1
|
Zhao Y, Liu Y, Cao S, Hao Q, Liu C, Li Y. Anaerobic oxidation of methane driven by different electron acceptors: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174287. [PMID: 38945238 DOI: 10.1016/j.scitotenv.2024.174287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Methane, the most significant reduced form of carbon on Earth, acts as a crucial fuel and greenhouse gas. Globally, microbial methane sinks encompass both aerobic oxidation of methane (AeOM), conducted by oxygen-utilizing methanotrophs, and anaerobic oxidation of methane (AOM), performed by anaerobic methanotrophs employing various alternative electron acceptors. These electron acceptors involved in AOM include sulfate, nitrate/nitrite, humic substances, and diverse metal oxides. The known anaerobic methanotrophic pathways comprise the internal aerobic oxidation pathway found in NC10 bacteria and the reverse methanogenesis pathway utilized by anaerobic methanotrophic archaea (ANME). Diverse anaerobic methanotrophs can perform AOM independently or in cooperation with symbiotic partners through several extracellular electron transfer (EET) pathways. AOM has been documented in various environments, including seafloor methane seepages, coastal wetlands, freshwater lakes, soils, and even extreme environments like hydrothermal vents. The environmental activities of AOM processes, driven by different electron acceptors, primarily depend on the energy yields, availability of electron acceptors, and environmental adaptability of methanotrophs. It has been suggested that different electron acceptors driving AOM may occur across a wider range of habitats than previously recognized. Additionally, it is proposed that methanotrophs have evolved flexible metabolic strategies to adapt to complex environmental conditions. This review primarily focuses on AOM, driven by different electron acceptors, discussing the associated reaction mechanisms and the habitats where these processes are active. Furthermore, it emphasizes the pivotal role of AOM in mitigating methane emissions.
Collapse
Affiliation(s)
- Yuewen Zhao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| | - Shengwei Cao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Qichen Hao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Chunlei Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| |
Collapse
|
2
|
Hou XY, Qiao WT, Gu JD, Liu CY, Hussain MM, Du DL, Zhou Y, Wang YF, Li Q. Reforestation of Cunninghamia lanceolata changes the relative abundances of important prokaryotic families in soil. Front Microbiol 2024; 15:1312286. [PMID: 38414777 PMCID: PMC10896735 DOI: 10.3389/fmicb.2024.1312286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Over the past decades, many forests have been converted to monoculture plantations, which might affect the soil microbial communities that are responsible for governing the soil biogeochemical processes. Understanding how reforestation efforts alter soil prokaryotic microbial communities will therefore inform forest management. In this study, the prokaryotic communities were comparatively investigated in a secondary Chinese fir forest (original) and a reforested Chinese fir plantation (reforested from a secondary Chinese fir forest) in Southern China. The results showed that reforestation changed the structure of the prokaryotic community: the relative abundances of important prokaryotic families in soil. This might be caused by the altered soil pH and organic matter content after reforestation. Soil profile layer depth was an important factor as the upper layers had a higher diversity of prokaryotes than the lower ones (p < 0.05). The composition of the prokaryotic community presented a seasonality characteristic. In addition, the results showed that the dominant phylum was Acidobacteria (58.86%) with Koribacteraceae (15.38%) as the dominant family in the secondary Chinese fir forest and the reforested plantation. Furthermore, soil organic matter, total N, hydrolyzable N, and NH 4 + - N were positively correlated with prokaryotic diversity (p < 0.05). Also, organic matter and NO 3 - - N were positively correlated to prokaryotic abundance (p < 0.05). This study demonstrated that re-forest transformation altered soil properties, which lead to the changes in microbial composition. The changes in microbial community might in turn influence biogeochemical processes and the environmental variables. The study could contribute to forest management and policy-making.
