1
|
Kayrav A, Mumcu H, Durmus N, Karaguler NG. Revealing the role of the X25 domains through the characterization of truncated variants of amylopullulanase enzyme from Thermoanaerobacter brockii brockii. Int J Biol Macromol 2024; 270:132404. [PMID: 38754672 DOI: 10.1016/j.ijbiomac.2024.132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
To understand the role of the X25 domains of the amylopullulanase enzyme from Thermoanaerobacter brockii brockii (T. brockii brockii), four truncated variants that are TbbApuΔX25-1-SH3 (S130-A1484), TbbApuΔX25-2-SH3 (T235-A1484), TbbApuΔX25-1-CBM20 (S130-P1254), and TbbApuΔX25-2-CBM20 (T235-P1254) were constructed, expressed and characterized together with the SH3 and CBM20 domain truncated variants (TbbApuΔSH3 (V1-A1484) and TbbApuΔCBM20 (V1-P1254). TbbApuΔSH3 showed improved affinity and specificity for both pullulan and soluble starch than full-length TbbApu with lower Km and higher kcat/Km values. It indicates that SH3 is a disposable domain without any effect on the activity and stability of the enzyme. However, TbbApuΔX25-1-SH3, TbbApuΔX25-2-SH3, TbbApuΔX25-1-CBM20, TbbApuΔX25-2-CBM20 (T235-P1254) and TbbApuΔCBM20 showed higher Km and lower kcat/Km values than TbbApuΔSH3 to both soluble starch and pullulan. It specifies that the X25 domains and CBM20 play an important role in both α-amylase and pullulanase activity. Also, it is revealed that while truncation of the CBM20 domain as starch binding domain (SBD) did not affect on raw starch binding ability of the enzyme, truncation of both X25 domains caused almost complete loss of the raw starch binding ability of the enzyme. All these results enlightened the function of the X25 domains that play a more crucial role than CBM20 in the enzyme's binding to raw starch and also play a crucial role in its activity.
Collapse
Affiliation(s)
- Aycan Kayrav
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Hande Mumcu
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Naciye Durmus
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Nevin Gul Karaguler
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye.
| |
Collapse
|
2
|
Mumcu H, Kayrav A, İsleyen ND, Karaguler NG. Cloning and characterization of thermostable amylopullulanase TbbApu and its C-terminal truncated variants with enhanced activity in organic solvents. Enzyme Microb Technol 2023; 164:110176. [PMID: 36529061 DOI: 10.1016/j.enzmictec.2022.110176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Bifunctional debranching-enzyme amylopullulanases belong to the glycoside hydrolases (GHs) family and catalyze both the hydrolysis of α-1,4 and α-1,6 glycosidic bonds in starch, pullulan, amylopectin and glycogen polysaccharides. Among these, especially thermostable ones are essential in starch processing applications. In this study, we focused to elucidate the complete sequence of the apu gene and the role of C-term domains on biochemical properties and enzyme activity of Thermoanaerobacter brockii brockii amylopullulanase (TbbApu). After the gene sequence was defined, C- term truncated variants were constructed. The most suitable host organism and expression vector were determined as E. coli BL21(DE3) and pET-28a(+) depending on the highest yield/biomass ratio for recombinant production of all constructs. It was seen that the expression yield increased approximately threefold in the case of the SH3 region truncation. In the biochemical characterization, TbbApu and its truncated variants exhibited maximum activity at 70 °C and 75 °C for pullulan and starch hydrolysis respectively, and the optimum pH of TbbApu were 6.5 and 6 for truncated variants. Moreover, hydrolysis activities of all recombinant enzymes were enhanced by Mn2+, Co2+ and Cu2+, detergents, and almost all organic solvents; except butanol, DMF and DMSO. All recombinant amylopullulanases remained 80% stable up to 80 °C in the wide range of pH and also retained > 85% stability in the presence of defined volatile organic solvents. No significant difference was observed between the raw starch adsorption capacity and the specific activity of the three variants. These results indicated that the C-terminal regions of TbbApu are non-essential for the enzyme activity, stability and substrate binding capacity; furthermore, hexane and acetone organic solvents enhanced both pullulanase and α-amylase activity of these enzymes, interestingly. With these features, TbbApu and its truncated variants are distinguished from other thermophilic amylopullulanases and also make them promising candidates for industrial use.
