1
|
Pintarič M, Štuhec A, Tratnik E, Langerholc T. Spent Mushroom Substrate Improves Microbial Quantities and Enzymatic Activity in Soils of Different Farming Systems. Microorganisms 2024; 12:1521. [PMID: 39203364 PMCID: PMC11356570 DOI: 10.3390/microorganisms12081521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Organic fertilizers, such as spent mushroom substrate (SMS), improve soil fertility, but studies comparing their effects on different agricultural soils are limited. In this study, the effects of standard, SMS and composed fertilizers on soils from conventional-integrated, organic and biodynamic farming were investigated. Soil samples were analyzed for microorganisms and the activity of β-glucosidase (β-GLU), β-1,4-N-acetylglucosaminidase (NAG), urease (URE), arylamidase (ARN), phosphatase (PHOS), acid phosphatase (PAC), alkaline phosphatase (PAH) and arylsulphatase (ARS). Biodynamic soil showed the highest microbial counts and enzyme activities, followed by organic and conventional soils. SMS significantly increased the number of microorganisms and enzyme activities, especially in biodynamic and organic soils. Seasonal variations affected all microorganisms and most enzymes in all soils, except NAG in conventional and organic soils. Biodynamic soil showed stable activity of enzymes and microorganisms throughout the year, indicating greater stability. This study concludes that soil microorganisms and enzyme activities respond differently to fertilization depending on the soil type, with SMS demonstrating beneficial effects in all tested soils.
Collapse
Affiliation(s)
- Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.Š.); (E.T.); (T.L.)
| | | | | | | |
Collapse
|
2
|
Galgano S, Conway L, Fellows A, Houdijk J. Impact of precursor-derived peracetic acid on post-weaning diarrhea, intestinal microbiota, and predicted microbial functional genes in weaned pigs. Front Microbiol 2024; 15:1356538. [PMID: 38333588 PMCID: PMC10850238 DOI: 10.3389/fmicb.2024.1356538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Post-weaning diarrhea affects piglets in the nursery phase of production, leading to a substantial impact both at the farm and financial levels. The multifactorial etiology of this disease includes housing conditions, pig genetics, microbial composition, and metagenomic assets. Among the common therapeutic approaches, the widely used zinc oxide underwent a European Union ban in 2022 due to its negative environmental impact and correlation to increased antimicrobial resistance. During this study, we have tested two levels of inclusion of the potential antimicrobial alternative peracetic acid, delivered in water via the hydrolysis of the precursors sodium percarbonate and tetraacetylethylenediamine, in comparison to zinc oxide and an untreated control during a 2-week animal study. We assessed the microbial composition and predicted the metagenome, together with performance and physiological parameters, in order to describe the microbial functional role in etiopathology. Both zinc oxide and peracetic acid resulted in amelioration of the diarrheal status by the end of the trial period, with noticeable zinc oxide effects visible from the first week. This was accompanied by improved performance when compared to the first-week figures and a decreased stomach pH in both peracetic acid levels. A significant reduction in both stomach and caecal Proteobacteria was recorded in the zinc oxide group, and a significant reduction of Campylobacter in the stomach was reported for both zinc oxide and one of the peracetic acid concentrations. Among other functional differences, we found that the predicted ortholog for the zonula occludens toxin, a virulence factor present in pathogens like Escherichia coli and Campylobacter jejuni, was less abundant in the stomach of treated pigs compared to the control group. In water, peracetic acid delivered via precursor hydrolysis has the potential to be a valid intervention, an alternative to antimicrobial, to assist the weaning of piglets. Our findings support the view that post-weaning diarrhea is a complex multifactorial disease with an important metagenomic component characterized by the differential abundance of specific predicted orthologs and microbial genera in the stomach and caecum of pigs.
