1
|
Bounegru AV, Bounegru I. Acrylamide in food products and the role of electrochemical biosensors in its detection: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2824-2839. [PMID: 38669134 DOI: 10.1039/d4ay00466c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
In this review, the mechanisms of acrylamide formation in food, along with aspects related to its toxicity and associated consumption risks, are investigated, highlighting the potential impact on human health. European regulations regarding acrylamide content in food products are also addressed, emphasizing the importance of monitoring and detecting this substance in nutrition, by public health protection measures. The primary objective of the research is to explore and analyze innovative methods for detecting acrylamide in food, with a particular focus on electrochemical biosensors. This research direction is motivated by the need to develop rapid, sensitive, and efficient monitoring techniques for this toxic compound in food products, considering the associated consumption risks. The research has revealed several significant results. Studies have shown that electrochemical biosensors based on hemoglobin exhibited increased sensitivity and low detection limits, capable of detecting very low concentrations of acrylamide in processed foods. Additionally, it has been found that the use of functionalized nanomaterials, such as carbon nanotubes and gold nanoparticles, has led to the improvement of electrochemical biosensor performance in acrylamide detection. The integration of these technological innovations and functionalization strategies has enhanced the sensitivity, specificity, and stability of biosensors in measuring acrylamides. Thus, the results of this research offer promising perspectives for the development of precise and efficient methods for monitoring acrylamides in food, contributing to the improvement of food quality control and the protection of consumer health.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania.
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| |
Collapse
|
2
|
Kobras CM, Morris SM, Mascher T, Gebhard S. Application of a Bacillus subtilis Whole-Cell Biosensor (P liaI-lux) for the Identification of Cell Wall Active Antibacterial Compounds. Methods Mol Biol 2023; 2601:259-270. [PMID: 36445588 DOI: 10.1007/978-1-0716-2855-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Whole-cell biosensors, based on the visualization of a reporter strain's response to a particular stimulus, are a robust and cost-effective means to monitor defined environmental conditions or the presence of chemical compounds. One specific field in which such biosensors are frequently applied is drug discovery, that is, the screening of large numbers of bacterial or fungal strains for the production of antimicrobial compounds. Here, we describe the application of a luminescence-based Bacillus subtilis biosensor for the discovery of cell wall active substances; this article is an update to our previous chapter published in 2017. The system is based on the well-characterized promoter PliaI, which is induced in response to a wide range of conditions that cause cell envelope stress, particularly antibiotics that interfere with the membrane-anchored steps of cell wall biosynthesis. A simple "spot-on-lawn" assay, where colonies of potential producer strains are grown directly on a lawn of the reporter strain, allows for quantitative and time-resolved detection of antimicrobial compounds. Due to the very low technical demands of this procedure, we expect it to be easily applicable to a large variety of candidate producer strains and growth conditions.
Collapse
Affiliation(s)
- Carolin Martina Kobras
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Bath, UK
- The Florey Institute for Host-Pathogen Interactions, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Sali May Morris
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Thorsten Mascher
- Institut für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Susanne Gebhard
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Bath, UK.
| |
Collapse
|
3
|
Development of Whole-Cell Biosensors for Screening of Peptidoglycan-Targeting Antibiotics in a Gram-Negative Bacterium. Appl Environ Microbiol 2022; 88:e0084622. [PMID: 36040151 PMCID: PMC9499016 DOI: 10.1128/aem.00846-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need to develop novel antibiotics since antibiotic resistance is an increasingly serious threat to global public health. Whole-cell biosensors are one of the promising strategies for new antibiotic discovery. The peptidoglycan (PG) of the bacterial cell wall is one of the most important targets for antibiotics. However, the biosensors for the detection of PG-targeting antibiotics in Gram-negative bacteria have not been developed, mainly because of the lack of the regulatory systems that sense and respond to PG stress. Recently, we identified a novel two-component signal transduction system (PghKR) that is responsible for sensing and responding to PG damage in the Gram-negative bacterium Shewanella oneidensis. Based on this system, we developed biosensors for the detection of PG-targeting antibiotics. Using ampicillin as an inducer for PG stress and the bacterial luciferase LuxCDABE as the reporter, we found that the PghKR biosensors are specific to antibiotics targeting PG synthesis, including β-lactams, vancomycin, and d-cycloserine. Deletion of genes encoding PG permease AmpG and β-lactamase BlaA improves the sensitivity of the biosensors substantially. The PghKR biosensor in the background of ΔblaA is also functional on agar plates, providing a simple method for screening bacteria that produce PG-targeting antibiotics. IMPORTANCE The growing problem of antibiotic resistance in Gram-negative bacteria urgently needs new strategies so that researchers can develop novel antibiotics. Microbial whole-cell biosensors are capable of sensing various stimuli with a quantifiable output and show tremendous potential for the discovery of novel antibiotics. As the Achilles' heel of bacteria, the synthesis of the peptidoglycan (PG) is targeted by many antibiotics. However, the regulatory systems that sense and respond to PG-targeting stress in Gram-negative bacteria are reported rarely, restricting the development of biosensors for the detection of PG-targeting antibiotics. In this study, we developed a highly sensitive and specific biosensor based on a novel two-component system in the Gram-negative bacterium Shewanella oneidensis that is responsible for the sensing and responding to PG stress. Our biosensors have great potential for discovering novel antibiotics and determining the mode of action of antibiotics.
