1
|
Naraginti S, Kuppusamy S, Lavanya K, Zhang F, Liu X. Sunlight-driven intimately coupled photocatalysis and biodegradation (SDICPB): A sustainable approach for enhanced detoxification of triclosan. CHEMOSPHERE 2023:139210. [PMID: 37315856 DOI: 10.1016/j.chemosphere.2023.139210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/20/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Triclosan is considered as recalcitrant contaminant difficult to degrade from the contaminated wastewater. Thus, promising, and sustainable treatment method is necessary to remove triclosan from the wastewater. Intimately coupled photocatalysis and biodegradation (ICPB) is an emerging, low-cost, efficient, and eco-friendly method for the removal of recalcitrant pollutants. In this study BiOI photocatalyst coated bacterial biofilm developed at carbon felt for efficient degradation and mineralization of triclosan was studied. Based on the characterization of BiOI prepared using methanol had lower band gap 1.85 eV which favors lower recombination of electron-hole pair and higher charge separation which ascribed to enhanced photocatalytic activity. ICPB exhibits 89% of triclosan degradation under direct sunlight exposure. The results showed that production of reactive oxygen species hydroxyl radical and superoxide radical anion played crucial role in the degradation of triclosan into biodegradable metabolites further the bacterial communities mineralized the biodegradable metabolites into water and carbon dioxide. The confocal laser scanning electron microscope results emphasized that interior of the biocarrier shows a large number of live bacterial cells existing in the photocatalyst-coated carrier, where the little toxic effect on bacterial biofilm occurred on the exterior of the carrier. The extracellular polymeric substances characterization result remarkable confirms that which could act as sacrificial agent of photoholes further helped by preventing the toxicity to the bacterial biofilm from the reactive oxygen species and triclosan. Hence, this promising approach can be a possible alternative method for the wastewater treatment polluted with triclosan.
Collapse
Affiliation(s)
| | - Sathishkumar Kuppusamy
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Kubendiran Lavanya
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai, 602105, Tamilnadu, India.
| |
Collapse
|
2
|
James SN, Vijayanandan A. Recent advances in simultaneous nitrification and denitrification for nitrogen and micropollutant removal: a review. Biodegradation 2023; 34:103-123. [PMID: 36899211 DOI: 10.1007/s10532-023-10015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023]
Abstract
Simultaneous Nitrification and Denitrification (SND) is a promising process for biological nitrogen removal. Compared to conventional nitrogen removal processes, SND is cost-effective due to the decreased structural footprint and low oxygen and energy requirements. This critical review summarizes the current knowledge on SND related to fundamentals, mechanisms, and influence factors. The creation of stable aerobic and anoxic conditions within the flocs, as well as the optimization of dissolved oxygen (DO), are the most significant challenges in SND. Innovative reactor configurations coupled with diversified microbial communities have achieved significant carbon and nitrogen reduction from wastewater. In addition, the review also presents the recent advances in SND for removing micropollutants. The micropollutants are exposed to various enzymes due to the microaerobic and diverse redox conditions present in the SND system, which would eventually enhance biotransformation. This review presents SND as a potential biological treatment process for carbon, nitrogen, and micropollutant removal from wastewater.
Collapse
Affiliation(s)
- Susan N James
- Department of Civil Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology, Delhi, 110016, India.
