Phytomelatonin, natural melatonin from plants as a novel dietary supplement: Sources, activities and world market. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
20
|
Luo H, He C, Han L. Heterologous expression of ZjOMT from Zoysia japonica in Escherichia coli confers aluminum resistance through melatonin production. PLoS One 2018; 13:e0196952. [PMID: 29734371 PMCID: PMC5937781 DOI: 10.1371/journal.pone.0196952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/23/2018] [Indexed: 11/18/2022] Open
Abstract
Melatonin is a molecule that can enhance the resistance of plants to abiotic stress. It can alleviate the damage of heavy metal ions, and other chemical substances, changes in temperature and humidity, oxidative stress in higher plants, and enhance resistance of plants to abiotic stress. The transformation of N-Acetyl-5-hydroxy tryptamin into melatonin requires the involvement of methyltransferase. In this study, a methyltransferase gene ZjOMT has been cloned from Zoysia japonica. The gene was induced by aluminum (Al) stress in the leaves and roots of Zoysia japonica, and was up-regulated by 20.86- and 31.18-folds, respectively. The expression of ZjOMT in Escherichia coli increased the content of melatonin by about 8-fold in the recombinant strain compared with that of the empty vector strain. Al resistance test showed that the resistance of recombinant strain BL21-pET32-ZjOMT to Al was significantly higher than that of the empty vector strain BL21-pET32. The survival rate of the recombinant strain expressing ZjOMT was about 100-fold higher than that of the empty vector strain when treated with 0.35 mM Al. These findings suggest that the heterologous expression of ZjOMT improved the resistance of E. coli to Al by increasing the content of melatonin.
Collapse
Affiliation(s)
- Hongsong Luo
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, People’s Republic of China
| | - Chunyan He
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, People’s Republic of China
| | - Liebao Han
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
21
|
Lee K, Lee HY, Back K. Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N-acetylserotonin deacetylase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants. J Pineal Res 2018; 64. [PMID: 29247559 DOI: 10.1111/jpi.12460] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022]
Abstract
In plants, melatonin production is strictly regulated, unlike the production of its precursor, serotonin, which is highly inducible in response to stimuli, such as senescence and pathogen exposure. Exogenous serotonin treatment does not greatly induce the production of N-acetylserotonin (NAS) and melatonin in plants, which suggests the possible existence of one or more regulatory genes in the pathway for the biosynthesis of melatonin from serotonin. In this report, we found that NAS was rapidly and abundantly converted into serotonin in rice seedlings, indicating the presence of an N-acetylserotonin deacetylase (ASDAC). To clone the putative ASDAC gene, we screened 4 genes that were known as histone deacetylase (HDAC) genes, but encoded proteins targeted into chloroplasts or mitochondria rather than nuclei. Of 4 recombinant Escherichia coli strains expressing these genes, one E. coli strain expressing the rice HDAC10 gene was found to be capable of producing serotonin in response to treatment with NAS. The recombinant purified rice HDAC10 (OsHDAC10) protein exhibited ASDAC enzyme activity toward NAS, N-acetyltyramine (NAT), N-acetyltryptamine, and melatonin, with the highest ASDAC activity for NAT. In addition, its Arabidopsis ortholog, AtHDAC14, showed similar ASDAC activity to that of OsHDAC10. Both OsHDAC10 and AtHDAC14 were found to be expressed in chloroplasts. Phylogenetic analysis indicated that ASDAC homologs were present in archaea, but not in cyanobacteria, which differs from the distribution of serotonin N-acetyltransferase (SNAT). This suggests that SNAT and ASDAC may have evolved differently from ancestral eukaryotic cells.
Collapse
Affiliation(s)
- Kyungjin Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | - Hyoung Yool Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| |
Collapse
|
22
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B. Mitochondria: Central Organelles for Melatonin's Antioxidant and Anti-Aging Actions. Molecules 2018; 23:E509. [PMID: 29495303 PMCID: PMC6017324 DOI: 10.3390/molecules23020509] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin, along with its metabolites, have long been known to significantly reduce the oxidative stress burden of aging cells or cells exposed to toxins. Oxidative damage is a result of free radicals produced in cells, especially in mitochondria. When measured, melatonin, a potent antioxidant, was found to be in higher concentrations in mitochondria than in other organelles or subcellular locations. Recent evidence indicates that mitochondrial membranes possess transporters that aid in the rapid uptake of melatonin by these organelles against a gradient. Moreover, we predicted several years ago that, because of their origin from melatonin-producing bacteria, mitochondria likely also synthesize melatonin. Data accumulated within the last year supports this prediction. A high content of melatonin in mitochondria would be fortuitous, since these organelles produce an abundance of free radicals. Thus, melatonin is optimally positioned to scavenge the radicals and reduce the degree of oxidative damage. In light of the "free radical theory of aging", including all of its iterations, high melatonin levels in mitochondria would be expected to protect against age-related organismal decline. Also, there are many age-associated diseases that have, as a contributing factor, free radical damage. These multiple diseases may likely be deferred in their onset or progression if mitochondrial levels of melatonin can be maintained into advanced age.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Dun Xian Tan
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituo Mexicana del Seguro Social, Guadalajara 44346, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapatapa, Mexico D.F. 09340, Mexico.
