1
|
Ghosh A, Sah D, Chakraborty M, Rai JPN. Mechanism and application of bacterial exopolysaccharides: An advanced approach for sustainable heavy metal abolition from soil. Carbohydr Res 2024; 544:109247. [PMID: 39180879 DOI: 10.1016/j.carres.2024.109247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The escalation of heavy metal pollutants in soils and effluents, driven by industrialization and human activities, poses significant environmental and health risks. Conventional remediation methods are often costly and ineffective, prompting a shift towards sustainable alternatives such as biological treatments. Natural biosorbents, including microbial cells and their byproducts, have emerged as promising solutions. One such approach involves leveraging exopolysaccharides (EPS), complex high-molecular-weight biopolymers synthesized by microbes under environmental stress conditions. EPS are intricate organic macromolecules comprising proteins, polysaccharides, uronic acids, humic compounds, and lipids, either located within microbial cells or secreted into their surroundings. Their anionic functional groups enable efficient electrostatic binding of cationic heavy metals, making EPS effective biosorbents for soil remediation. This review thoroughly explores the pivotal role of bacterial EPS in the removal of heavy metals, focusing on EPS biosynthesis mechanisms, the dynamics of interaction with heavy metals, and case studies that illustrate their effectiveness in practical remediation strategies. By highlighting these aspects, the review underscores the innovation and practical implications of EPS-based bioremediation technologies, demonstrating their potential to address critical environmental challenges effectively while paving the way for sustainable environmental management practices. Key findings reveal that EPS exhibit robust metal-binding capacities, facilitated by their anionic functional groups, thereby offering a promising solution for mitigating metal pollution in diverse environmental matrices.
Collapse
Affiliation(s)
- Ankita Ghosh
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, 263145, Uttarakhand, India.
| | - Diksha Sah
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, 263145, Uttarakhand, India
| | - Moumita Chakraborty
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, 263145, Uttarakhand, India
| | - J P N Rai
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, 263145, Uttarakhand, India
| |
Collapse
|
2
|
Graca B, Rychter A, Bełdowska M, Wojdasiewicz A. Seasonality of mercury and its fractions in microplastics biofilms -comparison to natural biofilms, suspended particulate matter and bottom sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174814. [PMID: 39032739 DOI: 10.1016/j.scitotenv.2024.174814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Biofilms can enhance the sorption of heavy metals onto microplastic (MP) surfaces. However, most research in this field relies on laboratory experiments and neglects metal fractions and seasonal variations. Further studies of the metal/biofilm interaction in the aquatic environment are essential for assessing the ecological threat that MPs pose. The present study used in situ experiments in an environment conducive to biofouling (Vistula Lagoon, Baltic Sea). The objective was to investigate the sorption of mercury and its fractions (thermodesorption technique) in MP (polypropylene-PP, polystyrene-PS, polylactide-PLA) biofilms and natural matrices across three seasons. After one month of incubation, the Hg concentrations in MP and natural substratum (gravel grains-G) biofilms were similar (MP: 145 ± 45 ng/g d.w.; G: 132 ± 23 ng/g d.w.) and approximately twofold those of suspended particulate matter (SPM) (63 ± 27 ng/g d.w.). Hg concentrations in biofilms and sediments were similar, but labile fractions dominated in biofilms and stable fractions in sediments. Seasonal Hg concentrations in MP biofilms decreased over summer>winter>spring, with significant variation for mineral and loosely bound Hg fractions. Multiple regression analysis revealed that hydrochemical conditions and sediment resuspension played a crucial role in the observed variability. The influence of polymer type and morphology (pellets, fibres, aged MP) on Hg sorption in biofilms was visible only in high summer temperatures. In this season, PP fibres and aged PP pellets encouraged biofilm growth and the accumulation of labile Hg fractions. Additionally, high concentrations of mineral (stable and semi-labile) Hg fractions were found in expanded PS biofilms. These findings suggest that organisms that ingest MPs or feed on the biofilms are exposed to the adverse effects of Hg and the presence of MPs in aquatic ecosystems may facilitate the transfer of mercury within the food chain.
Collapse
Affiliation(s)
- Bożena Graca
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Agata Rychter
- University of Applied Sciences in Elbląg, Ul. Wojska Polskiego 1, 82-300 Elbląg, Poland
| | - Magdalena Bełdowska
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Adriana Wojdasiewicz
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
3
|
Hui CY, Ma BC, Hu SY, Wu C. Tailored bacteria tackling with environmental mercury: Inspired by natural mercuric detoxification operons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123016. [PMID: 38008253 DOI: 10.1016/j.envpol.2023.123016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Mercury (Hg) and its inorganic and organic compounds significantly threaten the ecosystem and human health. However, the natural and anthropogenic Hg environmental inputs exceed 5000 metric tons annually. Hg is usually discharged in elemental or ionic forms, accumulating in surface water and sediments where Hg-methylating microbes-mediated biotransformation occurs. Microbial genetic factors such as the mer operon play a significant role in the complex Hg biogeochemical cycle. Previous reviews summarize the fate of environmental Hg, its biogeochemistry, and the mechanism of bacterial Hg resistance. This review mainly focuses on the mer operon and its components in detecting, absorbing, bioaccumulating, and detoxifying environmental Hg. Four components of the mer operon, including the MerR regulator, divergent mer promoter, and detoxification factors MerA and MerB, are rare bio-parts for assembling synthetic bacteria, which tackle pollutant Hg. Bacteria are designed to integrate synthetic biology, protein engineering, and metabolic engineering. In summary, this review highlights that designed bacteria based on the mer operon can potentially sense and bioremediate pollutant Hg in a green and low-cost manner.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China.