Collapse
|
4
|
Zhang Q, Kobras CM, Gebhard S, Mascher T, Wolf D. Regulation of heterologous subtilin production in Bacillus subtilis W168. Microb Cell Fact 2022; 21:57. [PMID: 35392905 PMCID: PMC8991943 DOI: 10.1186/s12934-022-01782-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Subtilin is a peptide antibiotic (lantibiotic) natively produced by Bacillus subtilis ATCC6633. It is encoded in a gene cluster spaBTCSIFEGRK (spa-locus) consisting of four transcriptional units: spaS (subtilin pre-peptide), spaBTC (modification and export), spaIFEG (immunity) and spaRK (regulation). Despite the pioneer understanding on subtilin biosynthesis, a robust platform to facilitate subtilin research and improve subtilin production is still a poorly explored spot. Results In this work, the intact spa-locus was successfully integrated into the chromosome of Bacillus subtilis W168, which is the by far best-characterized Gram-positive model organism with powerful genetics and many advantages in industrial use. Through systematic analysis of spa-promoter activities in B. subtilis W168 wild type and mutant strains, our work demonstrates that subtilin is basally expressed in B. subtilis W168, and the transition state regulator AbrB strongly represses subtilin biosynthesis in a growth phase-dependent manner. The deletion of AbrB remarkably enhanced subtilin gene expression, resulting in comparable yield of bioactive subtilin production as for B. subtilis ATCC6633. However, while in B. subtilis ATCC6633 AbrB regulates subtilin gene expression via SigH, which in turn activates spaRK, AbrB of B. subtilis W168 controls subtilin gene expression in SigH-independent manner, except for the regulation of spaBTC. Furthermore, the work shows that subtilin biosynthesis in B. subtilis W168 is regulated by the two-component regulatory system SpaRK and strictly relies on subtilin itself as inducer to fulfill the autoregulatory circuit. In addition, by incorporating the subtilin-producing system (spa-locus) and subtilin-reporting system (PpsdA-lux) together, we developed “online” reporter strains to efficiently monitor the dynamics of subtilin biosynthesis. Conclusions Within this study, the model organism B. subtilis W168 was successfully established as a novel platform for subtilin biosynthesis and the underlying regulatory mechanism was comprehensively characterized. This work will not only facilitate genetic (engineering) studies on subtilin, but also pave the way for its industrial production. More broadly, this work will shed new light on the heterologous production of other lantibiotics. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01782-9.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Carolin M Kobras
- Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Susanne Gebhard
- Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, BA2 7AY, UK
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Diana Wolf
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany.
| |
Collapse
|
5
|
Yin J, Cheng D, Zhu Y, Liang Y, Yu Z. Development of a whole-cell biosensor for detection of antibiotics targeting bacterial cell envelope in Bacillus subtilis. Appl Microbiol Biotechnol 2022; 106:789-798. [DOI: 10.1007/s00253-022-11762-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
|
6
|
Lazar JT, Tabor JJ. Bacterial two-component systems as sensors for synthetic biology applications. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:100398. [PMID: 34917859 PMCID: PMC8670732 DOI: 10.1016/j.coisb.2021.100398] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Two-component systems (TCSs) are a ubiquitous family of signal transduction pathways that enable bacteria to sense and respond to diverse physical, chemical, and biological stimuli outside and inside the cell. Synthetic biologists have begun to repurpose TCSs for applications in optogenetics, materials science, gut microbiome engineering, and soil nutrient biosensing, among others. New engineering methods including genetic refactoring, DNA-binding domain swapping, detection threshold tuning, and phosphorylation cross-talk insulation are being used to increase the reliability of TCS sensor performance and tailor TCS signaling properties to the requirements of specific applications. There is now potential to combine these methods with large-scale gene synthesis and laboratory screening to discover the inputs sensed by many uncharacterized TCSs and develop a large new family of genetically-encoded sensors that respond to an unrivaled breadth of stimuli.