Collapse
Affiliation(s)
- Hande Mumcu
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Turkey; Istanbul Technical University, Dr. Orhan Ocalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Turkey
| | - Aycan Kayrav
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Turkey; Istanbul Technical University, Dr. Orhan Ocalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Turkey
| | - Naciye Durmus İsleyen
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Turkey; Istanbul Technical University, Dr. Orhan Ocalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Turkey
| | - Nevin Gul Karaguler
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Turkey; Istanbul Technical University, Dr. Orhan Ocalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Turkey.
| |
Collapse
|
3
|
Kikani BA, Singh SP. Amylases from thermophilic bacteria: structure and function relationship. Crit Rev Biotechnol 2021; 42:325-341. [PMID: 34420464 DOI: 10.1080/07388551.2021.1940089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amylases hydrolyze starch to diverse products including dextrins and progressively smaller polymers of glucose units. Thermally stable amylases account for nearly 25% of the enzyme market. This review highlights the structural attributes of the α-amylases from thermophilic bacteria. Heterologous expression of amylases in suitable hosts is discussed in detail. Further, specific value maximization approaches, such as protein engineering and immobilization of the amylases are discussed in order to improve its suitability for varied applications on a commercial scale. The review also takes into account of the immobilization of the amylases on nanomaterials to increase the stability and reusability of the enzymes. The function-based metagenomics would provide opportunities for searching amylases with novel characteristics. The review is expected to explore novel amylases for future potential applications.
Collapse
Affiliation(s)
- Bhavtosh A Kikani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India.,P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| |
Collapse
|
4
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
5
|
Characterizing a thermostable amylopullulanase from Caldisericum exile with wide pH adaptation and broad substrate specificity. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Xu P, Zhang SY, Luo ZG, Zong MH, Li XX, Lou WY. Biotechnology and bioengineering of pullulanase: state of the art and perspectives. World J Microbiol Biotechnol 2021; 37:43. [PMID: 33547538 DOI: 10.1007/s11274-021-03010-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/19/2021] [Indexed: 11/26/2022]
Abstract
Pullulanase (EC 3.2.1.41) is a starch-debranching enzyme in the α-amylase family and specifically cleaves α-1,6-glycosidic linkages in starch-type polysaccharides, such as pullulan, β-limited dextrin, glycogen, and amylopectin. It plays a key role in debranching and hydrolyzing starch completely, thus bring improved product quality, increased productivity, and reduced production cost in producing resistant starch, sugar syrup, and beer. Plenty of researches have been made with respects to the discovery of either thermophilic or mesophilic pullulanases, however, few examples meet the demand of industrial application. This review presents the progress made in the recent years from the first aspect of characteristics of pullulanases. The heterologous expression of pullulanases in different microbial hosts and the methods used to improve the expression effectiveness and the regulation of enzyme production are also described. Then, the function evolution of pullulanases from a protein engineering view is discussed. In addition, the immobilization strategy using novel materials is introduced to improve the recyclability of pullulanases. At the same time, we indicate the trends in the future research to facilitate the industrial application of pullulanases.
Collapse
Affiliation(s)
- Pei Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Shi-Yu Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Zhi-Gang Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xiao-Xi Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
7
|
Chi L, Wei J, Hou J, Wang J, Hu X, He P, Wei T. Optimizing the DO-stat protocol for enhanced production of thermostable pullulanase in Escherichia coli by using oxygen control strategies. J Food Biochem 2020; 44:e13173. [PMID: 32150658 DOI: 10.1111/jfbc.13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/18/2023]
Abstract
Production of a thermostable pullulanase by DO-stat fed-batch fermentation of recombinant Escherichia coli BL 21 was investigated in a 5 L of fermentor. The effect of three oxygen control strategies, glucose feedback, shifting fermentor pressure, and adding oxygen-enriched air, on cell growth and pullulanase expression were examined. The oxygen-transfer capacity was found to be enhanced with increasing fermentor pressure and oxygen ratio in oxygen-enriched air, but the cell growth and pullulanase production were restrained under high fermentor pressure. The highest cell density and pullulanase activity reached 55.1 g/L and 412 U/mL, respectively, in the case by adding oxygen-enriched air, which was suggested as an effective approach to enhance both cell growth and pullulanase production. PRACTICAL APPLICATIONS: This thermostable pullulanase displayed optimal activity at 90°C and pH 5.4, which could be applied for one-step saccharification of starch biomass. The optimization of the DO-stat fed-batch fermentation in high cell density level would provide a research basis for its industrialization.