Collapse
Affiliation(s)
- Xue-Yan Hou
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Wen-Tao Qiao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion Israel Institute of Technology, Shantou, China
| | - Chao-Ying Liu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Mahroz Hussain
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Dao-Lin Du
- Jingjiang College, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yi Zhou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Yong-Feng Wang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Qian Li
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Wang W, Zhang Y, Yin TM, Zhao L, Xu XJ, Xing DF, Zhang RC, Lee DJ, Ren NQ, Chen C. Prospect of denitrifying anaerobic methane oxidation (DAMO) application on wastewater treatment and biogas recycling utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167142. [PMID: 37722432 DOI: 10.1016/j.scitotenv.2023.167142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Old-fashioned wastewater treatments for nitrogen depend on heterotrophic denitrification process. It would utilize extra organic carbon source as electron donors when the C/N of domestic wastewater was too low to ensure heterotrophic denitrification process. It would lead to non-compliance with carbon reduction targets and impose an economic burden on wastewater treatment. Denitrifying anaerobic methane oxidation (DAMO), which could utilize methane serving as electron donors to replace traditional organic carbon (methanol or sodium acetate), supplies a novel approach for wastewater treatment. As the primary component of biogas, methane is an inexpensive carbon source. With anaerobic digestion becoming increasingly popular for sludge reduction in wastewater treatment plants (WWTPs), efficient biogas utilization through DAMO can offer an environmentally friendly option for in-situ biogas recycling. Here, we reviewed the metabolic principle and relevant research for DAMO and biogas recycling utilization, outlining the prospect of employing DAMO for wastewater treatment and biogas recycling utilization in WWTPs. The application of DAMO provides a new focal point for enhancing efficiency and sustainability in WWTPs.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Tian-Ming Yin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Ruo-Chen Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
4
|
Wang J, Zhao Y, Zhou M, Hu J, Hu B. Aerobic and denitrifying methanotrophs: Dual wheels driving soil methane emission reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161437. [PMID: 36623660 DOI: 10.1016/j.scitotenv.2023.161437] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The greenhouse gas methane in soils has been considered to be consumed mainly by aerobic methane-oxidizing bacteria for a long time. In the last decades, the discovery of anaerobic methanotrophs greatly complemented the methane cycle, but their contribution rates and ecological significance in soils remain undescribed. In this work, the soil samples from forest, grassland and cropland in four different climatic regions were collected to investigate these conventional and novel methanotrophs. A dual-core microbial methane sink, responsible for over 80 % of soil methane emission reduction, was unveiled. The aerobic core was performed by aerobic methanotrophic bacteria in topsoil, who played important roles in stabilizing bacterial communities. The anaerobic core was denitrifying methanotrophs in anoxic soils, including denitrifying methanotrophic bacteria from NC10 phylum and denitrifying methanotrophic archaea from ANME-2d clade. They were ubiquitous in terrestrial soils and potentially led to around 50 % of the total methane removal. Human activities such as livestock farming and rice cultivation further promoted the contribution rates of these denitrifying methanotrophs. This work elucidated the emission reduction contribution of different methanotrophs in the continental setting, which would help to reduce uncertainties in the estimations of the soil methane emission.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Meng Zhou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
5
|
Yao X, Wang J, Hu B. How methanotrophs respond to pH: A review of ecophysiology. Front Microbiol 2023; 13:1034164. [PMID: 36687570 PMCID: PMC9853399 DOI: 10.3389/fmicb.2022.1034164] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/09/2022] [Indexed: 01/08/2023] Open
Abstract
Varying pH globally affects terrestrial microbial communities and biochemical cycles. Methanotrophs effectively mitigate methane fluxes in terrestrial habitats. Many methanotrophs grow optimally at neutral pH. However, recent discoveries show that methanotrophs grow in strongly acidic and alkaline environments. Here, we summarize the existing knowledge on the ecophysiology of methanotrophs under different pH conditions. The distribution pattern of diverse subgroups is described with respect to their relationship with pH. In addition, their responses to pH stress, consisting of structure-function traits and substrate affinity traits, are reviewed. Furthermore, we propose a putative energy trade-off model aiming at shedding light on the adaptation mechanisms of methanotrophs from a novel perspective. Finally, we take an outlook on methanotrophs' ecophysiology affected by pH, which would offer new insights into the methane cycle and global climate change.
Collapse
Affiliation(s)
- Xiangwu Yao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China,Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China,*Correspondence: Baolan Hu ✉
| |
Collapse
|
6
|
Wang Z, Li J, Xu X, Li K, Chen Q. Denitrifying anaerobic methane oxidation and mechanisms influencing it in Yellow River Delta coastal wetland soil, China. CHEMOSPHERE 2022; 298:134345. [PMID: 35307384 DOI: 10.1016/j.chemosphere.2022.134345] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 05/16/2023]
Abstract
Methane oxidation coupled to denitrification is mediated by Candidatus "Methylomirabilis oxyfera" (M. oxyfera), which belongs to the candidate phylum NC10, and plays a crucial role in the global carbon and nitrogen cycle. Using the Yellow River Delta coastal wetland as the study area, molecular biology technology and laboratory incubation were used to determine the abundance of NC10 bacteria and the denitrifying anaerobic methane oxidation (DAMO) rate in soils from different vegetation areas. The results of the electrophoresis detection show that M. oxyfera-like bacteria can be found in the four types of soils, according to the growth analysis by the system, OTU1 (SA) has been found the highest similarity to first-discovered Candidatus Methylomir-abilis oxyfera (FP565575) (over 98%); Vegetation cover significantly increased the abundance of M. oxyfera-like bacteria compared to beach areas, which abundance was significantly higher in deeper layers than in surface ones. Nitrate, nitrite, total nitrogen, and conductivity were identified as the main environmental factors affecting the DAMO rate. This study showed that both groups A and B of Candidatus M. oxyfera-like bacteria exist in the coastal wetland of the Yellow River Delta, which provides molecular biological evidence for the existence of the DAMO process therein. Moreover, it was revealed the influence mechanism of physical and chemical characteristics of each region on the DAMO rate. This is of significance for furthering our understanding of the coupled effect of the global carbon and nitrogen cycle.