Collapse
Affiliation(s)
- Salvatore Galgano
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | | | | | - Jos Houdijk
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
3
|
Yan Z, Wang Z, Si G, Chen G, Feng T, Liu C, Chen J. Bacteria-loaded biochar for the immobilization of cadmium in an alkaline-polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1941-1953. [PMID: 38044401 DOI: 10.1007/s11356-023-31299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The combination of biochar and bacteria is a promising strategy for the remediation of Cd-polluted soils. However, the synergistic mechanisms of biochar and bacteria for Cd immobilization remain unclear. In this study, the experiments were conducted to evaluate the effects of the combination of biochar and Pseudomonas sp. AN-B15, on Cd immobilization, soil enzyme activity, and soil microbiome. The results showed that biochar could directly reduce the motility of Cd through adsorption and formation of CdCO3 precipitates, thereby protecting bacteria from Cd toxicity in the solution. In addition, bacterial growth further induces the formation of CdCO3 and CdS and enhances Cd adsorption by bacterial cells, resulting in a higher Cd removal rate. Thus, bacterial inoculation significantly enhances Cd removal in the presence of biochar in the solution. Moreover, soil incubation experiments showed that bacteria-loaded biochar significantly reduced soil exchangeable Cd in comparison with other treatments by impacting soil microbiome. In particular, bacteria-loaded biochar increased the relative abundance of Bacillus, Lysobacter, and Pontibacter, causing an increase in pH, urease, and arylsulfatase, thereby passivating soil exchangeable Cd and improving soil environmental quality in the natural alkaline Cd-contaminated soil. Overall, this study provides a systematic understanding of the synergistic mechanisms of biochar and bacteria for Cd immobilization in soil and new insights into the selection of functional strain for the efficient remediation of the contaminated environments by bacterial biochar composite.
Collapse
Affiliation(s)
- Zhengjian Yan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Zitong Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guangzheng Si
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guohui Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China.
| |
Collapse
|
4
|
Ahamad A, Yuan C, Chung C, Blair B, Tran A, Tehreem B. Metabolism and gene sequence variation in Turicella otitidis implies its adaptability and pathogenicity in extra-otic infection: a systematic review. BMC Infect Dis 2023; 23:735. [PMID: 37891485 PMCID: PMC10612267 DOI: 10.1186/s12879-023-08721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Turicella otitidis belongs to the Corynebacteriaceae family and is a normal inhabitant of the ear and exists in a commensal relationship with its host. In children, T. otitidis is frequently associated with otitis media. The emergence of Turicella otitidis as a pathogen is concerning, particularly due to the limited availability of data on its pathogenic properties. The objective of this study is to conduct a systematic review of T. otitidis infections occurring in both the ear and other anatomical sites, and to summarize the differences in metabolism and genome sequences between isolates obtained from the ear and blood.
Collapse
Affiliation(s)
- Afrinash Ahamad
- Clinical Laboratory Sciences Program, School of Health Profession, Stony Brook University, Stony Brook, NY, USA.
- Department of Neuroscience and Behavior, Stony Brook University, Stony Brook, NY, USA.
- Department of Pathology, Clinical Microbiology, NYU Langone Health, New York, NY, USA.
| | - Cuishan Yuan
- Clinical Laboratory Sciences Program, School of Health Profession, Stony Brook University, Stony Brook, NY, USA
| | - Casey Chung
- Clinical Laboratory Sciences Program, School of Health Profession, Stony Brook University, Stony Brook, NY, USA
| | - Briana Blair
- Clinical Laboratory Sciences Program, School of Health Profession, Stony Brook University, Stony Brook, NY, USA
| | - Amy Tran
- Clinical Laboratory Sciences Program, School of Health Profession, Stony Brook University, Stony Brook, NY, USA
| | - Bushra Tehreem
- Department of Pediatrics- SUNY Down State, Brooklyn, NY, USA
| |
Collapse
|
5
|
Yu M, Wu M, Secundo F, Liu Z. Detection, production, modification, and application of arylsulfatases. Biotechnol Adv 2023; 67:108207. [PMID: 37406746 DOI: 10.1016/j.biotechadv.2023.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Arylsulfatase is a subset of sulfatase which catalyzes the hydrolysis of aryl sulfate ester. Arylsulfatase is widely distributed among microorganisms, mammals and green algae, but the arylsulfatase-encoding gene has not yet been found in the genomes of higher plants so far. Arylsulfatase plays an important role in the sulfur flows between nature and organisms. In this review, we present the maturation and catalytic mechanism of arylsulfatase, and the recent literature on the expression and production of arylsulfatase in wild-type and engineered microorganisms, as well as the modification of arylsulfatase by genetic engineering are summarized. We focus on arylsulfatases from microbial origin and give an overview of different assays and substrates used to determine the arylsulfatase activity. Furthermore, the researches about arylsulfatase application on the field of agar desulfation, soil sulfur cycle and soil evaluation are also discussed. Finally, the perspectives concerning the future research on arylsulfatase are prospected.