| | - Xin Jia Zhou
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Bing Xu
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| |
Collapse
|
23
|
Erland LAE, Saxena PK, Murch SJ. Melatonin in plant signalling and behaviour. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:58-69. [PMID: 32291021 DOI: 10.1071/fp16384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/29/2017] [Indexed: 05/23/2023]
Abstract
Melatonin is an indoleamine neurotransmitter that has recently become well established as an important multi-functional signalling molecule in plants. These signals have been found to induce several important physiological responses that may be interpreted as behaviours. The diverse processes in which melatonin has been implicated in plants have expanded far beyond the traditional roles for which it has been implicated in mammals, which include sleep, tropisms and reproduction. These functions, however, appear to also be important melatonin mediated processes in plants, though the mechanisms underlying these functions have yet to be fully elucidated. Mediation or redirection of plant physiological processes induced by melatonin can be summarised as a series of behaviours including, among others: herbivore defence, avoidance of undesirable circumstances or attraction to opportune conditions, problem solving and response to environmental stimulus. As the mechanisms of melatonin action are elucidated, its involvement in plant growth, development and behaviour is likely to expand beyond the aspects discussed in this review and hold promise for applications in diverse fundamental and applied plant sciences including conservation, cryopreservation, morphogenesis, industrial agriculture and natural health products.
Collapse
Affiliation(s)
- Lauren A E Erland
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - Praveen K Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - Susan J Murch
- Chemistry, University of British Columbia, Okanagan, Kelowna, British Columbia, V1V 1V7, Canada
| |
Collapse
|
24
|
Lee K, Choi GH, Back K. Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide: Key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase. J Pineal Res 2017; 63. [PMID: 28793366 DOI: 10.1111/jpi.12441] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
Abstract
In plants, melatonin production is induced by stimuli such as cold and drought, and cadmium (Cd) is the best elicitor of melatonin production in rice. However, the mechanism by which Cd induces melatonin synthesis in plants remains unknown. We challenged rice seedlings with Cd under different light conditions and found that continuous light produced the highest levels of melatonin, while continuous dark failed to induce melatonin production. Transcriptional and translational induction of tryptophan decarboxylase contributed to the light induction of melatonin during Cd treatment, whereas the protein level of light-induced caffeic acid O-methyltransferase (COMT) was decreased by Cd treatment. In analogy, COMT enzyme activity was inhibited in vitro by Cd in a dose-dependent manner. Notably, the Cd-induced melatonin synthesis was significantly impaired by treatment with either an H2 O2 production inhibitor (DPI) or an NO scavenger (cPTIO). The combination of both inhibitors almost completely abolished Cd-induced melatonin synthesis, suggesting an absolute requirement for H2 O2 and NO. However, neither serotonin nor N-acetylserotonin (NAS) was induced by H2 O2 alone. In contrast, NO significantly induced serotonin production but not NAS or melatonin production. This indicated that serotonin did not enter chloroplasts, where serotonin N-acetyltransferase (SNAT) is constitutively expressed. This suggests that chloroplastidic SNAT expression prevents increased melatonin production after exposure to stress, ultimately leading to the maintenance of a steady-state melatonin level inside cells.
Collapse
Affiliation(s)
- Kyungjin Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | - Geun-Hee Choi
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| |
Collapse
|
25
|
Choi GH, Lee HY, Back K. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants. J Pineal Res 2017; 63. [PMID: 28378373 DOI: 10.1111/jpi.12412] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/31/2017] [Indexed: 12/29/2022]
Abstract
Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants.