Collapse
Affiliation(s)
- Zihao Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Jinye Li
- College of Resource & Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaoya Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Kun Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
7
|
Wang J, Yao X, Jia Z, Zhu L, Zheng P, Kartal B, Hu B. Nitrogen input promotes denitrifying methanotrophs' abundance and contribution to methane emission reduction in coastal wetland and paddy soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119090. [PMID: 35240269 DOI: 10.1016/j.envpol.2022.119090] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms. However, how elevated nitrogen level affects denitrifying methanotrophs has not been elucidated. In this study, sediment/soil samples from coastal wetland with continuous nitrogen input and paddy field with periodic nitrogen input were collected to investigate the influence of nitrogen input on the abundance and activity of denitrifying methanotrophs. The results indicated that nitrogen input significantly promoted DAMO microorganisms' abundance and contribution to methane emission reduction. In the coastal wetland, the contribution rate of DAMO process to methane removal increased from 12.1% to 33.5% along with continuously elevated nitrogen level in the 3-year tracking study. In the paddy field, the DAMO process accounted for 71.9% of total methane removal when nitrogen fertilizer was applied during the growing season, exceeding the aerobic methane oxidation process. This work would help us better understand the microbial methane cycle and reduce uncertainties in the estimations of the global methane emission.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiangwu Yao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Boran Kartal
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Hu J, Ke X, Wang B, Mei Y, Xiao N, Wan X, Liu G, Hu M, Zhao J. SSThe coexistence and diversity of Candidatus methylomirabilis oxyfera-like and anammox bacteria in sediments of an urban eutrophic lake. Int Microbiol 2022; 25:457-469. [DOI: 10.1007/s10123-021-00230-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
|
9
|
Ren L, Wu X, Ma D, Liu L, Li X, Song D. Nitrite-dependent anaerobic methane oxidation bacteria and potential in permafrost region of Daxing'an Mountains. Appl Microbiol Biotechnol 2022; 106:743-754. [PMID: 34982194 DOI: 10.1007/s00253-021-11739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/02/2022]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) acts as a crucial link between biogeochemical carbon and nitrogen cycles. Nevertheless, very few studies have characterized n-damo microorganisms in high-latitude permafrost regions. Therefore, this study investigated the vertical distribution and diversity of n-damo bacterial communities in soil from three forest types in the permafrost regions of the Daxing'an Mountains. A total of 11 and 8 operational taxonomic units (OTUs) of n-damo 16S rRNA and pmoA genes were observed, respectively. Remarkable spatial variations in n-damo bacteria community richness, diversity, and structure were observed at different soil depths. Moreover, the abundances of n-damo bacteria (16S rRNA and pmoA genes) varied between 1.55 × 104 to 1.47 × 105 and 1.31 × 103 to 3.11 × 104 copies g-1 dry soil (ds), as demonstrated by quantitative PCR analyses. 13CH4 stable isotope tracer assays indicated that the potential n-damo rates varied from 0 to 1.26 nmol g-1 day-1, with the middle layers (20-40 cm and 40-60 cm) exhibiting significantly higher values than the upper (0-20 cm) and deeper layers (80-100 cm) in all three forest types. Redundancy analyses (RDA) indicated that total organic carbon (TOC), nitrate (NO3--N), and nitrite (NO2--N) were key modulators of the distribution of n-damo bacterial communities. This study thus demonstrated the widespread occurrence of n-damo bacteria in cold and high-latitude regions of forest ecosystems and provided important insights into the global distribution of these bacteria. KEY POINTS: • This study detected n-damo bacteria in soil samples obtained from the permafrost region of three forest types in the Daxing'an Mountains. • The community composition of n-damo bacteria was mainly affected by soil depth and not forest type. • The abundances of n-damo bacteria first increased and then decreased at higher soil depths.
Collapse
Affiliation(s)
- Lu Ren
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| | - Xiangwen Wu
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| | - Dalong Ma
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China. .,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China.
| | - Lin Liu
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| | - Xin Li
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| | - Dandan Song
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| |
Collapse
|
10
|
Zhang X, Meng H, Yang Y, Lan W, Wang W, Lam PKS, Li XY, Gu JD. Diversity, abundance, and distribution of anammox bacteria in shipping channel sediment of Hong Kong by analysis of DNA and RNA. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1705-1718. [PMID: 33433766 DOI: 10.1007/s10646-020-02332-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Anammox bacteria have been detected in various ecosystems, but their occurrence and community composition along the shipping channels have not been reported. In this study, anammox bacteria were recovered by PCR-amplified biomarker hzsB gene from the genomic DNA of the sediment samples. Phylogenetic tree revealed that Candidatus Scalindua and Ca. Brocadia dominated the anammox community of the Hong Kong channels; Ca. Scalindua spp. was present abundantly at the sites farther from the shore, whereas Ca. Jettenia and Ca. Kuenenia were detected as the minor members in the estuarine sediments near the shipping terminals. The highest values of Shannon-Wiener index and Chao1 were identified in the sediments along the Urmston road (UR), suggesting the highest α-diversity and species richness of anammox bacteria. PCoA analysis indicated that anammox bacterial communities along UR and Tai Hong (TH) channel were site-specific because these samples were grouped and clearly separated from the other samples. The maximum diversity of anammox bacteria was detected in UR samples, ranging from 6.28 × 105 to 1.28 × 106 gene copies per gram of dry sediment. A similar pattern of their transcriptional activities was also observed among these channels. Pearson's moment correlation and redundancy analysis indicated that NH4+-N was a strong factor shaping the community structure, which showed significant positive correlation with the anammox bacterial abundance and anammox transcriptional activities (p < 0.01, r > 0.8). Also, NH4+-N, (NO3- + NO2-)-N, and NH4+/NOX were additional key environmental factors that influenced the anammox community diversity and distribution. This study yields a better understanding of the ecological distribution of anammox bacteria and the dominant genera in selective niche.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Han Meng
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, The People's Republic of China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, 510275, The People's Republic of China
| | - Wensheng Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, The Shenzhen Academy of Inspection and Quarantine, Food Inspection and Quarantine Center of Shenzhen Customs, 1011 Fuqiang Road, Shenzhen, 518045, The People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Paul K S Lam
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, The People's Republic of China
| | - Xiao-Yan Li
- Department of Civil and Environmental Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, The People's Republic of China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, The People's Republic of China.