Collapse
Affiliation(s)
- John T Lazar
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX, USA
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
7
|
Dorau R, Liu J, Solem C, Jensen PR. Metabolic Engineering of Lactic Acid Bacteria. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021; 8:634438. [PMID: 34046426 PMCID: PMC8144471 DOI: 10.3389/fmolb.2021.634438] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Wex KW, Saur JS, Handel F, Ortlieb N, Mokeev V, Kulik A, Niedermeyer THJ, Mast Y, Grond S, Berscheid A, Brötz-Oesterhelt H. Bioreporters for direct mode of action-informed screening of antibiotic producer strains. Cell Chem Biol 2021; 28:1242-1252.e4. [PMID: 33761329 DOI: 10.1016/j.chembiol.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 01/17/2023]
Abstract
A big challenge in natural product research of today is rapid dereplication of already known substances, to free capacities for the exploration of new agents. Prompt information on bioactivities and mode of action (MOA) speeds up the lead discovery process and is required for rational compound optimization. Here, we present a bioreporter approach as a versatile strategy for combined bioactivity- and MOA-informed primary screening for antimicrobials. The approach is suitable for directly probing producer strains grown on agar, without need for initial compound enrichment or purification, and works along the entire purification pipeline with culture supernatants, extracts, fractions, and pure substances. The technology allows for MOA-informed purification to selectively prioritize activities of interest. In combination with high-resolution mass spectrometry, the biosensor panel is an efficient and sensitive tool for compound deconvolution. Concomitant information on the affected metabolic pathway enables the selection of appropriate follow-up assays to elucidate the molecular target.
Collapse
Affiliation(s)
- Katharina W Wex
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Julian S Saur
- Biomolecular Chemistry, Institute of Organic Chemistry, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Franziska Handel
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Nico Ortlieb
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Vladislav Mokeev
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Cluster of Excellence EXC 2124 - Controlling Microbes to Fight Infections, Tuebingen, Baden-Württemberg 72076, Germany
| | - Andreas Kulik
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Cluster of Excellence EXC 2124 - Controlling Microbes to Fight Infections, Tuebingen, Baden-Württemberg 72076, Germany
| | - Timo H J Niedermeyer
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Department of Pharmaceutical Biology/Pharmacognosy Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Sachsen-Anhalt 06120, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Yvonne Mast
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Department Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Niedersachsen 38124, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Stephanie Grond
- Biomolecular Chemistry, Institute of Organic Chemistry, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Cluster of Excellence EXC 2124 - Controlling Microbes to Fight Infections, Tuebingen, Baden-Württemberg 72076, Germany
| | - Anne Berscheid
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Cluster of Excellence EXC 2124 - Controlling Microbes to Fight Infections, Tuebingen, Baden-Württemberg 72076, Germany.
| |
Collapse
|
10
|
Niño-Sánchez J, Chen LH, De Souza JT, Mosquera S, Stergiopoulos I. Targeted Delivery of Gene Silencing in Fungi Using Genetically Engineered Bacteria. J Fungi (Basel) 2021; 7:jof7020125. [PMID: 33572197 PMCID: PMC7914413 DOI: 10.3390/jof7020125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
Exploiting RNA interference (RNAi) in disease control through non-transformative methods that overcome the hurdle of producing transgenic plants has attracted much attention over the last years. Here, we explored such a method and used non-pathogenic bacteria as a versatile system for delivering RNAi to fungi. Specifically, the RNaseIII-null mutant strain of Escherichia coli HT115(DE3) was transformed with two plasmid vectors that enabled the constitutive or IPTG-inducible production of double-stranded RNAs (dsRNAs) against genes involved in aflatoxins production in Aspergillus flavus (AflC) or virulence of Botrytis cinerea (BcSAS1). To facilitate the release of the dsRNAs, the bacterial cells were further genetically engineered to undergo a bacteriophage endolysin R-mediated autolysis, following a freeze-thaw cycle. Exposure under in vitro conditions of A. flavus or B. cinerea to living bacteria or their whole-cell autolysates induced silencing of AflC and BcSAS1 in a bacteria concentration-dependent manner, and instigated a reduction in aflatoxins production and mycelial growth, respectively. In planta applications of the living bacteria or their crude whole-cell autolysates produced similar results, thus creating a basis for translational research. These results demonstrate that bacteria can produce biologically active dsRNA against target genes in fungi and that bacteria-mediated RNAi can be used to control fungal pathogens.
Collapse
Affiliation(s)
- Jonatan Niño-Sánchez
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA; (J.N.-S.); (L.-H.C.); (J.T.D.S.); (S.M.)
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA 92521, USA
| | - Li-Hung Chen
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA; (J.N.-S.); (L.-H.C.); (J.T.D.S.); (S.M.)
- Department of Plant Pathology, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Jorge Teodoro De Souza
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA; (J.N.-S.); (L.-H.C.); (J.T.D.S.); (S.M.)