Collapse
Affiliation(s)
- Mengjiao Yu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Meixian Wu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, via Mario Bianco 9, Milan 20131, Italy
| | - Zhen Liu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
6
|
Xu X, Deng X, Lin J, Yang J. Characterization and substrate-accelerated thermal inactivation kinetics of a new serine-type arylsulfatase. Enzyme Microb Technol 2021; 154:109961. [PMID: 34952364 DOI: 10.1016/j.enzmictec.2021.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/03/2022]
Abstract
Arylsulfatase is useful in industrial agar processing by removing sulfate groups. A full-length arylsulfatase gene, designated ArySMA1, was obtained from marine bacteria Serratia sp. SM1. The ArySMA1 gene encoded a novel serine-type arylsulfatase and the enzymatic properties were characterized. The enzyme presented notable capacity of removing sulfate groups from natural algae substrates. Kinetic study suggested that the microscopic thermal inactivation rate of ArySMA1 in free form was smaller than that of the enzyme-substrate complex. The presence of substrate could unexpectedly accelerate ArySMA1 to deactivate at high temperature. Such phenomenon was opposite to many findings that substrate could stabilize enzymes against heat. Molecular dynamics simulation and ANS fluorescent assay indicated the substrate led the hydrophobic regions of the active site more flexible and the sulfate group of the substrate could retard the processivity of ArySMA1 catalysis. This study provides guidance for agar desulfation and down-stream processing industry.
Collapse
Affiliation(s)
- Xinqi Xu
- College of Biological Science and Engineering, Fuzhou University, 350116, China
| | - Xiangzhen Deng
- College of Biological Science and Engineering, Fuzhou University, 350116, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, 350116, China
| | - Jie Yang
- College of Biological Science and Engineering, Fuzhou University, 350116, China.
| |
Collapse
|
7
|
Zhang C, Jiang Z, Li H, Ni H, Zheng M, Li Q, Zhu Y. Preparation of immobilized arylsulfatase on magnetic Fe 3O 4 nanoparticles and its application for agar quality improvement. Food Sci Nutr 2021; 9:4952-4962. [PMID: 34532007 PMCID: PMC8441490 DOI: 10.1002/fsn3.2446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
The presence of sulfate groups in agar compromises the agar quality by affecting the crosslinking during gelling process. Some arylsulfatases can catalyze the hydrolysis of sulfate bonds in agar to improve the agar quality. Immobilized arylsulfatases prove beneficial advantages for their industrial applications. Here, a previously characterized mutant arylsulfatase K253H/H260L was immobilized on the synthesized magnetic Fe3O4 nanoparticles after functionalization by tannic acid (MNPs@TA). The surface properties and molecular structures of the immobilized arylsulfatase (MNPs@TA@ARS) were examined by scanning electron microscopy and Fourier transform infrared spectroscopy. Enzymatic characterization showed that MNPs@TA@ARS exhibited shifted optimal temperature and pH with deviated apparent Km and Vmax compared to its free counterpart. The immobilized arylsulfatase demonstrated improved thermal and pH stability and enhanced storage stability with modest reusability. In addition, MNPs@TA@ARS displayed enhanced tolerance to various inhibitors and detergents. The utilization of the immobilized arylsulfatase for agar desulfation brought the treated agar with improved quality.