| |
Collapse
|
11
|
Ding J, Zeng RJ. Fundamentals and potential environmental significance of denitrifying anaerobic methane oxidizing archaea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143928. [PMID: 33316511 DOI: 10.1016/j.scitotenv.2020.143928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/01/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Many properties of denitrifying anaerobic methane oxidation (DAMO) bacteria have been explored since their first discovery, while DAMO archaea have attracted less attention. Since nitrate is more abundant than nitrite not only in wastewater but also in the natural environment, in depth investigations of the nitrate-DAMO process should be conducted to determine its environmental significance in the global carbon and nitrogen cycles. This review summarizes the status of research on DAMO archaea and the catalyzed nitrate-dependent anaerobic methane oxidation, including such aspects as laboratory enrichment, environmental distribution, and metabolic mechanism. It is shown that appropriate inocula and enrichment parameters are important for the culture enrichment and thus the subsequent DAMO activity, but there are still relatively few studies on the environmental distribution and physiological metabolism of DAMO archaea. Finally, some hypotheses and directions for future research on DAMO archaea, anaerobic methanotrophic archaea, and even anaerobically metabolizing archaea are also discussed.
Collapse
Affiliation(s)
- Jing Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
12
|
Chen F, Zheng Y, Hou L, Niu Y, Gao D, An Z, Zhou J, Yin G, Dong H, Han P, Liang X, Liu M. Microbial abundance and activity of nitrite/nitrate-dependent anaerobic methane oxidizers in estuarine and intertidal wetlands: Heterogeneity and driving factors. WATER RESEARCH 2021; 190:116737. [PMID: 33326895 DOI: 10.1016/j.watres.2020.116737] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) is a crucial link between carbon and nitrogen cycles in estuarine and coastal ecosystems. However, the factors that affect the heterogeneous variability in n-DAMO microbial abundance and activity across estuarine and intertidal wetlands remain unclear. This study examined the spatiotemporal variations in n-DAMO microbial abundance and associated activity in different estuarine and intertidal habitats via quantitative PCR and 13C stable isotope experiments. The results showed that Candidatus 'Methylomirabilis oxyfera' (M. oxyfera)-like DAMO bacteria and Candidatus 'Methanoperedens nitroreducens' (M. nitroreducens)-like DAMO archaea cooccurred in estuarine and intertidal wetlands, with a relatively higher abundance of the M. oxyfera-like bacterial pmoA gene (4.0 × 106-7.6 × 107 copies g-1 dry sediment) than the M. nitroreducens-like archaeal mcrA gene (4.5 × 105-9.4 × 107 copies g-1 dry sediment). The abundance of the M. oxyfera-like bacterial pmoA gene was closely associated with sediment pH and ammonium (P<0.05), while no significant relationship was detected between M. nitroreducens-like archaeal mcrA gene abundance and the measured environmental parameters (P>0.05). High n-DAMO microbial activity was observed, which varied between 0.2 and 84.3 nmol 13CO2 g-1 dry sediment day-1 for nitrite-DAMO bacteria and between 0.4 and 32.6 nmol 13CO2 g-1 dry sediment day-1 for nitrate-DAMO archaea. The total n-DAMO potential tended to be higher in the warm season and in the upstream freshwater and low-salinity estuarine habitats and was significantly related to sediment pH, total organic carbon, Fe(II), and Fe(III) contents (P<0.05). In addition to acting as an important methane (CH4) sink, n-DAMO microbes had the potential to consume a substantial amount of reactive N in estuarine and intertidal environments, with estimated nitrogen elimination rates of 0.5-224.7 nmol N g-1 dry sediment day-1. Overall, our investigation reveals the distribution pattern and controlling factors of n-DAMO bioprocesses in estuarine and intertidal marshes and gains a better understanding of the coupling mechanisms between carbon and nitrogen cycles.