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, MG 37200-000, Brazil
| | - Sandra Mosquera
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA; (J.N.-S.); (L.-H.C.); (J.T.D.S.); (S.M.)
- Department of Ciencias Biológicas, Universidad EAFIT, Medellín 050022, Colombia
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA; (J.N.-S.); (L.-H.C.); (J.T.D.S.); (S.M.)
- Correspondence: ; Tel.: +1-530-400-9802
| |
Collapse
|
11
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021. [PMID: 34046426 DOI: 10.3389/fmolb.2021.634438/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Jessica R Willdigg
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Rodríguez-Prieto T, Popp PF, Copa-Patiño JL, de la Mata FJ, Cano J, Mascher T, Gómez R. Silver (I) N-Heterocyclic Carbenes Carbosilane Dendritic Systems and Their Imidazolium-Terminated Analogues as Antibacterial Agents: Study of Their Mode of Action. Pharmaceutics 2020; 12:E968. [PMID: 33066639 PMCID: PMC7650833 DOI: 10.3390/pharmaceutics12100968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023] Open
Abstract
Spherical dendrimers and dendrons containing silver(I) N-heterocyclic carbenes (Ag(I)-NHC) and additionally bow-tie metal-free dendritic systems were synthesized in a simple and straightforward synthetic procedure and subsequently characterized. The antibacterial activity was evaluated, and in parallel, a comparative study with the cationic analogue precursors was performed to explore the effect of silver ions in the dendritic structure. Other parameters, such as topology, generation, and hydrophobicity, of the imidazole substituents were also studied. All these dendritic systems presented antibacterial activity against three different bacterial strains, two Gram-positive (Staphylococcus aureus and Bacillus subtilis) and one Gram-negative (Escherichia coli). Several assays were conducted to elucidate their mechanism of action against Bacillus subtilis, by using bacterial biosensors or specific probes and fluorescent proteins sensitive to changes in the cell membrane potential. These studies are specially focused on the role of the polyvalence of our systems containing silver atoms, which may provoke interesting effects in the mode of action.
Collapse
Affiliation(s)
- Tamara Rodríguez-Prieto
- Department of Organic and Inorganic Chemistry, Chemical Research Institute “Andrés M. Del Río” (IQAR), University of Alcalá, 28805 Madrid, Spain; (T.R.-P.); (F.J.d.l.M.); (J.C.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Philipp F. Popp
- Institute of Microbiology, Dresden University of Technology, 01069 Dresden, Germany;
| | - José Luis Copa-Patiño
- Department of Biomedicine and Biotechnology, University of Alcalá, 28805 Madrid, Spain;
| | - F. Javier de la Mata
- Department of Organic and Inorganic Chemistry, Chemical Research Institute “Andrés M. Del Río” (IQAR), University of Alcalá, 28805 Madrid, Spain; (T.R.-P.); (F.J.d.l.M.); (J.C.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, Chemical Research Institute “Andrés M. Del Río” (IQAR), University of Alcalá, 28805 Madrid, Spain; (T.R.-P.); (F.J.d.l.M.); (J.C.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Thorsten Mascher
- Institute of Microbiology, Dresden University of Technology, 01069 Dresden, Germany;
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Chemical Research Institute “Andrés M. Del Río” (IQAR), University of Alcalá, 28805 Madrid, Spain; (T.R.-P.); (F.J.d.l.M.); (J.C.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
13
|
Revilla-Guarinos A, Dürr F, Popp PF, Döring M, Mascher T. Amphotericin B Specifically Induces the Two-Component System LnrJK: Development of a Novel Whole-Cell Biosensor for the Detection of Amphotericin-Like Polyenes. Front Microbiol 2020; 11:2022. [PMID: 32973732 PMCID: PMC7472640 DOI: 10.3389/fmicb.2020.02022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
The rise of drug-resistant fungal pathogens urges for the development of new tools for the discovery of novel antifungal compounds. Polyene antibiotics are potent agents against fungal infections in humans and animals. They inhibit the growth of fungal cells by binding to sterols in the cytoplasmic membrane that subsequently causes pore formation and eventually results in cell death. Many polyenes are produced by Streptomycetes and released into the soil environment, where they can then target fungal hyphae. While not antibacterial, these compounds could nevertheless be also perceived by bacteria sharing the same habitat and serve as signaling molecules. We therefore addressed the question of how polyenes such as amphotericin B are perceived by the soil bacterium, Bacillus subtilis. Global transcriptional profiling identified a very narrow and specific response, primarily resulting in strong upregulation of the lnrLMN operon, encoding an ABC transporter previously associated with linearmycin resistance. Its strong and specific induction prompted a detailed analysis of the lnrL promoter element and its regulation. We demonstrate that the amphotericin response strictly depends on the two-component system LnrJK and that the target of LnrK-dependent gene regulation, the lnrLMN operon, negatively affects LnrJK-dependent signal transduction. Based on this knowledge, we developed a novel whole-cell biosensor, based on a P lnrL -lux fusion reporter construct in a lnrLMN deletion mutant background. This highly sensitive and dynamic biosensor is ready to be applied for the discovery or characterization of novel amphotericin-like polyenes, hopefully helping to increase the repertoire of antimycotic and antiparasitic polyenes available to treat human and animal infections.