Collapse
Affiliation(s)
- Lei Chi
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jiajia Wei
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junchao Hou
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jingyu Wang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaolong Hu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Peixin He
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Tao Wei
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
8
|
Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK. Thermozymes: Adaptive strategies and tools for their biotechnological applications. BIORESOURCE TECHNOLOGY 2019; 278:372-382. [PMID: 30709766 DOI: 10.1016/j.biortech.2019.01.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 05/10/2023]
Abstract
In today's scenario of global climate change, there is a colossal demand for sustainable industrial processes and enzymes from thermophiles. Plausibly, thermozymes are an important toolkit, as they are known to be polyextremophilic in nature. Small genome size and diverse molecular conformational modifications have been implicated in devising adaptive strategies. Besides, the utilization of chemical technology and gene editing attributions according to mechanical necessities are the additional key factor for efficacious bioprocess development. Microbial thermozymes have been extensively used in waste management, biofuel, food, paper, detergent, medicinal and pharmaceutical industries. To understand the strength of enzymes at higher temperatures different models utilize X-ray structures of thermostable proteins, machine learning calculations, neural networks, but unified adaptive measures are yet to be totally comprehended. The present review provides a recent updates on thermozymes and various interdisciplinary applications including the aspects of thermophiles bioengineering utilizing synthetic biology and gene editing tools.
Collapse
Affiliation(s)
- Sumit Kumar
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arun K Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Guwahati 781014, Assam, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
9
|
Wang X, Nie Y, Xu Y. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression. BIORESOURCE TECHNOLOGY 2019; 278:360-371. [PMID: 30709762 DOI: 10.1016/j.biortech.2019.01.098] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Pullulanases (EC 3.2.1.41) are well-known starch-debranching enzymes widely used to hydrolyze α-1,6-glucosidic linkages in starch, pullulan, amylopectin, and other oligosaccharides, with application potentials in food, brewing, and pharmaceutical industries. Although extensive studies are done to discover and express pullulanases, only few are available with desirable characteristics for industrial applications. This raises the challenge to mine new enzyme sources, engineer proteins based on sequence/structure, and regulate expressions. We review here the identification of extremophilic and mesophilic microbes as sources of industrial pullulanases with desirable characteristics, including acid-resistance, thermostability, and psychrotrophism. We present current advances in site-directed mutagenesis and sequence/structure-guided protein engineering of pullulanases. In addition, we discuss heterologous expression of pullulanases in prokaryotic and eukaryotic microbial systems, and address the effectiveness of the expression elements and their regulation of enzyme production. Finally, we indicate future research needs to develop desired industrial pullulanases.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; The 2011 Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Akassou M, Groleau D. Advances and challenges in the production of extracellular thermoduric pullulanases by wild-type and recombinant microorganisms: a review. Crit Rev Biotechnol 2019; 39:337-350. [PMID: 30700157 DOI: 10.1080/07388551.2019.1566202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thermoduric pullulanases, acting as starch-debranching enzymes, are required in many industrial applications, mainly in the production of concentrated glucose, maltose, and fructose syrups. To date, however, a single pullulanase, from Bacillus acidopullulyticus, is available on the market for industrial purposes. This review is an investigation of the major advances as well as the major challenges being faced with regard to optimization of the production of extracellular thermoduric pullulanases either by their original hosts or by recombinant organisms. The critical aspects linked to industrial pullulanase production, which should always be considered, are emphasized, including those parameters influencing solubility, thermostability, and catalytic efficiency of the enzyme. This review provides new insights for improving the production of extracellular thermoduric pullulanases in the hope that such information may facilitate their commercial utilization and potentially be applied to the development of other industrially relevant enzymes.