Collapse
Affiliation(s)
- Geun-Hee Choi
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| | - Hyoung Yool Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
26
|
Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Zhou J. HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J Pineal Res 2017; 62. [PMID: 28095626 DOI: 10.1111/jpi.12387] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022]
Abstract
Melatonin regulates broad aspects of plant responses to various biotic and abiotic stresses, but the upstream regulation of melatonin biosynthesis by these stresses remains largely unknown. Herein, we demonstrate that transcription factor heat-shock factor A1a (HsfA1a) conferred cadmium (Cd) tolerance to tomato plants, in part through its positive role in inducing melatonin biosynthesis under Cd stress. Analysis of leaf phenotype, chlorophyll content, and photosynthetic efficiency revealed that silencing of the HsfA1a gene decreased Cd tolerance, whereas its overexpression enhanced plant tolerance to Cd. HsfA1a-silenced plants exhibited reduced melatonin levels, and HsfA1a overexpression stimulated melatonin accumulation and the expression of the melatonin biosynthetic gene caffeic acid O-methyltransferase 1 (COMT1) under Cd stress. Both an in vitro electrophoretic mobility shift assay and in vivo chromatin immunoprecipitation coupled with qPCR analysis revealed that HsfA1a binds to the COMT1 gene promoter. Meanwhile, Cd stress induced the expression of heat-shock proteins (HSPs), which was compromised in HsfA1a-silenced plants and more robustly induced in HsfA1a-overexpressing plants under Cd stress. COMT1 silencing reduced HsfA1a-induced Cd tolerance and melatonin accumulation in HsfA1a-overexpressing plants. Additionally, the HsfA1a-induced expression of HSPs was partially compromised in COMT1-silenced wild-type or HsfA1a-overexpressing plants under Cd stress. These results demonstrate that HsfA1a confers Cd tolerance by activating transcription of the COMT1 gene and inducing accumulation of melatonin that partially upregulates expression of HSPs.
Collapse
Affiliation(s)
- Shu-Yu Cai
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yun Zhang
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - You-Ping Xu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Zhen-Yu Qi
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Meng-Qi Li
- Zhejiang Institute of Geological Survey/Geological Research Center for Agricultural Applications, China Geological Survey, Hangzhou, China
| | - Golam Jalal Ahammed
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Xiao-Jian Xia
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Kai Shi
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yan-Hong Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Russel J Reiter
- University of Texas Health Science Center, San Antonio, TX, USA
| | - Jing-Quan Yu
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Back K, Tan DX, Reiter RJ. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 2016; 61:426-437. [PMID: 27600803 DOI: 10.1111/jpi.12364] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023]
Abstract
Melatonin is an animal hormone as well as a signaling molecule in plants. It was first identified in plants in 1995, and almost all enzymes responsible for melatonin biosynthesis had already been characterized in these species. Melatonin biosynthesis from tryptophan requires four-step reactions. However, six genes, that is, TDC, TPH, T5H, SNAT, ASMT, and COMT, have been implicated in the synthesis of melatonin in plants, suggesting the presence of multiple pathways. Two major pathways have been proposed based on the enzyme kinetics: One is the tryptophan/tryptamine/serotonin/N-acetylserotonin/melatonin pathway, which may occur under normal growth conditions; the other is the tryptophan/tryptamine/serotonin/5-methoxytryptamine/melatonin pathway, which may occur when plants produce large amounts of serotonin, for example, upon senescence. The melatonin biosynthetic capacity associated with conversion of tryptophan to serotonin is much higher than that associated with conversion of serotonin to melatonin, which yields a low level of melatonin synthesis in plants. Many melatonin intermediates are produced in various subcellular compartments, such as the cytoplasm, endoplasmic reticulum, and chloroplasts, which either facilitates or impedes the subsequent enzymatic steps. Depending on the pathways, the final subcellular sites of melatonin synthesis vary at either the cytoplasm or chloroplasts, which may differentially affect the mode of action of melatonin in plants.
Collapse
Affiliation(s)
- Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea.