Collapse
Affiliation(s)
- Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Yuhui Niu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhirui An
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
13
|
Nie WB, Ding J, Xie GJ, Yang L, Peng L, Tan X, Liu BF, Xing DF, Yuan Z, Ren NQ. Anaerobic Oxidation of Methane Coupled with Dissimilatory Nitrate Reduction to Ammonium Fuels Anaerobic Ammonium Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1197-1208. [PMID: 33185425 DOI: 10.1021/acs.est.0c02664] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) is critical for mitigating methane emission and returning reactive nitrogen to the atmosphere. The genomes of n-DAMO archaea show that they have the potential to couple anaerobic oxidation of methane to dissimilatory nitrate reduction to ammonium (DNRA). However, physiological details of DNRA for n-DAMO archaea were not reported yet. This work demonstrated n-DAMO archaea coupling the anaerobic oxidation of methane to DNRA, which fueled Anammox in a methane-fed membrane biofilm reactor with nitrate as only electron acceptor. Microelectrode analysis revealed that ammonium accumulated where nitrite built up in the biofilm. Ammonium production and significant upregulation of gene expression for DNRA were detected in suspended n-DAMO culture with nitrite exposure, indicating that nitrite triggered DNRA by n-DAMO archaea. 15N-labeling batch experiments revealed that n-DAMO archaea produced ammonium from nitrate rather than from external nitrite. Localized gradients of nitrite produced by n-DAMO archaea in biofilms induced ammonium production via the DNRA process, which promoted nitrite consumption by Anammox bacteria and in turn helped n-DAMO archaea resist stress from nitrite. As biofilms predominate in various ecosystems, anaerobic oxidation of methane coupled with DNRA could be an important link between the global carbon and nitrogen cycles that should be investigated in future research.
Collapse
Affiliation(s)
- Wen-Bo Nie
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Jie Ding
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Guo-Jun Xie
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Lu Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xin Tan
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Bing-Feng Liu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - De-Feng Xing
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Nan-Qi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| |
Collapse
|
14
|
Cheng H, Jiang ZY, Ma XX, Wang YS. Nitrogen dynamics in the mangrove sediments affected by crabs in the intertidal regions. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:669-675. [PMID: 32333253 DOI: 10.1007/s10646-020-02212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Crab is an important benthonic animal in mangrove ecosystem, however, the potential function of crabs on nitrogen (N) transformation in mangrove ecosystems is still poorly understood. The present study aimed to explore the potential effect of crab burrows on nitrification/denitrification within the sediments. The results showed that the presence of crab burrows could directly promote soil nitrification, the regions within more crab burrows appeared to possess higher nitrification. Higher AOA and AOB gene copies were also observed in the sediments surrounding crab burrows than those in the sediments without crab burrow. On the contrary, lower nirS copies, a denitrification related gene, were detected in the sediments surrounding crab burrows. In summary, the present study proposed new evidences of nitrification enhancement deriving by crabs, the presence of crabs might be significant in alleviating nitrification inhibition and benefits the growth of mangroves under tidal flooding.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhao-Yu Jiang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiao-Xia Ma
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- School of Life Sciences, Jinan University, Guangzhou, 510632, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
15
|
Diversity, enrichment, and genomic potential of anaerobic methane- and ammonium-oxidizing microorganisms from a brewery wastewater treatment plant. Appl Microbiol Biotechnol 2020; 104:7201-7212. [PMID: 32607646 PMCID: PMC7374466 DOI: 10.1007/s00253-020-10748-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 10/29/2022]
Abstract
Anaerobic wastewater treatment offers several advantages; however, the effluent of anaerobic digesters still contains high levels of ammonium and dissolved methane that need to be removed before these effluents can be discharged to surface waters. The simultaneous anaerobic removal of methane and ammonium by denitrifying (N-damo) methanotrophs in combination with anaerobic ammonium-oxidizing (anammox) bacteria could be a potential solution to this challenge. After a molecular survey of a wastewater plant treating brewery effluent, indicating the presence of both N-damo and anammox bacteria, we started an anaerobic bioreactor with a continuous supply of methane, ammonium, and nitrite to enrich these anaerobic microorganisms. After 14 months of operation, a stable enrichment culture containing two types of 'Candidatus Methylomirabilis oxyfera' bacteria and two strains of 'Ca. Brocadia'-like anammox bacteria was achieved. In this community, anammox bacteria converted 80% of the nitrite with ammonium, while 'Ca. Methylomirabilis' contributed to 20% of the nitrite consumption. The analysis of metagenomic 16S rRNA reads and fluorescence in situ hybridization (FISH) correlated well and showed that, after 14 months, 'Ca. Methylomirabilis' and anammox bacteria constituted approximately 30 and 20% of the total microbial community. In addition, a substantial part (10%) of the community consisted of Phycisphaera-related planctomycetes. Assembly and binning of the metagenomic sequences resulted in high-quality draft genome of two 'Ca. Methylomirabilis' species containing the marker genes pmoCAB, xoxF, and nirS and putative NO dismutase genes. The anammox draft genomes most closely related to 'Ca. Brocadia fulgida' included the marker genes hzsABC, hao, and hdh. Whole-reactor and batch anaerobic activity measurements with methane, ammonium, nitrite, and nitrate revealed an average anaerobic methane oxidation rate of 0.12 mmol h-1 L-1 and ammonium oxidation rate of 0.5 mmol h-1 L-1. Together, this study describes the enrichment and draft genomes of anaerobic methanotrophs from a brewery wastewater treatment plant, where these organisms together with anammox bacteria can contribute significantly to the removal of methane and ammonium in a more sustainable way. KEY POINTS: • An enrichment culture containing both N-damo and anammox bacteria was obtained. • Simultaneous consumption of ammonia, nitrite, and methane under anoxic conditions. • In-depth metagenomic biodiversity analysis of inoculum and enrichment culture.