Collapse
Affiliation(s)
- Mounia Akassou
- a Department of Chemical Engineering and Biotechnological Engineering , Faculty of Engineering, University of Sherbrooke , Sherbrooke , Canada
| | - Denis Groleau
- a Department of Chemical Engineering and Biotechnological Engineering , Faculty of Engineering, University of Sherbrooke , Sherbrooke , Canada
| |
Collapse
|
11
|
Biochemical characterization of halophilic, alkalithermophilic amylopullulanase PulD7 and truncated amylopullulanases PulD7ΔN and PulD7ΔC. Int J Biol Macromol 2018; 111:632-638. [DOI: 10.1016/j.ijbiomac.2018.01.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 01/13/2023]
|
12
|
Faridi S, Satyanarayana T. Thermo-alkali-stable α-carbonic anhydrase of Bacillus halodurans: heterologous expression in Pichia pastoris and applicability in carbon sequestration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6838-6849. [PMID: 29264861 DOI: 10.1007/s11356-017-0820-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Recombinant α-carbonic anhydrase of the polyextremophilic bacterium Bacillus halodurans TSLV1 (rBhCA) has been produced extracellularly in active form in Pichia pastoris under methanol inducible (AOX1) as well as constitutive (GAP) promoters. A marked improvement in rBhCA production was achieved by developing a P. pastoris recombinant that produces rBhCA constitutively as compared to that under inducible promoter. The purified rBhCA from P. pastoris is a glycosylated protein that displays a higher molecular mass (79.5 kDa) than that produced from E. coli recombinant (75 kDa); the former has a Tm of 75 °C, which is slightly higher than that of the latter (72 °C). The former rBhCA exhibits higher thermostability than the latter. The former sequestered CO2 efficiently similar to that of the native BhCA and the latter. This is the first report on the production of recombinant carbonic anhydrase extracellularly in P. pastoris.
Collapse
Affiliation(s)
- Shazia Faridi
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology (University of Delhi), Azad Hind Fauz Marg, Sector 3 Dwarka, New Delhi, 110078, India.
| |
Collapse
|
13
|
Zebardast Roodi F, Aminzadeh S, Farrokhi N, Karkhane A, Haghbeen K. Cohnella amylopullulanases: Biochemical characterization of two recombinant thermophilic enzymes. PLoS One 2017; 12:e0175013. [PMID: 28394913 PMCID: PMC5386253 DOI: 10.1371/journal.pone.0175013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/20/2017] [Indexed: 11/19/2022] Open
Abstract
Some industries require newer, more efficient recombinant enzymes to accelerate their ongoing biochemical reactions in harsh environments with less replenishment. Thus, the search for native enzymes from extremophiles that are suitable for use under industrial conditions is a permanent challenge for R & D departments. Here and toward such discoveries, two sequences homologous to amylopullulanases (EC 3.2.1.41, GH57) from an endogenous Cohnella sp., [Coh00831 (KP335161; 1998 bp) and Coh01133 (KP335160: 3678 bp)] were identified. The genes were heterologously expressed in E. coli to both determine their type and further characterize their properties. The isolated DNA was PCR amplified with gene specific primers and cloned in pET28a, and the recombinant proteins were expressed in E. coli BL21 (DE3). The temperatures and pH optima of purified recombinants Coh 01133 and Coh 00831 enzymes were 70°C and 8, and 60°C and 6, respectively. These enzymes are stable more than 90% in 60°C and 50°C for 90 min respectively. The major reactions released sugars which could be fractionated by HPLC analysis, from soluble starch were mainly maltose (G2), maltotriose (G3) and maltotetraose (G4). The enzymes hydrolyzed pullulan to maltotriose (G3) only. Enzyme activities for both proteins were improved in the availability of Mn2+, Ba2+, Ca2+, and Mg2+ and reduced in the presence of Fe2+, Li2+, Na2+, Triton X100 and urea. Moreover, Co2+, K+, and Cu2+ had a negative effect only on Coh 01133 enzyme.
Collapse
Affiliation(s)
- Fatemeh Zebardast Roodi
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- * E-mail:
| | - Naser Farrokhi
- Department of Biotechnology Engineering, Faculty of New Technologies Engineering, Shahid Beheshti University G.C., Tehran, Iran
| | - AliAsghar Karkhane
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kamahldin Haghbeen
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|