1
|
Wu H, Yin J, Li S, Wang H, Jiang P, Li P, Ding Z, Yan H, Chen B, Wang L, Wang Q. Oral immunization with recombinant L. lactis expressing GCRV-II VP4 produces protection against grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109439. [PMID: 38341115 DOI: 10.1016/j.fsi.2024.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The hemorrhagic disease causing by grass carp reovirus (GCRV) infection, is associated with major economic losses and significant impact on aquaculture worldwide. VP4 of GCRV is one of the major outer capsid proteins which can induce an immune response in the host. In this study, pNZ8148-VP4/L. lactis was constructed to express recombinant VP4 protein of GCRV, which was confirmed by the Western-Blot and enzyme-linked immunosorbent assay. Then we performed the oral immunization for rare minnow model and the challenge with GCRV-II. After oral administration, pNZ8148-VP4/L. lactis can continuously reside in the intestinal tract to achieve antigen presentation. The intestinal and spleen samples were collected at different time intervals after immunization, and the expression of immune-related genes was detected by real-time fluorescence quantitative PCR. The results showed that VP4 recombinant L. lactis could induce complete cellular and humoral immune responses in the intestinal mucosal system, and effectively regulate the immunological effect of the spleen. The immunogenicity and the protective efficacy of the oral vaccine was evaluated by determining IgM levels and viral challenge to vaccinated fish, a significant level (P < 0.01) of antigen-specific IgM with GCRV-II neutralizing activity was able to be detected, which provided a effective protection in the challenge experiment. These results indicated that an oral probiotic vaccine with VP4 expression can provide effective protection for grass carp against GCRV-II challenge, suggesting a promising vaccine strategy for fish.
Collapse
Affiliation(s)
- Huiliang Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Siming Li
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, China
| | - Hao Wang
- Shanghai Ocean University/National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China
| | - Peng Jiang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, 530000, China
| | - Zhaoyang Ding
- Shanghai Ocean University/National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China
| | - Han Yan
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, China
| | - Bo Chen
- Nanchang Yimen Biology Technology Co., Ltd., Nanchang, 330200, China
| | - Linchuan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Qing Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| |
Collapse
|
2
|
Li F, Zhao H, Sui L, Yin F, Liu X, Guo G, Li J, Jiang Y, Cui W, Shan Z, Zhou H, Wang L, Qiao X, Tang L, Wang X, Li Y. Assessing immunogenicity of CRISPR-NCas9 engineered strain against porcine epidemic diarrhea virus. Appl Microbiol Biotechnol 2024; 108:248. [PMID: 38430229 PMCID: PMC10908614 DOI: 10.1007/s00253-023-12989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 03/03/2024]
Abstract
Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly infectious disease, resulting in substantial economic losses in the pig industry. Given that PEDV primarily infects the mucosal surfaces of the intestinal tract, it is crucial to improve the mucosal immunity to prevent viral invasion. Lactic acid bacteria (LAB) oral vaccines offer unique advantages and potential applications in combatting mucosal infectious diseases, making them an ideal approach for controlling PED outbreaks. However, traditional LAB oral vaccines use plasmids for exogenous protein expression and antibiotic genes as selection markers. Antibiotic genes can be diffused through transposition, transfer, or homologous recombination, resulting in the generation of drug-resistant strains. To overcome these issues, genome-editing technology has been developed to achieve gene expression in LAB genomes. In this study, we used the CRISPR-NCas9 system to integrate the PEDV S1 gene into the genome of alanine racemase-deficient Lactobacillus paracasei △Alr HLJ-27 (L. paracasei △Alr HLJ-27) at the thymidylate synthase (thyA) site, generating a strain, S1/△Alr HLJ-27. We conducted immunization assays in mice and piglets to evaluate the level of immune response and evaluated its protective effect against PEDV through challenge tests in piglets. Oral administration of the strain S1/△Alr HLJ-27 in mice and piglets elicited mucosal, humoral, and cellular immune responses. The strain also exhibited a certain level of resistance against PEDV infection in piglets. These results demonstrate the potential of S1/△Alr HLJ-27 as an oral vaccine candidate for PEDV control. KEY POINTS: • A strain S1/△Alr HLJ-27 was constructed as the candidate for an oral vaccine. • Immunogenicity response and challenge test was carried out to analyze the ability of the strain. • The strain S1/△Alr HLJ-27 could provide protection for piglets to a certain extent.