| |
Collapse
|
3
|
Wei X, Xu X, Yang X, Liu Z, Naraginti S, Sen L, Weidi S, Buwei L. Novel assembly of BiVO 4@N-Biochar nanocomposite for efficient detoxification of triclosan. CHEMOSPHERE 2022; 298:134292. [PMID: 35283149 DOI: 10.1016/j.chemosphere.2022.134292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The wide spread of antibacterial and antifungal agents demands in growing multifunctional materials to completely eliminate these organic contaminants in water. BiVO4 (Bismuth vanadate) is a superior catalyst under visible light but suffers with high photoelectron-hole pair recombination rate and poor adsorption capacity which limits its efficiency. Addition of N-doped Biochar (N-Biochar) to BiVO4 with large specific surface area and high conductivity are anticipated to overcome the problem and promote the catalytic performance. Thus, the present study developed a simple hydrothermal method to prepare BiVO4@N-Biochar catalyst for efficient detoxification of Triclosan (TCS). The morphological analysis results suggested that BiVO4 particles were evenly distributed on carbon surface amongst the N-Biochar matrix. Within 60 min of visible light irradiation, nearly 94.6% TCS degradation efficiency was attained by BiVO4@N-Biochar (k = 0.02154 min-1) while only 56.7% was attained with pure BiVO4 (k = 0.00637 min-1). In addition, LC-MS/MS technique was utilized to determine the TCS degradation products generation in the photodegradation process and pathway was proposed. Furthermore, the E. coli (Escherichia coli) colony forming unit assay was used to determine the biotoxicity of the degradation products in which 72.3 ± 2.6% of detoxification efficiency was achieved and suggested a substantial reduction in biotoxicity during the photodegradation.
Collapse
Affiliation(s)
- Xueyu Wei
- School of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, PR China.
| | - Xiaoping Xu
- School of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, PR China.
| | - Xiaofan Yang
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Zhigang Liu
- School of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, PR China; Ningbo Water Supply Co Ltd, Ningbo, 315041, PR China
| | - Saraschandra Naraginti
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Lin Sen
- Ningbo Donghai Group Corporation Ningbo, 315181, PR China
| | - Song Weidi
- School of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Li Buwei
- School of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, PR China
| |
Collapse
|
4
|
Xu X, Wang Y, Zhang D. A novel strategy of hydrothermal in-situ grown bismuth based film on epoxy resin as recyclable photocatalyst for photodegrading antibiotics and sterilizing microorganism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Zhu GC, Lu YZ, Xu LR. Effects of the carbon/nitrogen (C/N) ratio on a system coupling simultaneous nitrification and denitrification (SND) and denitrifying phosphorus removal (DPR). ENVIRONMENTAL TECHNOLOGY 2021; 42:3048-3054. [PMID: 31969084 DOI: 10.1080/09593330.2020.1720310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Simultaneous nitrification and denitrification (SND) were coupled with a denitrifying phosphorus removal (DPR) to achieve simultaneous nutrient and carbon removal. With influent chemical oxygen demand (COD), ammonia-N (NH4+-N), and total phosphorus (TP) concentrations of 250, 50, and 8 mg/L, the SND-DPR coupled system achieved stable nutrient removal efficiency of COD, NH4+-N, TN and TP were 91.8 ± 1.7%, 88.4 ± 1.8%, 64 ± 3.3% and 99.2 ± 0.6%, respectively. Enhancing the C/N ratio strengthened the storage of intracellular polymers and provided sufficient intracellular carbon sources for phosphorus uptake. The nutrient removal efficiency reached the highest level at a C/N ratio of 5, and no advantage was observed after increasing the C/N ratio to 7. Nutrients were mainly removed during the aerobic stage at a low DO concentration as well during the anoxic stage, which helped achieve concurrent nitrification and denitrification by ordinary heterotrophic organisms (OHOs), promote denitrifying and aerobic phosphorus removal, and conserve organic carbon demand and energy consumption for aeration. The system was limited for DO in the aerobic stage at a low DO concentration, resulting in a deficiency in electron acceptors (O2 and NO3-N) and limiting the subsequent promotion of phosphorus uptake and TN removal. The limited DO content in the low DO stage was the key factor involved in enhancing the nutrient removal efficiency along with the increasing influent C/N ratio.