Collapse
Affiliation(s)
- Chenghao Zhang
- College of Food and Biological EngineeringJimei UniversityXiamenChina
| | - Zedong Jiang
- College of Food and Biological EngineeringJimei UniversityXiamenChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
- Key Laboratory of Systemic Utilization and In‐depth Processing of Economic SeaweedXiamen Southern Ocean Technology Center of ChinaXiamenChina
| | - Hebin Li
- Xiamen Medical CollegeXiamenChina
| | - Hui Ni
- College of Food and Biological EngineeringJimei UniversityXiamenChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
- Key Laboratory of Systemic Utilization and In‐depth Processing of Economic SeaweedXiamen Southern Ocean Technology Center of ChinaXiamenChina
| | - Mingjing Zheng
- College of Food and Biological EngineeringJimei UniversityXiamenChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
- Key Laboratory of Systemic Utilization and In‐depth Processing of Economic SeaweedXiamen Southern Ocean Technology Center of ChinaXiamenChina
| | - Qingbiao Li
- College of Food and Biological EngineeringJimei UniversityXiamenChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
- Key Laboratory of Systemic Utilization and In‐depth Processing of Economic SeaweedXiamen Southern Ocean Technology Center of ChinaXiamenChina
| | - Yanbing Zhu
- College of Food and Biological EngineeringJimei UniversityXiamenChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
- Key Laboratory of Systemic Utilization and In‐depth Processing of Economic SeaweedXiamen Southern Ocean Technology Center of ChinaXiamenChina
| |
Collapse
|
8
|
Huang L, Huang J, Nie H, Li Y, Song L, Wu F. Design, synthesis and biological evaluation of combretastatin A-4 sulfamate derivatives as potential anti-cancer agents. RSC Med Chem 2021; 12:1374-1380. [PMID: 34458740 PMCID: PMC8372205 DOI: 10.1039/d0md00372g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/17/2021] [Indexed: 01/20/2023] Open
Abstract
A series of combretastatin A-4 (CA-4) sulfamate derivatives were synthesized and their structure-activity relationship on tubulin, arylsulfatase and tumor cell antiproliferation inhibition was studied. Among them, compound 16a showed excellent potency as well as CA-4 under the same conditions against six tumor cells including HTC-116, HeLa, HepG2, MGC803, MKN45 and MCF-7 cells, respectively. Molecular docking revealed that several important hydrogen bond interactions were formed between the sulfamate group of 16a and the colchicine binding site of tubulin and steroid sulfatase respectively. Although compound 16a was less active than CA-4 in regard to its in vitro activity as an inhibitor of tubulin polymerization, it was effective as an inhibitor of arylsulfatase. This novel combretastatin A-4 sulfamate derivative has the potential to be developed as a dual inhibitor of tubulin polymerization and arylsulfatase for cancer therapy.
Collapse
Affiliation(s)
- Leilei Huang
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai China
| | - Jinwen Huang
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai China
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry CAS China
| | - Hui Nie
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai China
| | - Yingzi Li
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai China
| | - Lixing Song
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai China
| | - Fanhong Wu
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai China
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology China
| |
Collapse
|
9
|
Multi-Trait Wheat Rhizobacteria from Calcareous Soil with Biocontrol Activity Promote Plant Growth and Mitigate Salinity Stress. Microorganisms 2021; 9:microorganisms9081588. [PMID: 34442666 PMCID: PMC8400701 DOI: 10.3390/microorganisms9081588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) can be functional microbial fertilizers and/or biological control agents, contributing to an eco-spirit and safe solution for chemical replacement. Therefore, we have isolated rhizospheric arylsulfatase (ARS)-producing bacteria, belonging to Pseudomonas and Bacillus genus, from durum wheat crop grown on calcareous soil. These isolates harbouring plant growth promoting (PGP) traits were further evaluated in vitro for additional PGP traits, including indole compounds production and biocontrol activity against phytopathogens, limiting the group of multi-trait strains to eight. The selected bacterial strains were further evaluated for PGP attributes associated with biofilm formation, compatibility, salt tolerance ability and effect on plant growth. In vitro studies demonstrated that the multi-trait isolates, Bacillus (1.SG.7, 5.SG.3) and Pseudomonas (2.SG.20, 2.C.19) strains, enhanced the lateral roots abundance and shoots biomass, mitigated salinity stress, suggesting the utility of beneficial ARS-producing bacteria as potential microbial fertilizers. Furthermore, in vitro studies demonstrated that compatible combinations of multi-trait isolates, Bacillus sp. 1.SG.7 in a mixture coupled with 5.SG.3, and 2.C.19 with 5.SG.3 belonging to Bacillus and Pseudomonas, respectively, may enhance plant growth as compared to single inoculants.