Collapse
Affiliation(s)
| | | | | | | | - Thorsten Mascher
- Department of General Microbiology, Institut für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
Lautenschläger N, Popp PF, Mascher T. Development of a novel heterologous β-lactam-specific whole-cell biosensor in Bacillus subtilis. J Biol Eng 2020; 14:21. [PMID: 32765644 PMCID: PMC7394692 DOI: 10.1186/s13036-020-00243-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Whole-cell biosensors are a powerful and easy-to-use screening tool for the fast and sensitive detection of chemical compounds, such as antibiotics. β-Lactams still represent one of the most important antibiotic groups in therapeutic use. They interfere with late stages of the bacterial cell wall biosynthesis and result in irreversible perturbations of cell division and growth, ultimately leading to cell lysis. In order to simplify the detection of these antibiotics from solutions, solid media or directly from producing organisms, we aimed at developing a novel heterologous whole-cell biosensor in Bacillus subtilis, based on the β-lactam-induced regulatory system BlaR1/BlaI from Staphylococcus aureus. Results The BlaR1/BlaI system was heterologously expressed in B. subtilis and combined with the luxABCDE operon of Photorhabdus luminescens under control of the BlaR1/BlaI target promoter to measure the output of the biosensor. A combination of codon adaptation, constitutive expression of blaR1 and blaI and the allelic replacement of penP increased the inducer spectrum and dynamic range of the biosensor. β-Lactams from all four classes induced the target promoter PblaZ in a concentration-dependent manner, with a dynamic range of 7- to 53-fold. We applied our biosensor to a set of Streptomycetes soil isolates and demonstrated its potential to screen for the production of β-lactams. In addition to the successful implementation of a highly sensitive β-lactam biosensor, our results also provide the first experimental evidence to support previous suggestions that PenP functions as a β-lactamase in B. subtilis. Conclusion We have successfully established a novel heterologous whole-cell biosensor in B. subtilis that is highly sensitive for a broad spectrum of β-lactams from all four chemical classes. Therefore, it increases the detectable spectrum of compounds with respect to previous biosensor designs. Our biosensor can readily be applied for identifying β-lactams in liquid or on solid media, as well as for identifying potential β-lactam producers.
Collapse
Affiliation(s)
- Nina Lautenschläger
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Philipp F Popp
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| |
Collapse
|
15
|
Sun Z, Popp PF, Loderer C, Revilla-Guarinos A. Genetically Engineered Bacterial Biohybrid Microswimmers for Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2019; 20:E180. [PMID: 31905650 PMCID: PMC6982730 DOI: 10.3390/s20010180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
Bacterial biohybrid microswimmers aim at exploiting the inherent motion capabilities of bacteria (carriers) to transport objects (cargoes) at the microscale. One of the most desired properties of microswimmers is their ability to communicate with their immediate environment by processing the information and producing a useful response. Indeed, bacteria are naturally equipped with such communication skills. Hereby, two-component systems (TCSs) represent the key signal transducing machinery and enable bacteria to sense and respond to a variety of stimuli. We engineered a natural microswimmer based on the Gram-positive model bacterium Bacillus subtilis for the development of biohybrids with sensing abilities. B. subtilis naturally adhered to silica particles, giving rise to different motile biohybrids systems with variable ratios of carrier(s)-to-cargo(es). Genetically engineered TCS pathways allowed us to couple the binding to the inert particles with signaling the presence of antibiotics in their surroundings. Activation of the antibiotic-induced TCSs resulted in fluorescent bacterial carriers as a response readout. We demonstrate that the genetically engineered TCS-mediated signaling capabilities of B. subtilis allow for the custom design of bacterial hybrid microswimmers able to sense and signal the presence of target molecules in the environment. The generally recognized as safe (GRAS) status of B. subtilis makes it a promising candidate for human-related applications of these novel biohybrids.