Collapse
|
16
|
Bagnoud A, Guye-Humbert S, Schloter-Hai B, Schloter M, Zopfi J. Environmental factors determining distribution and activity of anammox bacteria in minerotrophic fen soils. FEMS Microbiol Ecol 2020; 96:5647352. [PMID: 31782780 DOI: 10.1093/femsec/fiz191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/26/2019] [Indexed: 11/13/2022] Open
Abstract
In contrast to the pervasive occurrence of denitrification in soils, anammox (anaerobic ammonium oxidation) is a spatially restricted process that depends on specific ecological conditions. To identify the factors that constrain the distribution and activity of anammox bacteria in terrestrial environments, we investigated four different soil types along a catena with opposing ecological gradients of nitrogen and water content, from an amended pasture to an ombrotrophic bog. Anammox was detected by polymerase chain reaction (PCR) and quantitative PCR (qPCR) only in the nitrophilic wet meadow and the minerotrophic fen, in soil sections remaining water-saturated for most of the year and whose interstitial water contained inorganic nitrogen. Contrastingly, aerobic ammonia oxidizing microorganisms were present in all examined samples and outnumbered anammox bacteria usually by at least one order of magnitude. 16S rRNA gene sequencing revealed a relatively high diversity of anammox bacteria with one Ca. Brocadia cluster. Three additional clusters could not be affiliated to known anammox genera, but have been previously detected in other soil systems. Soil incubations using 15N-labeled substrates revealed that anammox processes contributed about <2% to total N2 formation, leaving nitrification and denitrification as the dominant N-removal mechanism in these soils that represent important buffer zones between agricultural land and ombrotrophic peat bogs.
Collapse
Affiliation(s)
- Alexandre Bagnoud
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland.,Institut de Génie Thermique, Haute École d'Ingénierie et de Gestion du Canton de Vaud, Avenue des Sports 20, CH-1400 Yverdon-les-Bains, Switzerland
| | - Sylvia Guye-Humbert
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
| | - Brigitte Schloter-Hai
- Research Unit for Comparative Microbiome Analysis; Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis; Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Jakob Zopfi
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland.,Aquatic and Stable Isotope Biogeochemistry, University of Basel, Bernoullistrasse 30, CH-4056 Basel, Switzerland
| |
Collapse
|
17
|
Stultiens K, Cruz SG, van Kessel MAHJ, Jetten MSM, Kartal B, Op den Camp HJM. Interactions between anaerobic ammonium- and methane-oxidizing microorganisms in a laboratory-scale sequencing batch reactor. Appl Microbiol Biotechnol 2019; 103:6783-6795. [PMID: 31227868 PMCID: PMC6667409 DOI: 10.1007/s00253-019-09976-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
The reject water of anaerobic digestors still contains high levels of methane and ammonium that need to be treated before these effluents can be discharged to surface waters. Simultaneous anaerobic methane and ammonium oxidation performed by nitrate/nitrite-dependent anaerobic methane-oxidizing(N-damo) microorganisms and anaerobic ammonium-oxidizing(anammox) bacteria is considered a potential solution to this challenge. Here, a stable coculture of N-damo archaea, N-damo bacteria, and anammox bacteria was obtained in a sequencing batch reactor fed with methane, ammonium, and nitrite. Nitrite and ammonium removal rates of up to 455 mg N-NO2- L-1 day-1 and 228 mg N-NH4+ L-1 were reached. All nitrate produced by anammox bacteria (57 mg N-NO3- L-1 day-1) was consumed, leading to a nitrogen removal efficiency of 97.5%. In the nitrite and ammonium limited state, N-damo and anammox bacteria each constituted about 30-40% of the culture and were separated as granules and flocs in later stages of the reactor operation. The N-damo archaea increased up to 20% and mainly resided in the granular biomass with their N-damo bacterial counterparts. About 70% of the nitrite in the reactor was removed via the anammox process, and batch assays confirmed that anammox activity in the reactor was close to its maximal potential activity. In contrast, activity of N-damo bacteria was much higher in batch, indicating that these bacteria were performing suboptimally in the sequencing batch reactor, and would probably be outcompeted by anammox bacteria if ammonium was supplied in excess. Together these results indicate that the combination of N-damo and anammox can be implemented for the removal of methane at the expense of nitrite and nitrate in future wastewater treatment systems.