Collapse
|
10
|
Kolchina NV, Rychkov GN, Kulminskaya AA, Ibatullin FM, Petukhov MG, Bobrov KS. Structural Organization of the Active Center of Unmodified Recombinant Sulfatase from the Mycelial Fungi Fusarium proliferatum LE1. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Correia MS, Ballet C, Meistermann H, Conway LP, Globisch D. Comprehensive kinetic and substrate specificity analysis of an arylsulfatase from Helix pomatia using mass spectrometry. Bioorg Med Chem 2019; 27:955-962. [DOI: 10.1016/j.bmc.2019.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 01/21/2023]
|
12
|
Castilla IA, Woods DF, Reen FJ, O'Gara F. Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies. Mar Drugs 2018; 16:E227. [PMID: 29973493 PMCID: PMC6071119 DOI: 10.3390/md16070227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023] Open
Abstract
In a demanding commercial world, large-scale chemical processes have been widely utilised to satisfy consumer related needs. Chemical industries are key to promoting economic growth and meeting the requirements of a sustainable industrialised society. The market need for diverse commodities produced by the chemical industry is rapidly expanding globally. Accompanying this demand is an increased threat to the environment and to human health, due to waste produced by increased industrial production. This increased demand has underscored the necessity to increase reaction efficiencies, in order to reduce costs and increase profits. The discovery of novel biocatalysts is a key method aimed at combating these difficulties. Metagenomic technology, as a tool for uncovering novel biocatalysts, has great potential and applicability and has already delivered many successful achievements. In this review we discuss, recent developments and achievements in the field of biocatalysis. We highlight how green chemistry principles through the application of biocatalysis, can be successfully promoted and implemented in various industrial sectors. In addition, we demonstrate how two novel lipases/esterases were mined from the marine environment by metagenomic analysis. Collectively these improvements can result in increased efficiency, decreased energy consumption, reduced waste and cost savings for the chemical industry.
Collapse
Affiliation(s)
- Ignacio Abreu Castilla
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
- Telethon Kids Institute, Perth, WA 6008, Australia.
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
13
|
Stressler T, Reichenberger K, Glück C, Leptihn S, Pfannstiel J, Swietalski P, Kuhn A, Seitl I, Fischer L. A natural variant of arylsulfatase from Kluyveromyces lactis shows no formylglycine modification and has no enzyme activity. Appl Microbiol Biotechnol 2018; 102:2709-2721. [PMID: 29450617 DOI: 10.1007/s00253-018-8828-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
Abstract
Kluyveromyces lactis is a common fungal microorganism used for the production of enzyme preparations such as β-galactosidases (native) or chymosin (recombinant). It is generally important that enzyme preparations have no unwanted side activities. In the case of β-galactosidase preparations produced from K. lactis, an unwanted side activity could be the presence of arylsulfatase (EC 3.1.6.1). Due to the action of arylsulfatase, an unpleasant "cowshed-like" off-flavor would occur in the final product. The best choice to avoid this is to use a yeast strain without this activity. Interestingly, we found that certain natural K. lactis strains express arylsulfatases, which only differ in one amino acid at position 139. The result of this difference is that K. lactis DSM 70799 (expressing R139 variant) shows no arylsulfatase activity, unlike K. lactis GG799 (expressing S139 variant). After recombinant production of both variants in Escherichia coli, the R139 variant remains inactive, whereas the S139 variant showed full activity. Mass spectrometric analyses showed that the important posttranslational modification of C56 to formylglycine was not found in the R139 variant. By contrast, the C56 residue of the S139 variant was modified. We further investigated the packing and secondary structure of the arylsulfatase variants using optical spectroscopy, including fluorescence and circular dichroism. We found out that the inactive R139 variant exhibits a different structure regarding folding and packing compared to the active S139 variant. The importance of the amino acid residue 139 was documented further by the construction of 18 more variants, whereof only ten showed activity but always reduced compared to the native S139 variant.
Collapse
Affiliation(s)
- Timo Stressler
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| | - Katrin Reichenberger
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Claudia Glück
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Sebastian Leptihn
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Paul Swietalski
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Ines Seitl
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| |
Collapse
|
14
|
Yoon HY, Kim HJ, Jang S, Hong JI. Detection of bacterial sulfatase activity through liquid- and solid-phase colony-based assays. AMB Express 2017; 7:150. [PMID: 28697587 PMCID: PMC5503846 DOI: 10.1186/s13568-017-0449-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023] Open
Abstract
Bacterial arylsulfatases are crucial to biosynthesis in many microorganisms, as bacteria often utilize aryl sulfates as a source of sulfur. The bacterial sulfatases are associated with pathogenesis and are applied in many areas such as industry and agriculture. We developed an activity-based probe 1 for detection of bacterial sulfatase activity through liquid- and solid-phase colony-based assays. Probe 1 is hydrolyzed by sulfatase to generate fluorescent N-methyl isoindole, which is polymerized to form colored precipitates. These fluorescent and colorimetric properties of probe 1 induced upon treatment of sulfatases were successfully utilized for liquid-phase sulfatase activity assays for colonies and lysates of Klebsiella aerogenes, Mycobacterium avium and Mycobacterium smegmatis. In addition, probe 1 allowed solid-phase colony-based assays of K. aerogenes through the formation of insoluble colored precipitates, thus enabling accurate staining of target colonies under heterogeneous conditions.