Collapse
Affiliation(s)
- Guang-Can Zhu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Yong-Ze Lu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Li-Ran Xu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
6
|
Venkatesan Savunthari K, Arunagiri D, Shanmugam S, Ganesan S, Arasu MV, Al-Dhabi NA, Chi NTL, Ponnusamy VK. Green synthesis of lignin nanorods/g-C 3N 4 nanocomposite materials for efficient photocatalytic degradation of triclosan in environmental water. CHEMOSPHERE 2021; 272:129801. [PMID: 33581564 DOI: 10.1016/j.chemosphere.2021.129801] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/09/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS) is a common anti-microbial ingredient in pharmaceutical and personal care products. The usage of TCS was banned by the United States Food and Drug Administration (in 2016) due to its potential health risks. However, TCS has been frequently detected in the aquatic environment. Therefore, it is vital to design low-cost and highly efficient photocatalysts to enhance TCS's photocatalytic degradation in wastewater treatment to eliminate its toxicity to environmental health. In this study, we developed a highly efficient catalyst by incorporating lignin nanorods (LNRs) into graphitic carbon nitride (GCN) nanomaterials as green LNRs/GCN-based nanocomposite photocatalysts for the effective degradation of TCS in waters. LNRs/GCN nanosheets (NSs) and LNRs/GCN-NRs based nanocomposite materials were prepared using a simple wet-impregnation method. The surface morphology and optical properties of as-synthesized materials were well-characterized using FE-SEM, XRD, XPS, and UV-DRS. The photocatalyst (LNRs/GCN-NRs) material showed maximum TCS degradation efficiency of 99.9% and a high rate constant of 0.0661 min-1 under pH-10 with crucial reactive spices (OH and O2-), and excellent cycling performance (over five cycles) within 90 min of UV-light illumination. LNRs/GCN-NRs nanocomposite indicated enhanced photocatalytic performances for TCS degradation due to its strong synergistic effect between LNRs and GCN-NRs as bifunctional catalyst substrate morphology with efficient bandgap energy and accessible active sites compared to LNRs/GCN-NSs. Therefore, LNRs/GCN-NRs nanocomposite was observed to be a highly-active, low-cost, stable, eco-friendly, and efficient photocatalyst for complete degradation of TCS under UV-light irradiation.
Collapse
Affiliation(s)
- Kirankumar Venkatesan Savunthari
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Durgadevi Arunagiri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sumathi Shanmugam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Sivarasan Ganesan
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nguyen Thuy Lan Chi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Environmental Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
7
|
Zhang N, Li C, Xie H, Yang Y, Hu Z, Gao M, Liang S, Feng K. Mn oxides changed nitrogen removal process in constructed wetlands with a microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144761. [PMID: 33736424 DOI: 10.1016/j.scitotenv.2020.144761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Intensified Mn redox cycling could enhance nutrient removal in constructed wetlands (CWs). In this study, Mn oxides (birnessite-coated sand) were used as the matrix in horizontal flow CWs (HFCWs) with a microbial electrolysis cell (MEC) (E-B-CW) or without an MEC (B-CW). The model CWs were developed to investigate the capacities and mechanisms of nitrogen removal with increased Mn redox cycling. The results showed that E-B-CW had the highest average removal efficiencies for NH4-N, NO3-N and TN, followed by B-CW and control HFCW (C-CW). The Mn(III) oxides (MnOOH or Mn2O3) and the Mn(IV) oxide (MnO2) were all detected in E-B-CW and B-CW, while the matrix in E-B-CW had much more Mn(IV) oxides than B-CW. Interestingly, clustering heat map showed that ammonification and nitrate reduction were related to Mn-oxidizing bacteria and the relative abundance of Mn-oxidizing bacteria in E-B-CW was highest due to the re-oxidation of Mn(II) by the MEC.
Collapse
Affiliation(s)
- Ning Zhang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Chaoyu Li
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Yixiao Yang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Mingming Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Kuishuang Feng
- Institute of Blue and Green Development, Weihai Institute of Interdisciplinary Research, Shandong University, Weihai 264209, China
| |
Collapse
|
8
|
Dong X, He Y, Peng X, Jia X. Triclosan in contact with activated sludge and its impact on phosphate removal and microbial community. BIORESOURCE TECHNOLOGY 2021; 319:124134. [PMID: 32966969 DOI: 10.1016/j.biortech.2020.124134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS) is applied in a wide range of pharmaceutical and personal care products to prevent or reduce bacterial growth. In this study, the effects of TCS on phosphate removal and bacterial community shifts of activated sludge, especially on functional bacteria variation, were investigated. Compared with the control group (R-control), the treatment group (R-TCS) with 100 μg/L TCS inhibited the microbial growth. In addition, the phosphorus removal efficiency of PO43--P and total phosphorus removal rates declined by 15.99% and 7.81%, respectively. Proteobacteria gradually dominated the microorganisms. The growths of Proteobacteria and Bacteroidetes were inhibited when 150 μg/L of TCS was added. Moreover, the differences in the microbial community structures of the R-control and R-TCS groups gradually expanded, no obvious difference was observed in the final stage, and the interrelationships of microbes in the latter weakened. The long-term addition of TCS impairs the growth of polyphosphate-accumulating organisms (PAOs).