Collapse
Affiliation(s)
- Zhiyong Sun
- Department of Molecular Biotechnology, Institute für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Philipp F. Popp
- Department of General Microbiology, Institute für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Christoph Loderer
- Department of Molecular Biotechnology, Institute für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Ainhoa Revilla-Guarinos
- Department of General Microbiology, Institute für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| |
Collapse
|
16
|
Abstract
Signal transduction systems configured around a core phosphotransfer step between a histidine kinase and a cognate response regulator protein occur in organisms from all domains of life. These systems, termed two-component systems, constitute the majority of multi-component signaling pathways in Bacteria but are less prevalent in Archaea and Eukarya. The core signaling domains are modular, allowing versatility in configuration of components into single-step phosphotransfer and multi-step phosphorelay pathways, the former being predominant in bacteria and the latter in eukaryotes. Two-component systems regulate key cellular regulatory processes that provide adaptive responses to environmental stimuli and are of interest for the development of antimicrobial therapeutics, biotechnology applications, and biosensor engineering. In bacteria, two-component systems have been found to mediate responses to an extremely broad array of extracellular and intracellular chemical and physical stimuli, whereas in archaea and eukaryotes, the use of two-component systems is more limited. This review summarizes recent advances in exploring the repertoire of sensor histidine kinases in the Archaea and Eukarya domains of life.
Collapse
Affiliation(s)
- Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
| | - Ann M Stock
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
17
|
|
18
|
Cheng ZX, Guo C, Chen ZG, Yang TC, Zhang JY, Wang J, Zhu JX, Li D, Zhang TT, Li H, Peng B, Peng XX. Glycine, serine and threonine metabolism confounds efficacy of complement-mediated killing. Nat Commun 2019; 10:3325. [PMID: 31346171 PMCID: PMC6658569 DOI: 10.1038/s41467-019-11129-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 06/24/2019] [Indexed: 11/28/2022] Open
Abstract
Serum resistance is a poorly understood but common trait of some difficult-to-treat pathogenic strains of bacteria. Here, we report that glycine, serine and threonine catabolic pathway is down-regulated in serum-resistant Escherichia coli, whereas exogenous glycine reverts the serum resistance and effectively potentiates serum to eliminate clinically-relevant bacterial pathogens in vitro and in vivo. We find that exogenous glycine increases the formation of membrane attack complex on bacterial membrane through two previously unrecognized regulations: 1) glycine negatively and positively regulates metabolic flux to purine biosynthesis and Krebs cycle, respectively. 2) α-Ketoglutarate inhibits adenosine triphosphate synthase, which in together promote the formation of cAMP/CRP regulon to increase the expression of complement-binding proteins HtrE, NfrA, and YhcD. The results could lead to effective strategies for managing the infection with serum-resistant bacteria, an especially valuable approach for treating individuals with weak acquired immunity but a normal complement system. Serum-resistant bacteria can escape complement killing in the bloodstream. Here, using metabolomics and metabolite perturbations, the authors describe an altered metabolic state in serum-resistant Escherichia coli and show that exogenous glycine potentiates elimination of pathogenic bacteria in vivo.
Collapse
Affiliation(s)
- Zhi-Xue Cheng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Chang Guo
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Zhuang-Gui Chen
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Tian-Ci Yang
- Zhongshan Hospital of Xiamen University, Xiamen, 361004, People's Republic of China
| | - Jian-Ying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Jie Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Jia-Xin Zhu
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Dan Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Tian-Tuo Zhang
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China. .,Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China. .,Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China. .,Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
19
|
Bastos-Arrieta J, Revilla-Guarinos A, Uspal WE, Simmchen J. Bacterial Biohybrid Microswimmers. Front Robot AI 2018; 5:97. [PMID: 33500976 PMCID: PMC7805739 DOI: 10.3389/frobt.2018.00097] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Over millions of years, Nature has optimized the motion of biological systems at the micro and nanoscales. Motor proteins to motile single cells have managed to overcome Brownian motion and solve several challenges that arise at low Reynolds numbers. In this review, we will briefly describe naturally motile systems and their strategies to move, starting with a general introduction that surveys a broad range of developments, followed by an overview about the physical laws and parameters that govern and limit motion at the microscale. We characterize some of the classes of biological microswimmers that have arisen in the course of evolution, as well as the hybrid structures that have been constructed based on these, ranging from Montemagno's ATPase motor to the SpermBot. Thereafter, we maintain our focus on bacteria and their biohybrids. We introduce the inherent properties of bacteria as a natural microswimmer and explain the different principles bacteria use for their motion. We then elucidate different strategies that have been employed for the coupling of a variety of artificial microobjects to the bacterial surface, and evaluate the different effects the coupled objects have on the motion of the "biohybrid." Concluding, we give a short overview and a realistic evaluation of proposed applications in the field.