Collapse
Affiliation(s)
- Karin Stultiens
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Simon Guerrero Cruz
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Maartje A H J van Kessel
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Wang J, Cai C, Li Y, Hua M, Wang J, Yang H, Zheng P, Hu B. Denitrifying Anaerobic Methane Oxidation: A Previously Overlooked Methane Sink in Intertidal Zone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:203-212. [PMID: 30457852 DOI: 10.1021/acs.est.8b05742] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The intertidal zone is an open ecosystem rich in organic matter and plays an important role in global biogeochemical cycles. It was previously considered that methane was mainly removed by sulfate-dependent anaerobic methane oxidation (sulfate-AOM) process in marine ecosystems while other anaerobic methane oxidation processes were ignored. Recent researches have demonstrated that denitrifying anaerobic methane oxidation (DAMO), consisting of nitrite-dependent anaerobic methane oxidation (nitrite-AOM) and nitrate-dependent anaerobic methane oxidation (nitrate-AOM), can also oxidize methane. In this work, the community structure, quantity and potential methane oxidizing rate of DAMO archaea and bacteria in the intertidal zone were studied by high-throughput sequencing, qPCR and stable isotope tracing method. The results showed that nitrate-AOM and nitrite-AOM were both active in the intertidal zone and showed approximate methane oxidation rates. The copy number of 16S rRNA gene of DAMO archaea and DAMO bacteria were 104 ∼ 105 copies g-1 (dry sediment), whereas NC10 bacteria were slightly higher. The contribution rate of DAMO process to total anaerobic methane removal in the intertidal zone reached 65.6% ∼ 100%, which indicates that DAMO process is an important methane sink in intertidal ecosystem. Laboratory incubations also indicated that DAMO archaea were more sensitive to oxygen and preferred a more anoxic environment. These results help us draw a more complete picture of methane and nitrogen cycles in natural habitats.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Chaoyang Cai
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Yufen Li
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Miaolian Hua
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Junren Wang
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Hongrui Yang
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Ping Zheng
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Baolan Hu
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety , Hangzhou , China
| |
Collapse
|
19
|
Meng H, Zhou Z, Wu R, Wang Y, Gu JD. Diazotrophic microbial community and abundance in acidic subtropical natural and re-vegetated forest soils revealed by high-throughput sequencing of nifH gene. Appl Microbiol Biotechnol 2018; 103:995-1005. [PMID: 30474727 DOI: 10.1007/s00253-018-9466-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 01/09/2023]
Abstract
Biological nitrogen fixation (BNF) is an important natural biochemical process converting the inert dinitrogen gas (N2) in the atmosphere to ammonia (NH3) in the N cycle. In this study, the nifH gene was chosen to detect the diazotrophic microorganisms with high-throughput sequencing from five acidic forest soils, including three natural forests and two re-vegetated forests. Soil samples were taken in two seasons (summer and winter) at two depth layers (surface and lower depths). A dataset of 179,600 reads obtained from 20 samples were analyzed to provide the microbial community structure, diversity, abundance, and relationship with physiochemical parameters. Both archaea and bacteria were detected in these samples and diazotrophic bacteria were the dominant members contributing to the biological dinitrogen fixation in the acidic forest soils. Cyanobacteria, Firmicutes, Proteobacteria, Spirocheates, and Verrucomicrobia were observed, especially the Proteobacteria as the most abundant phylum. The core genera were Bradyrhizobium and Methylobacterium from α-Proteobacteia, and Desulfovibrio from δ-Proteobacteia in the phylum of Proteobacteia of these samples. The diversity indices and the gene abundances of all samples were higher in the surface layer than the lower layer. Diversity was apparently higher in re-vegetated forests than the natural forests. Significant positive correlation to the organic matter and nitrogen-related parameters was observed, but there was no significant seasonal variation on the community structure and diversity in these samples between the summer and winter. The application of high-throughput sequencing method provides a better understanding and more comprehensive information of diazotrophs in acidic forest soils than conventional and PCR-based ones.
Collapse
Affiliation(s)
- Han Meng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Ruonan Wu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Yongfeng Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, People's Republic of China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
20
|
Fernández-Baca CP, Truhlar AM, Omar AEH, Rahm BG, Walter MT, Richardson RE. Methane and nitrous oxide cycling microbial communities in soils above septic leach fields: Abundances with depth and correlations with net surface emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:429-441. [PMID: 29860012 DOI: 10.1016/j.scitotenv.2018.05.303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Onsite septic systems use soil microbial communities to treat wastewater, in the process creating potent greenhouse gases (GHGs): methane (CH4) and nitrous oxide (N2O). Subsurface soil dispersal systems of septic tank overflow, known as leach fields, are an important part of wastewater treatment and have the potential to contribute significantly to GHG cycling. This study aimed to characterize soil microbial communities associated with leach field systems and quantify the abundance and distribution of microbial populations involved in CH4 and N2O cycling. Functional genes were used to target populations producing and consuming GHGs, specifically methyl coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) for CH4 and nitric oxide reductase (cnorB) and nitrous oxide reductase (nosZ) for N2O. All biomarker genes were found in all soil samples regardless of treatment (leach field, sand filter, or control) or depth (surface or subsurface). In general, biomarker genes were more abundant in surface soils than subsurface soils suggesting the majority of GHG cycling is occurring in near-surface soils. Ratios of production to consumption gene abundances showed a positive relationship with CH4 emissions (mcrA:pmoA, p < 0.001) but not with N2O emission (cnorB:nosZ, p > 0.05). Of the three measured soil parameters (volumetric water content (VWC), temperature, and conductivity), only VWC was significantly correlated to a biomarker gene, mcrA (p = 0.0398) but not pmoA or either of the N2O cycling genes (p > 0.05 for cnorB and nosZ). 16S rRNA amplicon library sequencing results revealed soil VWC, CH4 flux and N2O flux together explained 64% of the microbial community diversity between samples. Sequencing of mcrA and pmoA amplicon libraries revealed treatment had little effect on diversity of CH4 cycling organisms. Overall, these results suggest GHG cycling occurs in all soils regardless of whether or not they are associated with a leach field system.