Collapse
Affiliation(s)
- Xiaoqi Dong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Wang S, Zhi L, Shan W, Lu H, Xu Q, Li J. Correlation of extracellular polymeric substances and microbial community structure in denitrification biofilm exposed to adverse conditions. Microb Biotechnol 2020; 13:1889-1903. [PMID: 32700468 PMCID: PMC7533329 DOI: 10.1111/1751-7915.13633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/01/2020] [Indexed: 01/24/2023] Open
Abstract
Microbial community may respond to different adverse conditions and result in the variation of extracellular polymeric substances (EPS) in denitrification biofilm; this study discovered the role of EPS in accordance with the analysis of cyclic diguanylate (c-di-GMP) and electron equilibrium (EE) under low organic loading rate, shock organic loading rate and low temperature conditions. Good nitrate removal performance could be achieved under shock organic loading rate and low temperature conditions; however, owing to the low organic loading rate, the carbon source was preferentially utilized for biomass growth. Tightly bound EPS (TB-EPS) contents progressively increased and facilitated cell adhesion and biofilm formation. The stable TB protein (TB-PN) content in TB-EPS built a cross-linked network to maintain internal biofilm structure and led to the rapid biosynthesis of polysaccharides, which could further enhance microbial adhesion and improve nitrate removal. C-di-GMP played an important role in biomass retention and biofilm formation, based on the correlation analysis of c-di-GMP and EPS. TB polysaccharide (TB-PS) contents presented a significant positive correlation with c-di-GMP content, microbial adhesion and biofilm stabilization was further enhanced through c-di-GMP regulation. In addition, a remarkable negative correlation between electron deletion rate (EDR) and TB-PN and TB-PS was discovered, and TB-PS was required to serve as energy source to enhance denitrification according to EE analysis. Surprisingly, dynamic microbial community was observed due to the drastic community succession under low temperature conditions, and the discrepancy between the dominant species for denitrification was found under shock organic loading rate and low temperature conditions. The notable increase in bacterial strains Simlicispira, Pseudomonas and Chryseobacterium was conducive to biofilm formation and denitrification under shock organic loading rate, while Dechloromonas and Zoogloea dramatically enriched for nitrate removal under low temperature conditions. The high abundance of Dechloromonas improved the secretion of EPS through the downstream signal transduction, and the c-di-GMP conserved in Pseudomonas concurrently facilitated to enhance exopolysaccharide production to shock organic loading rate and low temperature conditions.