Collapse
|
15
|
Zhu Y, Qiao C, Li H, Li L, Xiao A, Ni H, Jiang Z. Improvement thermostability of Pseudoalteromonas carrageenovora arylsulfatase by rational design. Int J Biol Macromol 2017; 108:953-959. [PMID: 29113885 DOI: 10.1016/j.ijbiomac.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
Abstract
This study aimed to improve the thermostability of arylsulfatase from Pseudoalteromonas carrageenovora. A total of 10 single-site mutants were chosen using the PoPMuSiC program, and two mutants of K253N and P314T showed enhanced thermal stability. By saturation mutagenesis and thermostability analysis, K253H and P314T were the best mutants at the two sites. Combinational mutations of K253H, P314T and H260L were subsequently introduced, and the best mutant of K253H/H260L was selected. Thermal inactivation analysis showed the half-life (t1/2) value at 55°C for K253H/H260L was 7.7-fold that of the wild-type enzyme (WT), meanwhile this mutant maintained the specific enzyme activity. Structure modeling demonstrated that the additional hydrogen bonds, optimization of surface charge-charge interactions, and increasing of hydrophobic interaction could account for the improved thermostability imparted by K253H/H260L.
Collapse
Affiliation(s)
- Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
| | - Chaochao Qiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hebin Li
- Xiamen Medical College, Xiamen 361008, China
| | - Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
| | - Anfeng Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China.
| |
Collapse
|
16
|
Korban SA, Bobrov KS, Maynskova MA, Naryzhny SN, Vlasova OL, Eneyskaya EV, Kulminskaya AA. Heterologous expression in Pichia pastoris and biochemical characterization of the unmodified sulfatase from Fusarium proliferatum LE1. Protein Eng Des Sel 2017. [PMID: 28651356 DOI: 10.1093/protein/gzx033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sulfatases are a family of enzymes (sulfuric ester hydrolases, EC 3.1.6.-) that catalyze the hydrolysis of a wide array of sulfate esters. To date, despite the discovery of many sulfatase genes and the accumulation of data on numerous sulfated molecules, the number of characterized enzymes that are key players in sulfur metabolism remains extremely limited. While mammalian sulfatases are well studied due to their involvement in a wide range of normal and pathological biological processes, lower eukaryotic sulfatases, especially fungal sulfatases, have not been thoroughly investigated at the biochemical and structural level. In this paper, we describe the molecular cloning of Fusarium proliferatum sulfatase (F.p.Sulf-6His), its recombinant expression in Pichia pastoris as a soluble and active cytosolic enzyme and its detailed characterization. Gel filtration and native electrophoretic experiments showed that this recombinant enzyme exists as a tetramer in solution. The enzyme is thermo-sensitive, with an optimal temperature of 25°C. The optimal pH value for the hydrolysis of sulfate esters and stability of the enzyme was 6.0. Despite the absence of the post-translational modification of cysteine into Cα-formylglycine, the recombinant F.p.Sulf-6His has remarkably stable catalytic activity against p-nitrophenol sulfate, with kcat = 0.28 s-1 and Km = 2.45 mM, which indicates potential use in the desulfating processes. The currently proposed enzymatic mechanisms of sulfate ester hydrolysis do not explain the appearance of catalytic activity for the unmodified enzyme. According to the available models, the unmodified enzyme is not able to perform multiple catalytic acts; therefore, the enzymatic mechanism of sulfate esters hydrolysis remains to be fully elucidated.
Collapse
Affiliation(s)
- Svetlana A Korban
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia.,Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, Chlopina str. 11, 195251 St. Petersburg, Russia
| | - Kirill S Bobrov
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia
| | - Maria A Maynskova
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow 119121, Russia
| | - Stanislav N Naryzhny
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia.,Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow 119121, Russia
| | - Olga L Vlasova
- Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, Chlopina str. 11, 195251 St. Petersburg, Russia
| | - Elena V Eneyskaya
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia
| | - Anna A Kulminskaya
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia.,Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, Chlopina str. 11, 195251 St. Petersburg, Russia
| |
Collapse
|