Collapse
Affiliation(s)
- Fengsai Li
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Haiyuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fangjie Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinzi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Guihai Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| |
Collapse
|
3
|
Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Biosci Rep 2023; 43:232386. [PMID: 36597861 PMCID: PMC9842951 DOI: 10.1042/bsr20211299] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
Synthetic biology has grown exponentially in the last few years, with a variety of biological applications. One of the emerging applications of synthetic biology is to exploit the link between microorganisms, biologics, and human health. To exploit this link, it is critical to select effective synthetic biology tools for use in appropriate microorganisms that would address unmet needs in human health through the development of new game-changing applications and by complementing existing technological capabilities. Lactic acid bacteria (LAB) are considered appropriate chassis organisms that can be genetically engineered for therapeutic and industrial applications. Here, we have reviewed comprehensively various synthetic biology techniques for engineering probiotic LAB strains, such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 mediated genome editing, homologous recombination, and recombineering. In addition, we also discussed heterologous protein expression systems used in engineering probiotic LAB. By combining computational biology with genetic engineering, there is a lot of potential to develop next-generation synthetic LAB with capabilities to address bottlenecks in industrial scale-up and complex biologics production. Recently, we started working on Lactochassis project where we aim to develop next generation synthetic LAB for biomedical application.
Collapse
|
4
|
Li F, Mei Z, Ju N, Sui L, Fan X, Wang Z, Li J, Jiang Y, Cui W, Shan Z, Zhou H, Wang L, Qiao X, Tang L, Wang X, Li Y. Evaluation of the immunogenicity of auxotrophic Lactobacillus with CRISPR-Cas9D10A system-mediated chromosomal editing to express porcine rotavirus capsid protein VP4. Virulence 2022; 13:1315-1330. [PMID: 35920261 PMCID: PMC9351582 DOI: 10.1080/21505594.2022.2107646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine rotavirus (PoRV) is an important pathogen, leading to the occurrence of viral diarrhoea . As the infection displays obvious enterotropism, intestinal mucosal immunity is the significant line of defence against pathogen invasion. Moreover, as lactic acid bacteria (LAB) show acid resistance, bile salt resistance and immune regulation, it is of great significance to develop an oral vaccine. Most traditional plasmid delivery vectors use antibiotic genes as selective markers, easily leading to antibiotic accumulation. Therefore, to select a food-grade marker in genetically engineering food-grade microorganisms is vital. Based on the CRISPR-Cas9D10A system, we constructed a stable auxotrophic Lactobacillus paracasei HLJ-27 (Lactobacillus △Alr HLJ-27) strain. In addition, as many plasmids replicate in the host bacteria, resulting in internal gene deletions. In this study,we used a temperature-sensitive gene editing plasmidto insert the VP4 gene into the genome, yielding the insertion mutant strains VP4/△Alr HLJ-27, VP4/△Alr W56, and VP4/W56. This recombinant bacterium efficiently induced secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses. These oral mucosal vaccines have the potential to act as an alternative to the application of antibiotics in the future and induce efficient immune responses against PEDV infection.
Collapse
Affiliation(s)
- Fengsai Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhuyuan Mei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ning Ju
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaolong Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zi Wang
- Tongliao Institute of agriculture and animal husbandry, Tongliao City, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Zhang H, Zhao H, Zhao Y, Sui L, Li F, Zhang H, Li J, Jiang Y, Cui W, Ding G, Zhou H, Wang L, Qiao X, Tang L, Wang X, Li Y. Auxotrophic Lactobacillus Expressing Porcine Rotavirus VP4 Constructed Using CRISPR-Cas9D10A System Induces Effective Immunity in Mice. Vaccines (Basel) 2022; 10:vaccines10091510. [PMID: 36146587 PMCID: PMC9504633 DOI: 10.3390/vaccines10091510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine rotavirus (PoRV) mainly causes acute diarrhea in piglets under eight weeks of age and has potentially high morbidity and mortality rates. As vaccine carriers for oral immunization, lactic acid bacteria (LAB) are an ideal strategy for blocking PoRV infections. However, the difficulty in knocking out specific genes, inserting foreign genes, and the residues of antibiotic selection markers are major challenges for the oral vaccination of LAB. In this study, the target gene, alanine racemase (alr), in the genome of Lactobacillus casei strain W56 (L. casei W56) was knocked out to construct an auxotrophic L. casei strain (L. casei Δalr W56) using the CRISPR-Cas9D10A gene editing system. A recombinant strain (pPG-alr-VP4/Δalr W56) was constructed using an electrotransformed complementary plasmid. Expression of the alr-VP4 fusion protein from pPG-alr-VP4/Δalr W56 was detected using Western blotting. Mice orally immunized with pPG-alr-VP4/Δalr W56 exhibited high levels of serum IgG and mucosal secretory immunoglobulin A (SIgA), which exhibited neutralizing effects against PoRV. Cytokines levels in serum detected using ELISA, indicated that the recombinant strain induced an immune response dominated by Th2 cells. Our data suggest that pPG-alr-VP4/Δalr W56, an antibiotic-resistance-free LAB, provides a safer vaccine strategy against PoRV infection.