Collapse
Affiliation(s)
- Shuo Wang
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment and Civil EngineeringJiangnan UniversityWuxi214122China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction TechnologyJiangnan UniversityWuxi214122China
- Jiangsu College of Water Treatment Technology and Material Collaborative Innovation CenterSuzhou215009China
- Department of Civil EngineeringSchulich School of EngineeringUniversity of CalgaryCalgaryT2N 1N4Canada
| | - Liling Zhi
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment and Civil EngineeringJiangnan UniversityWuxi214122China
| | - Wei Shan
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment and Civil EngineeringJiangnan UniversityWuxi214122China
| | - Hui Lu
- School of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510006China
| | - Qiao Xu
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment and Civil EngineeringJiangnan UniversityWuxi214122China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment and Civil EngineeringJiangnan UniversityWuxi214122China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction TechnologyJiangnan UniversityWuxi214122China
- Jiangsu College of Water Treatment Technology and Material Collaborative Innovation CenterSuzhou215009China
| |
Collapse
|
10
|
Zhang D, Gao J, Zhang L, Zhang W, Jia J, Dai H, Wang Z. Responses of nitrification performance, triclosan resistome and diversity of microbes to continuous triclosan stress in activated sludge system. J Environ Sci (China) 2020; 92:211-223. [PMID: 32430124 DOI: 10.1016/j.jes.2020.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/11/2020] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS) is commonly found in wastewater treatment plants, which often affects biological treatment processes. The responses of nitrification, antibiotic resistome and microbial community under different TCS concentrations in activated sludge system were evaluated in this study. The experiment was conducted in a sequencing batch reactor (SBR) for 240 days. Quantitative PCR results demonstrated that the abundance of ammonium oxidizing bacteria could be temporarily inhibited by 1 mg/L TCS and then gradually recovered. And the abundances of nitrite oxidizing bacteria (NOB) under 2.5 and 4 mg/L TCS were three orders of magnitude lower than that of seed sludge, which accounted for partial nitrification. When the addition of TCS was stopped, the abundance of NOB increased. The mass balance experiments of TCS demonstrated that the primary removal pathway of TCS changed from adsorption to biodegradation as TCS was continuously added into the SBR system. Moreover, TCS increased the abundance of mexB, indicating the efflux pump might be the main TCS-resistance mechanism. As a response to TCS, bacteria could secrete more protein (PN) than polysaccharide. Three-dimensional excitation-emission matrix revealed that tryptophan PN-like substances might be the main component in PN to resist TCS. High-throughput sequencing found that the relative abundances of Paracoccus, Pseudoxanthomonas and Thauera increased, which could secrete extracellular polymeric substances (EPS). And Sphingopyxis might be the main TCS-degrading bacteria. Overall, TCS could cause partial nitrification and increase the relative abundances of EPS-secreting bacteria and TCS-degrading bacteria.
Collapse
Affiliation(s)
- Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Lifang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wenzhi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingxin Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
11
|
Zhang N, Yang Y, Huang L, Xie H, Hu Z. Birnessite-coated sand filled vertical flow constructed wetlands improved nutrients removal in a cold climate. RSC Adv 2019; 9:35931-35938. [PMID: 35540576 PMCID: PMC9075035 DOI: 10.1039/c9ra07364g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022] Open
Abstract
At low temperature, plants wither and microbial activities decrease, leading to a decline in the pollutant-treatment performance of constructed wetlands (CWs). In this study, vertical flow CWs (VFCWs) with birnessite (Mn oxides)-coated sand (Mn-CWs) were developed to investigate the pollutant removal performance and mechanism in a cold climate. The results showed that the average removal efficiencies for NH4-N, NO3-N, TN, and TP were 73.81%, 90.66%, 82.44%, and 57.89% in Mn-CWs, respectively, while the average removal efficiencies for NH4-N, NO3-N, TN, and TP were 29.07%, 90.40%, 62.80%, and 26.32% in the control, respectively. Mn-CWs enhanced microbial denitrification and matrix storage, as well as inhibited P release in Mn-CWs at low temperature. According to GC-MS analysis of the organic compounds, the Mn-CWs matrix contained much more short-chain volatile organic compounds, such as carboxylic acid derivatives, while the control matrix had more ethyl acetate. The absolute quantities of bacterial 16S rRNA, amoA, narG, nirS, and nosZ were significantly higher than the control at 20 cm height from the bottom (p > 0.05). Illumina high-throughput sequencing analysis revealed that the relative abundances of nitrifying and denitrifying bacteria were both higher in Mn-CWs than that of the control. CWs filled with birnessite-coated sand represent an innovative approach for improving nutrient removal performance in cold climates through chemical absorption and microbial transformation.