Collapse
Affiliation(s)
- Cristina P Fernández-Baca
- Department of Civil and Environmental Engineering, 220 Hollister Hall, Cornell University, Ithaca, NY, United States.
| | - Allison M Truhlar
- New York State Water Resources Institute, 230 Riley-Robb Hall, Cornell University, Ithaca, NY, United States
| | - Amir-Eldin H Omar
- Department of Molecular Biology and Genetics, 107 Biotechnology Building, Cornell University, Ithaca, NY, United States
| | - Brian G Rahm
- New York State Water Resources Institute, 230 Riley-Robb Hall, Cornell University, Ithaca, NY, United States
| | - M Todd Walter
- Department of Biological and Environmental Engineering, 232 Riley-Robb Hall, Cornell University, Ithaca, NY, United States
| | - Ruth E Richardson
- Department of Civil and Environmental Engineering, 220 Hollister Hall, Cornell University, Ithaca, NY, United States
| |
Collapse
|
21
|
Lu YZ, Fu L, Li N, Ding J, Bai YN, Samaras P, Zeng RJ. The content of trace element iron is a key factor for competition between anaerobic ammonium oxidation and methane-dependent denitrification processes. CHEMOSPHERE 2018; 198:370-376. [PMID: 29421752 DOI: 10.1016/j.chemosphere.2018.01.172] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/17/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Coupling of anaerobic ammonium oxidation (Anammox) with denitrifying anaerobic methane oxidation (DAMO) is a sustainable pathway for nitrogen removal and reducing methane emissions from wastewater treatment processes. However, studies on the competitive relation between Anammox bacteria and DAMO bacteria are limited. Here, we investigated the effects of variations in the contents of trace element iron on Anammox and DAMO microorganisms. The short-term results indicated that optimal concentrations of iron, which obviously stimulated the activity of Amammox bacteria, DAMO bacteria and DAMO archaea, were 80, 20, and 80 μM, respectively. The activity of Amammox bacteria increased more significant than DAMO bacteria with increasing contents of trace element iron. After long-term incubation with high content of trace element iron of 160 μM in the medium, Candidatus Brocadia (Amammox bacteria) outcompeted Candidatus Methylomirabilis oxyfera (DAMO bacteria), and ANME-2d (DAMO archaea) remarkably increased in number and dominated the co-culture systems (64.5%). Meanwhile, with further addition of iron, the removal rate of ammonium and nitrate increased by 13.6 and 9.2 times, respectively, when compared with that noted in the control. As far as we know, this study is the first to explore the important role of trace element iron contents in the competition between Anammox bacteria and DAMO bacteria and further enrichment of DAMO archaea by regulating the contents of trace element iron.
Collapse
Affiliation(s)
- Yong-Ze Lu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Liang Fu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Na Li
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Jing Ding
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, People's Republic of China; Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Ya-Nan Bai
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, People's Republic of China; Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Petros Samaras
- Department of Food Technology, School of Agricultural Technology and Food Technology and Nutrition, Alexander Technological Educational Institute of Thessaloniki, GR-57400, Thessaloniki, Greece
| | - Raymond Jianxiong Zeng
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, People's Republic of China; Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, Jiangsu, 215123, People's Republic of China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
22
|
Effects of reforestation on ammonia-oxidizing microbial community composition and abundance in subtropical acidic forest soils. Appl Microbiol Biotechnol 2018; 102:5309-5322. [DOI: 10.1007/s00253-018-8873-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 02/03/2018] [Accepted: 02/10/2018] [Indexed: 01/01/2023]
|
23
|
Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary, China. Appl Microbiol Biotechnol 2018; 102:2441-2454. [DOI: 10.1007/s00253-017-8718-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/18/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
|
24
|
Chen J, Dick R, Lin JG, Gu JD. Current advances in molecular methods for detection of nitrite-dependent anaerobic methane oxidizing bacteria in natural environments. Appl Microbiol Biotechnol 2016; 100:9845-9860. [DOI: 10.1007/s00253-016-7853-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
|