Collapse
Affiliation(s)
- Hailin Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haiyuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Jiangsu Hanswine Food Co., Ltd., Ma’anshan 243000, China
| | - Yuliang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Fengsai Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Guojie Ding
- Harbin Vikeses Biological Technology Co., Ltd., Harbin 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
- Correspondence: (X.W.); (Y.L.); Tel./Fax: +86-451-5519-0363 (Y.L.)
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
- Correspondence: (X.W.); (Y.L.); Tel./Fax: +86-451-5519-0363 (Y.L.)
| |
Collapse
|
6
|
Wang N, Li J, Wang Y, Wang Y, Zhang D, Shi C, Li Y, Bergmann SM, Mo X, Yin J, Wang Q. Recombinant Lactococcus lactis Expressing Grass Carp Reovirus VP6 Induces Mucosal Immunity Against Grass Carp Reovirus Infection. Front Immunol 2022; 13:914010. [PMID: 35634331 PMCID: PMC9132009 DOI: 10.3389/fimmu.2022.914010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Grass carp haemorrhagic disease caused by grass carp reovirus II is a serious disease of the aquaculture industry and vaccination is the only effective method of GCRV protection. In this study, Lactococcus lactis was used as oral vaccine delivery to express the GCRV II VP6 protein. We evaluated the protective efficacy of the live vaccine strain to induce mucosal immune protection. After oral administration, the recombinant strains remained in the hindgut for antigen presentation and increased the survival rate 46.7% and the relative percent survival 42.9%, respectively versus control vaccination. Though L. lactis alone can induce the inflammatory response by stimulating the mucosal immune system, the recombinant L. lactis expressing VP6 greatly enhanced nonspecific immune responses via expression of immune related genes of the fish. Furthermore, both systemic and mucosal immunity was elicited following oral immunization with the recombinant strain and this strain also elicited an inflammatory response and cellular immunity to enhance the protective effect. L. lactis can therefore be utilized as a mucosal immune vector to trigger high levels of immune protection in fish at both the systemic and mucosal levels. L. lactis is a promising candidate for oral vaccine delivery.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiahao Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yajun Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Defeng Zhang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Xubing Mo
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
7
|
Khan MZ, Li F, Huang X, Nouman M, Bibi R, Fan X, Zhou H, Shan Z, Wang L, Jiang Y, Cui W, Qiao X, Li Y, Wang X, Tang L. Oral Immunization of Chickens with Probiotic Lactobacillus crispatus Constitutively Expressing the α-β2-ε-β1 Toxoids to Induce Protective Immunity. Vaccines (Basel) 2022; 10:698. [PMID: 35632454 PMCID: PMC9147743 DOI: 10.3390/vaccines10050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Clostridium perfringens (C. perfringens) is a bacterium that commonly causes zoonotic disease. The pathogenicity of C. perfringens is a result of the combined action of α, β, and ε exotoxins. In this study, Lactobacillus crispatus (pPG-T7g10/L. crispatus) expressing the main toxoids of C. perfringens, α, ε, β1, and β2, with EGFP-labeling, was constructed, and the protective effect was estimated in chickens. The α-β2-ε-β1 toxoid was constitutively expressed for confirmation by laser confocal microscopy and western blotting, and its immunogenicity was analyzed by enzyme-linked immunosorbent assay (ELISA) and immunohistochemical assays. After booster immunization, the probiotic vaccine group showed significantly higher levels (p < 0.05) of specific secretory IgA (sIgA) and IgY antibodies in the serum and intestinal mucus. Furthermore, the levels of cytokines, including interferon (IFN)-γ, interleukin (lL)-2, IL-4, IL-10, IL-12, and IL-17, and the proliferation of spleen lymphocytes in chickens orally immunized with pPG-E-α-β2-ε-β1/L. crispatus increased significantly. Histopathological observations showed that the intestinal pathological changes in chickens immunized with pPG-E-α-β2ε-β1/L. crispatus were significantly alleviated. These data reveal that the probiotic vaccine could stimulate mucosal, cellular, and humoral immunity and provide an active defense against the toxins of C. perfringens, suggesting a promising candidate for oral vaccines against C. perfringens.