Collapse
Affiliation(s)
- Ning Zhang
- Environment Research Institute, Shandong University Jinan 250100 China +86-531-8836978 +86-531-88361185
| | - Yixiao Yang
- Environment Research Institute, Shandong University Jinan 250100 China +86-531-8836978 +86-531-88361185
| | - Lihua Huang
- School of Resources and Environment, Linyi University Linyi Shandong 276005 China
| | - Huijun Xie
- Environment Research Institute, Shandong University Jinan 250100 China +86-531-8836978 +86-531-88361185
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University Jinan Shandong 250100 China
| |
Collapse
|
12
|
Sun H, Wang T, Yang Z, Yu C, Wu W. Simultaneous removal of nitrogen and pharmaceutical and personal care products from the effluent of waste water treatment plants using aerated solid-phase denitrification system. BIORESOURCE TECHNOLOGY 2019; 287:121389. [PMID: 31100567 DOI: 10.1016/j.biortech.2019.121389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Nowadays, waste water treatment plants (WWTPs) are regarded as the pollution sources of nitrogen and pharmaceutical and personal care products (PPCPs). In the present study, the simultaneous removal of nitrogen and typical PPCPs, ibuprofen and triclosan, was evaluated in a poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) based solid-phase denitrification (SPD) system. Results after 602 days showed that simultaneous nitrification and denitrification (SND) process occurred with average 83.85 ± 13.09% NH4+-N and 93.88 ± 10.19% NO3--N removals in the SPD system. Interestingly, the system achieved average 79.69 ± 6.35% and 65.96 ± 7.62% removals of ibuprofen and triclosan, respectively, under stable influent conditions of 50 μg L-1. Cometabolic activities of heterotrophic denitrifying bacteria and ammonia oxidizing bacteria (AOB) probably played a role in the biodegradation of the two PPCPs. Illumina MiSeq sequencing results revealed that microbial composition enhanced the simultaneous removal of nitrogen and PPCPs in the SPD system.
Collapse
Affiliation(s)
- Haimeng Sun
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Ting Wang
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zhongchen Yang
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Cecilia Yu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
13
|
Hajsardar M, Borghei SM, Hassani AH, Takdastan A. Improving Wastewater Nitrogen Removal and Reducing Effluent NOx - -N by an Oxygen-Limited Process Consisting of a Sequencing Batch Reactor and a Sequencing Batch Biofilm Reactor. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2019. [DOI: 10.1515/ijcre-2018-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A series of reactors including a sequencing batch reactor (SBR) and a sequencing batch biofilm reactor (SBBR) were used for nitrogen removal. The aim of this study was simultaneous removal of NH4+-N and NOx–-N from synthetic wastewater. In the novel proposed method, the effluent from SBR was sequentially introduced into SBBR, which contained 0.030 m3 biofilm carriers, so the system operated under a paired sequence of aerobic-anoxic conditions. The effects of different carbon sources and aeration conditions were investigated. A low dissolved oxygen (DO) level in the biofilm depth of the fixed-bed process (SBBR) simulated the anoxic phase conditions. Accordingly, a portion of NH4+-N that was not converted to NO3–-N by the SBR process was converted to NO3–-N in the outer layer of the biofilm in the SBBR process. Further, simultaneous nitrification and denitrification (SND) was achieved in the SBBR where NO2–-N was converted to N2 directly, before NO3–-N conversion (partial nitrification). The level of mixed liquid suspended solids (MLSS) was 2740 mg/l at the start of the experiments. The required carbon source (C: N ratio of 4) was provided by adding an internal carbon source (through step feeding) or ethanol. Firstly, as part of the system (SBR and SBBR), SBR operated at a DO level of 1 mg/l while SBBR operated at a DO concentration of 0.3 mg/l during Run-1. During Run-2, the system operated at the low DO concentration of 0.3 mg/l. When the source of carbon was ethanol, the nitrogen removal rate (RN) was higher than the operation with an internal carbon source. When the reactors were operated at the same DO concentration of 0.3 mg/l, 99.1 % of the ammonium was removed. The NO3–-N produced during the aerobic SBR operation of the novel method was removed in SBBR reactor by 8.3 %. The concentrations of NO3--N and NO2–-N in the SBBR effluent were reduced to 2.5 and 5.5 mg/l, respectively. Also, the total nitrogen (TN) removal efficiency was 97.5 % by adding ethanol at the DO level of 0.3 mg/l.