Collapse
Affiliation(s)
| | - Ainhoa Revilla-Guarinos
- Department of General Microbiology, Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | - William E Uspal
- Department of Theory of Inhomogeneous Condensed Matter, Max-Planck-Institut für Intelligente Systeme, Stuttgart, Germany.,IV. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany
| | - Juliane Simmchen
- Physikalische Chemie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Müller A, Wolf D, Gutzeit HO. The black soldier fly, Hermetia illucens - a promising source for sustainable production of proteins, lipids and bioactive substances. ACTA ACUST UNITED AC 2018; 72:351-363. [PMID: 28742526 DOI: 10.1515/znc-2017-0030] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/29/2017] [Indexed: 12/17/2022]
Abstract
The growing demand worldwide for proteins and lipids cannot be met by the intensive use of agricultural land currently available. Insect mass cultures as a source for proteins and lipids have been in focus for various reasons. An insect with many positive properties is the black soldier fly, Hermetia illucens, whose larvae could be used for the sustainable production of proteins and lipids. Furthermore, the larvae produce bioactive substances which could potentially be used for human and animal welfare.
Collapse
|
21
|
Liu N, Chaudhry MT, Xie Z, Kreth J, Merritt J. Identification of New Degrons in Streptococcus mutans Reveals a Novel Strategy for Engineering Targeted, Controllable Proteolysis. Front Microbiol 2017; 8:2572. [PMID: 29312250 PMCID: PMC5742171 DOI: 10.3389/fmicb.2017.02572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
Recently, controllable, targeted proteolysis has emerged as one of the most promising new strategies to study essential genes and otherwise toxic mutations. One of the principal limitations preventing the wider adoption of this approach is due to the lack of easily identifiable species-specific degrons that can be used to trigger the degradation of target proteins. Here, we report new advancements in the targeted proteolysis concept by creating the first prokaryotic N-terminal targeted proteolysis system. We demonstrate how proteins from the LexA-like protein superfamily can be exploited as species-specific reservoirs of N- and/or C-degrons, which are easily identifiable due to their proximity to strictly conserved residues found among LexA-like proteins. Using the LexA-like regulator HdiR of Streptococcus mutans, we identified two separate N-degrons derived from HdiR that confer highly efficient constitutive proteolysis upon target proteins when added as N-terminal peptide tags. Both degrons mediate degradation via AAA+ family housekeeping proteases with one degron primarily targeting FtsH and the other targeting the ClpP-dependent proteases. To modulate degron activity, our approach incorporates a hybrid N-terminal protein tag consisting of the ubiquitin-like protein NEDD8 fused to an HdiR degron. The NEDD8 fusion inhibits degron function until the NEDD8-specific endopeptidase NEDP1 is heterologously expressed to expose the N-degron. By fusing the NEDD8-degron tag onto GFP, luciferase, and the pleiotropic regulator RNase J2, we demonstrate that the N-terminal proteolysis approach exhibits far superior performance compared to the classic transcriptional depletion approach and is similarly applicable for the study of highly toxic mutations.
Collapse
Affiliation(s)
- Nan Liu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
| | | | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
22
|
Radeck J, Lautenschläger N, Mascher T. The Essential UPP Phosphatase Pair BcrC and UppP Connects Cell Wall Homeostasis during Growth and Sporulation with Cell Envelope Stress Response in Bacillus subtilis. Front Microbiol 2017; 8:2403. [PMID: 29259598 PMCID: PMC5723303 DOI: 10.3389/fmicb.2017.02403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 12/03/2022] Open
Abstract
The bacterial cell wall separates the cell from its surrounding and protects it from environmental stressors. Its integrity is maintained by a highly regulated process of cell wall biosynthesis. The membrane-located lipid II cycle provides cell wall building blocks that are assembled inside the cytoplasm to the outside for incorporation. Its carrier molecule, undecaprenyl phosphate (UP), is then recycled by dephosphorylation from undecaprenyl pyrophosphate (UPP). In Bacillus subtilis, this indispensable reaction is catalyzed by the UPP phosphatases BcrC and UppP. Here, we study the physiological function of both phosphatases with respect to morphology, cell wall homeostasis and the resulting cell envelope stress response (CESR). We demonstrate that uppP and bcrC represent a synthetic lethal gene pair, which encodes an essential physiological function. Accordingly, cell growth and morphology were severely impaired during exponential growth if the overall UPP phosphatase level was limiting. UppP, but not BcrC, was crucial for normal sporulation. Expression of bcrC, but not uppP, was upregulated in the presence of cell envelope stress conditions caused by bacitracin if UPP phosphatase levels were limited. This homeostatic feedback renders BcrC more important during growth than UppP, particularly in defense against cell envelope stress.