Collapse
Affiliation(s)
- Mohammad Zeb Khan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
| | - Fengsai Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
| | - Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
| | | | - Roshna Bibi
- Department of Boyany, University of Swat, Mingora 19200, Pakistan;
| | - Xiaolong Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.K.); (F.L.); (X.H.); (X.F.); (H.Z.); (Z.S.); (L.W.); (Y.J.); (W.C.); (X.Q.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| |
Collapse
|
8
|
Afchangi A, Latifi T, Jalilvand S, Marashi SM, Shoja Z. Combined use of lactic-acid-producing bacteria as probiotics and rotavirus vaccine candidates expressing virus-specific proteins. Arch Virol 2021; 166:995-1006. [PMID: 33533975 DOI: 10.1007/s00705-021-04964-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Due to the lower efficacy of currently approved live attenuated rotavirus (RV) vaccines in developing countries, a new approach to the development of safe mucosally administered live bacterial vectors is being considered, using probiotic bacteria as an efficient delivery platform for heterologous RV antigens. Lactic acid bacteria (LAB), which are considered food-grade bacteria and normal microbiota, have been utilized throughout history as probiotics and developed since the 1990s as a delivery system for recombinant heterologous proteins. Over the last decade, LAB have frequently been used as a platform for the delivery of various RV antigens to the mucosa. Given the appropriate safety profile for neonates and providing the benefits of probiotics, recombinant LAB-based vaccines could potentially address the need for a subunit RV vaccine. The present review focuses mainly on different recombinant LAB vaccine constructs for RV and their potential as an alternative recombinant vaccine against RV disease.
Collapse
Affiliation(s)
- Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Food-grade expression of nattokinase in Lactobacillus delbrueckii subsp. bulgaricus and its thrombolytic activity in vitro. Biotechnol Lett 2020; 42:2179-2187. [PMID: 32705453 DOI: 10.1007/s10529-020-02974-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To produce nattokinase in a food-grade expression system and evaluate its thrombolytic activity in vitro. RESULTS No nattokinase activity from reconstituted strains was observed in simulated gastric juice, but the enzyme was stable in intestinal fluid, the relative activity of which was found to be 60% after 4 h. Due to the nattokinase being produced intracellularly by recombinant bacterial strains, the persistence of the bacteria in gastric juice ensured transmission of the nattokinase into intestinal juice. Because of subsequent disintegration of the bacteria, the highest nattokinase activity was observed after 3 h at approximately 32%, following its carriage within the recombinant strains to the intestinal fluid. CONCLUSIONS This study demonstrated that nattokinase from recombinant strains exhibited good thrombolytic activity in vitro and may be used by the dairy fermentation industry for the development of novel thrombolytic functional foods.