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
28
|
Byeon Y, Lee HY, Back K. Cloning and characterization of the serotonin N-acetyltransferase-2 gene (SNAT2) in rice (Oryza sativa). J Pineal Res 2016; 61:198-207. [PMID: 27121038 DOI: 10.1111/jpi.12339] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/26/2016] [Indexed: 01/02/2023]
Abstract
The penultimate enzyme in melatonin synthesis is serotonin N-acetyltransferase (SNAT), which exists as a single copy in mammals and plants. Our recent studies of the Arabidopsis snat-knockout mutant and SNAT RNAi rice (Oryza sativa) plants predicted the presence of at least one other SNAT isogene in plants; that is, the snat-knockout mutant of Arabidopsis and the SNAT RNAi rice plants still produced melatonin, even in the absence or the suppression of SNAT expression. Here, we report a molecular cloning of an SNAT isogene (OsSNAT2) from rice. The mature amino acid sequences of SNAT proteins indicated that OsSNAT2 and OsSNAT1 proteins had 39% identity values and 60% similarity. The Km and Vmax values of the purified recombinant OsSNAT2 were 371 μm and 4700 pmol/min/mg protein, respectively; the enzyme's optimal activity temperature was 45°C. Confocal microscopy showed that the OsSNAT2 protein was localized to both the cytoplasm and chloroplasts. The in vitro enzyme activity of OsSNAT2 was severely inhibited by melatonin, but the activities of sheep SNAT (OaSNAT) and rice OsSNAT1 proteins were not. The enzyme activity of OsSNAT2 was threefold higher than that of OsSNAT1, but 232-fold lower than that of OaSNAT. The OsSNAT1 and OsSNAT2 transcripts were similarly suppressed in rice leaves during the melatonin induction after cadmium treatment. Phylogenetic analyses indicated that OsSNAT1 and OsSNAT2 are distantly related, suggesting that they evolved independently from Cyanobacteria prior to the endosymbiosis event.
Collapse
Affiliation(s)
- Yeong Byeon
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | - Hyoung Yool Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| |
Collapse
|
29
|
Jiao J, Ma Y, Chen S, Liu C, Song Y, Qin Y, Yuan C, Liu Y. Melatonin-Producing Endophytic Bacteria from Grapevine Roots Promote the Abiotic Stress-Induced Production of Endogenous Melatonin in Their Hosts. FRONTIERS IN PLANT SCIENCE 2016; 7:1387. [PMID: 27708652 PMCID: PMC5030213 DOI: 10.3389/fpls.2016.01387] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/31/2016] [Indexed: 05/20/2023]
Abstract
Endophytes form symbiotic relationships with plants and constitute an important source of phytohormones and bioactive secondary metabolites for their hosts. To date, most studies of endophytes have focused on the influence of these microorganisms on plant growth and physiology and their role in plant defenses against biotic and abiotic stressors; however, to the best of our knowledge, the ability of endophytes to produce melatonin has not been reported. In the present study, we isolated and identified root-dwelling bacteria from three grapevine varieties and found that, when cultured under laboratory conditions, some of the bacteria strains secreted melatonin and tryptophan-ethyl ester. The endophytic bacterium Bacillus amyloliquefaciens SB-9 exhibited the highest level of in vitro melatonin secretion and also produced three intermediates of the melatonin biosynthesis pathway: 5-hydroxytryptophan, serotonin, and N-acetylserotonin. After B. amyloliquefaciens SB-9 colonization, the plantlets exhibited increased plant growth. Additionally, we found that, in grapevine plantlets exposed to salt or drought stress, colonization by B. amyloliquefaciens SB-9 increased the upregulation of melatonin synthesis, as well as that of its intermediates, but reduced the upregulation of grapevine tryptophan decarboxylase genes (VvTDCs) and a serotonin N-acetyltransferase gene (VvSNAT) transcription, when compared to the un-inoculated control. Colonization by B. amyloliquefaciens SB-9 was also able to counteract the adverse effects of salt- and drought-induced stress by reducing the production of malondialdehyde and reactive oxygen species (H2O2 and O2-) in roots. Therefore, our findings demonstrate the occurrence of melatonin biosynthesis in endophytic bacteria and provide evidence for a novel form of communication between beneficial endophytes and host plants via melatonin.
Collapse
Affiliation(s)
- Jian Jiao
- College of Enology, Northwest A&F UniversityYangling, China
| | - Yaner Ma
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural SciencesZhengzhou, China
| | - Sha Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural SciencesZhengzhou, China
| | - Yuyang Song
- College of Enology, Northwest A&F UniversityYangling, China
| | - Yi Qin
- College of Enology, Northwest A&F UniversityYangling, China
| | - Chunlong Yuan
- College of Enology, Northwest A&F UniversityYangling, China
- *Correspondence: Yanlin Liu, Chunlong Yuan,
| | - Yanlin Liu
- College of Enology, Northwest A&F UniversityYangling, China
- *Correspondence: Yanlin Liu, Chunlong Yuan,
| |
Collapse
|