Collapse
Affiliation(s)
- Jara Radeck
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | | | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
23
|
The Bacillus BioBrick Box 2.0: expanding the genetic toolbox for the standardized work with Bacillus subtilis. Sci Rep 2017; 7:15058. [PMID: 29118374 PMCID: PMC5678133 DOI: 10.1038/s41598-017-15107-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/20/2017] [Indexed: 12/03/2022] Open
Abstract
Standardized and well-characterized genetic building blocks allow the convenient assembly of novel genetic modules and devices, ensuring reusability of parts and reproducibility of experiments. In the first Bacillus subtilis-specific toolbox using the BioBrick standard, we presented integrative vectors, promoters, reporter genes and epitope tags for this Gram-positive model bacterium. With the Bacillus BioBrick Box 2.0, we significantly expand the range of our toolbox by providing new integrative vectors, introducing novel tools for fine-tuning protein expression, and carefully evaluating codon-adapted fluorescence proteins in B. subtilis, which cover the whole spectrum of visible light. Moreover, we developed new reporter systems to allow evaluating the strength of promoters and ribosome binding sites. This well-evaluated extension of our BioBrick-based toolbox increases the accessibility of B. subtilis and will therefore promote the use of this model bacterium and biotechnological workhorse as a host for fundamental and applied Synthetic Biology projects.
Collapse
|
24
|
Gui Q, Lawson T, Shan S, Yan L, Liu Y. The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics. SENSORS 2017; 17:s17071623. [PMID: 28703749 PMCID: PMC5539819 DOI: 10.3390/s17071623] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 01/11/2023]
Abstract
Various whole cell-based biosensors have been reported in the literature for the last 20 years and these reports have shown great potential for their use in the areas of pollution detection in environmental and in biomedical diagnostics. Unlike other reviews of this growing field, this mini-review argues that: (1) the selection of reporter genes and their regulatory proteins are directly linked to the performance of celllular biosensors; (2) broad enhancements in microelectronics and information technologies have also led to improvements in the performance of these sensors; (3) their future potential is most apparent in their use in the areas of medical diagnostics and in environmental monitoring; and (4) currently the most promising work is focused on the better integration of cellular sensors with nano and micro scaled integrated chips. With better integration it may become practical to see these cells used as (5) real-time portable devices for diagnostics at the bedside and for remote environmental toxin detection and this in situ application will make the technology commonplace and thus as unremarkable as other ubiquitous technologies.
Collapse
Affiliation(s)
- Qingyuan Gui
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Tom Lawson
- ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Suyan Shan
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Lu Yan
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| |
Collapse
|
25
|
Jeong SM, Lee HJ, Park YM, Kim JS, Lee SD, Bang IS. Inducible spy Transcription Acts as a Sensor for Envelope Stress of Salmonella typhimurium. Korean J Food Sci Anim Resour 2017; 37:134-138. [PMID: 28316480 PMCID: PMC5355577 DOI: 10.5851/kosfa.2017.37.1.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/09/2022] Open
Abstract
Salmonella enterica infects a broad range of host animals, and zoonostic infection threatens both public health and the livestock and meat processing industries. Many antimicrobials have been developed to target Salmonella envelope that performs essential bacterial functions; however, there are very few analytical methods that can be used to validate the efficacy of these antimicrobials. In this study, to develop a potential biosensor for Salmonella envelope stress, we examined the transcription of the S. enterica serovar typhimurium spy gene, the ortholog of which in Escherichia coli encodes Spy (spheroplast protein y). Spy is a chaperone protein expressed and localized in the periplasm of E. coli during spheroplast formation, or by exposure to protein denaturing conditions. spy expression in S. typhimurium was examined by constructing a spy-gfp transcriptional fusion. S. typhimurium spy transcription was strongly induced during spheroplast formation, and also when exposed to membrane-disrupting agents, including ethanol and the antimicrobial peptide polymyxin B. Moreover, spy induction required the activity of regulator proteins BaeR and CpxR, which are part of the major envelope stress response systems BaeS/BaeR and CpxA/CpxR, respectively. Results suggest that monitoring spy transcription may be useful to determine whether a molecule particularly cause envelope stress in Salmonella.
Collapse
Affiliation(s)
- Seon Mi Jeong
- Department of Microbiology and Immunology, Chosun University School of Dentistry, Gwangju 61452, Korea
| | - Hwa Jeong Lee
- Department of Microbiology and Immunology, Chosun University School of Dentistry, Gwangju 61452, Korea
| | - Yoon Mee Park
- Department of Microbiology and Immunology, Chosun University School of Dentistry, Gwangju 61452, Korea
| | - Jin Seok Kim
- Division of Life Science, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sang Dae Lee
- Department of Biological Sciences, Seonam University, Namwon 55724, Korea
| | - Iel Soo Bang
- Department of Microbiology and Immunology, Chosun University School of Dentistry, Gwangju 61452, Korea
| |
Collapse
|