Collapse
|
10
|
Raya Tonetti F, Arce L, Salva S, Alvarez S, Takahashi H, Kitazawa H, Vizoso-Pinto MG, Villena J. Immunomodulatory Properties of Bacterium-Like Particles Obtained From Immunobiotic Lactobacilli: Prospects for Their Use as Mucosal Adjuvants. Front Immunol 2020; 11:15. [PMID: 32038659 PMCID: PMC6989447 DOI: 10.3389/fimmu.2020.00015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/06/2020] [Indexed: 01/26/2023] Open
Abstract
Non-viable lactic acid bacteria (LAB) have been proposed as antigen delivery platforms called bacterium-like particles (BLPs). Most studies have been performed with Lactococcus lactis-derived BLPs where multiple antigens were attached to the peptidoglycan surface and used to successfully induce specific immune responses. It is well-established that the immunomodulatory properties of LAB are strain dependent and therefore, the BLPs derived from each individual strain could have different adjuvant capacities. In this work, we obtained BLPs from immunomodulatory (immunobiotics) and non-immunomodulatory Lactobacillus rhamnosus and Lactobacillus plantarum strains and comparatively evaluated their ability to improve the intestinal and systemic immune responses elicited by an attenuated rotavirus vaccine. Results demonstrated that orally administered BLPs from non-immunomodulatory strains did not induce significant changes in the immune response triggered by rotavirus vaccine in mice. On the contrary, BLPs derived from immunobiotic lactobacilli were able to improve the levels of anti-rotavirus intestinal IgA and serum IgG, the numbers of CD24+B220+ B and CD4+ T cells in Peyer's patches and spleen as well as the production of IFN-γ by immune cells. Interestingly, among immunobiotics-derived BLPs, those obtained from L. rhamnosus CRL1505 and L. rhamnosus IBL027 enhanced more efficiently the intestinal and systemic humoral immune responses when compared to BLPs from other immunobiotic bacteria. The findings of this work indicate that it is necessary to perform an appropriate selection of BLPs in order to find those with the most efficient adjuvant properties. We propose the term Immunobiotic-like particles (IBLPs) for the BLPs derived from CRL1505 and IBL027 strains that are an excellent alternative for the development of mucosal vaccines.
Collapse
Affiliation(s)
- Fernanda Raya Tonetti
- Infection Biology Lab, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucumán, Argentina.,Facultad de Medicina, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.,Laboratorio de Ciencias Básicas & Or. Genética, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Lorena Arce
- Infection Biology Lab, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucumán, Argentina.,Facultad de Medicina, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.,Laboratorio de Ciencias Básicas & Or. Genética, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Maria Guadalupe Vizoso-Pinto
- Infection Biology Lab, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucumán, Argentina.,Facultad de Medicina, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.,Laboratorio de Ciencias Básicas & Or. Genética, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
LeCureux JS, Dean GA. Lactobacillus Mucosal Vaccine Vectors: Immune Responses against Bacterial and Viral Antigens. mSphere 2018; 3:e00061-18. [PMID: 29769376 PMCID: PMC5956152 DOI: 10.1128/msphere.00061-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lactic acid bacteria (LAB) have been utilized since the 1990s for therapeutic heterologous gene expression. The ability of LAB to elicit an immune response against expressed foreign antigens has led to their exploration as potential mucosal vaccine candidates. LAB vaccine vectors offer many attractive advantages: simple, noninvasive administration (usually oral or intranasal), the acceptance and stability of genetic modifications, relatively low cost, and the highest level of safety possible. Experimentation using LAB of the genus Lactobacillus has become popular in recent years due to their ability to elicit strong systemic and mucosal immune responses. This article reviews Lactobacillus vaccine constructs, including Lactobacillus species, antigen expression, model organisms, and in vivo immune responses, with a primary focus on viral and bacterial antigens.
Collapse
Affiliation(s)
- Jonathan S LeCureux
- Department of Natural and Applied Sciences, Evangel University, Springfield, Missouri, USA
| | - Gregg A Dean
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
12
|
Ding C, Ma J, Dong Q, Liu Q. Live bacterial vaccine vector and delivery strategies of heterologous antigen: A review. Immunol Lett 2018; 197:70-77. [PMID: 29550258 DOI: 10.1016/j.imlet.2018.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Live bacteria, including attenuated bacteria and probiotics, can be engineered to deliver target antigen to excite the host immune system. The preponderance of these live bacterial vaccine vectors is that they can stimulate durable humoral and cellular immunity. Moreover, delivery strategies of heterologous antigen in live bacterial promote the applications of new vaccine development. Genetic technologies are evolving, which potentiate the developing of heterologous antigen delivery systems, including bacterial surface display system, bacterial secretion system and balanced lethal vector system. Although the live bacterial vaccine vector is a powerful adjuvant, certain disadvantages, such as safety risk, must also be taken into account. In this review, we compare the development of representative live bacterial vectors, and summarize the main characterizations of the various delivery strategies of heterologous antigen in live vector vaccines.
Collapse
Affiliation(s)
- Chengchao Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
13
|
Xin Y, Guo T, Mu Y, Kong J. Identification and functional analysis of potential prophage-derived recombinases for genome editing in Lactobacillus casei. FEMS Microbiol Lett 2017; 364:4628040. [DOI: 10.1093/femsle/fnx243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yongping Xin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Yingli Mu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|