When C:N adjustment was carried out SND efficiency at C:N ratio of 6.5 reached to 99 %. The increasing nitrogen loading rate (NLR) to 0.554 kg N/m3 d decreased SND efficiency to 80.7 %.
Collapse
|
14
|
Gao JF, Liu XH, Fan XY, Dai HH. Effects of triclosan on performance, microbial community and antibiotic resistance genes during partial denitrification in a sequencing moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2019; 281:326-334. [PMID: 30831511 DOI: 10.1016/j.biortech.2019.02.112] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Effects of triclosan (TCS) on performance, microbial community and antibiotic resistance genes (ARGs) during partial denitrification (PD) were investigated in a sequencing moving bed biofilm reactor (SMBBR). TCS inhibited nitrite accumulation; inhibition effect was more obvious as TCS concentration increased from 1 to 5 mg/L, but it could recover. Extracellular polymeric substances contents increased with 1 mg/L TCS addition and decreased a lot at 5 mg/L TCS. Community structure in biofilm was different from that in floccular sludge, but it was similar at 5 mg/L TCS. Illumina sequencing showed that Pseudomonas, Aeromonas, Shewanella and Thauera became dominant genera. Abundance of nirS was stable and higher than that of narG and nosZ. High-throughput qPCR showed that mexF, acrA-02, fabK, etc. were screened at 5 mg/L TCS. IntI1 and tnpA-04 were abundant mobile genetic elements. The study furthers understanding of effects of TCS on PD, bacterial communities and ARGs in SMBBR.
Collapse
Affiliation(s)
- Jing-Feng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Xiang-Hui Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xiao-Yan Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Hui-Hui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
15
|
Xie H, Yang Y, Liu J, Kang Y, Zhang J, Hu Z, Liang S. Enhanced triclosan and nutrient removal performance in vertical up-flow constructed wetlands with manganese oxides. WATER RESEARCH 2018; 143:457-466. [PMID: 29986254 DOI: 10.1016/j.watres.2018.05.061] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/09/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Limited concentrations of oxygen in constructed wetlands (CWs) have inhibited their ability to remove emerging organic contaminants (EOCs) at μg/L or ng/L levels. Manganese (Mn) oxides were proposed as a solution, as they are powerful oxidants with strong adsorptive capabilities. In the present study, triclosan (TCS) was selected as a typical EOC, and CW microcosms with Mn oxides (birnessite) coated sand (B-CWs) and without (C-CWs) were developed to test the removal capacities of TCS and common nutrients. We found that the addition of Mn oxides coated sand significantly improved removal efficiencies of TCS, NH4-N, COD, NO3-N and TP (P < 0.05). The average concentration of Mn(II) effluent was 0.036 mg L-1, mostly lower than the drinking water limit. To gain insight into the mechanisms of pollution removal, Mn transformation, dissolved oxygen (DO) distribution, bacterial abundance, and microbial community composition were also investigated. Maximum Mn(II) was detected at 20 cm height of the B-CWs in anoxic zone. Although Mn-oxidizing bacteria existed in the layer of 30-50 cm with 103-104 CFU g-1 dry substate, Mn oxides were only detected at height from 40 to 50 cm with rich oxygen in B-CW. The quantities of bacterial 16S rRNA, amoA, narG and nosZ were not significantly different between two systems (P > 0.05), while Illumina high-throughput sequencing analysis revealed that the abundance of denitrifying bacteria was significant higher in B-CWs, and the abundance of Gammaproteobacteria that have a recognized role in Mn transformation were significantly increased. The results indicated that Mn oxides could enhance TCS and common pollutants removal in both anoxic and aerobic areas through the recycling of Mn between Mn(II) and biogenic Mn oxides.
Collapse
Affiliation(s)
- Huijun Xie
- Environment Research Institute, Shandong University, Jinan 250100, PR China.
| | - Yixiao Yang
- Environment Research Institute, Shandong University, Jinan 250100, PR China
| | - Junhua Liu
- Environment Research Institute, Shandong University, Jinan 250100, PR China
| | - Yan Kang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| |
Collapse
|