| | - Bing-Chan Ma
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Shun-Yu Hu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Can Wu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P, Arora P, Sharma A, Bhardwaj R. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. CHEMOSPHERE 2023; 319:137917. [PMID: 36706814 DOI: 10.1016/j.chemosphere.2023.137917] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is among the naturally occurring heavy metal with elemental, organic, and inorganic distributions in the environment. Being considered a global pollutant, high pools of Hg-emissions ranging from >6000 to 8000 Mg Hg/year get accumulated by the natural and anthropogenic activities in the atmosphere. These toxicants have high persistence, toxicity, and widespread contamination in the soil, water, and air resources. Hg accumulation inside the plant parts amplifies the traces of toxic elements in the linking food chains, leads to Hg exposure to humans, and acts as a potential genotoxic, neurotoxic and carcinogenic entity. However, excessive Hg levels are equally toxic to the plant system and severely disrupt the physiological and metabolic processes in plants. Thus, a plausible link between Hg-concentration and its biogeochemical behavior is highly imperative to analyze the plant-soil interactions. Therefore, it is requisite to bring these toxic contaminants in between the acceptable limits to safeguard the environment. Plants efficiently incorporate or absorb the bioavailable Hg from the soil thus a constructive understanding of Hg uptake, translocation/sequestration involving specific heavy metal transporters, and detoxification mechanisms are drawn. Whereas recent investigations in biological remediation of Hg provide insights into the potential associations between the plants and microbes. Furthermore, intense research on Hg-induced antioxidants, protein networks, metabolic mechanisms, and signaling pathways is required to understand these bioremediations techniques. This review sheds light on the mercury (Hg) sources, pollution, biogeochemical cycles, its uptake, translocation, and detoxification methods with respect to its molecular approaches in plants.
Collapse
Affiliation(s)
- Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pardeep Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitika Kapoor
- P.G. Department of Botany, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Priyanka Sharma
- School of Bioengineering Sciences and Research, MIT-ADT University, Pune, Maharashtra, India
| | - Priya Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
5
|
Yan X, Huang J, Xiao X, Ma C, Zhang J, Zhur O, Zhou M, He H, Wu C. A new method for determination of polysaccharides in adsorption of Hg2+. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Priyadarshanee M, Chatterjee S, Rath S, Dash HR, Das S. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126985. [PMID: 34464861 DOI: 10.1016/j.jhazmat.2021.126985] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a highly toxic element that occurs at low concentrations in nature. However, various anthropogenic and natural sources contribute around 5000 to 8000 metric tons of Hg per year, rapidly deteriorating the environmental conditions. Mercury-resistant bacteria that possess the mer operon system have the potential for Hg bioremediation through volatilization from the contaminated milieus. Thus, bacterial mer operon plays a crucial role in Hg biogeochemistry and bioremediation by converting both reactive inorganic and organic forms of Hg to relatively inert, volatile, and monoatomic forms. Both the broad-spectrum and narrow-spectrum bacteria harbor many genes of mer operon with their unique definitive functions. The presence of mer genes or proteins can regulate the fate of Hg in the biogeochemical cycle in the environment. The efficiency of Hg transformation depends upon the nature and diversity of mer genes present in mercury-resistant bacteria. Additionally, the bacterial cellular mechanism of Hg resistance involves reduced Hg uptake, extracellular sequestration, and bioaccumulation. The presence of unique physiological properties in a specific group of mercury-resistant bacteria enhances their bioremediation capabilities. Many advanced biotechnological tools also can improve the bioremediation efficiency of mercury-resistant bacteria to achieve Hg bioremediation.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| |
Collapse
|
7
|
Chang J, Si G, Dong J, Yang Q, Shi Y, Chen Y, Zhou K, Chen J. Transcriptomic analyses reveal the pathways associated with the volatilization and resistance of mercury(II) in the fungus Lecythophora sp. DC-F1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142172. [PMID: 33207499 DOI: 10.1016/j.scitotenv.2020.142172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The biotic enzymatic reduction of mercury II [Hg(II)] to elemental Hg [Hg(0)] is an important pathway for Hg detoxification in natural ecosystems. However, the mechanisms of Hg(II) volatilization and resistance in fungi have not been understood completely. In the present study, we investigated the mechanisms of Hg(II) volatilization and resistance in the fungus Lecythophora sp. DC-F1. Hg(II) volatilization occurred during the investigation via the reduction of Hg(II) to Hg(0) in DC-F1. Comparative transcriptome analyses of DC-F1 revealed 3439 differentially expressed genes under 10 mg/L Hg(II) stress, among which 2770 were up-regulated and 669 were down-regulated. Functional enrichment analyses of genes and pathways further suggested that the Hg(II) resistance of DC-F1 is a multisystem collaborative process with three important transcriptional responses to Hg(II) stress: a mer-mediated Hg detoxification system, a thiol compound metabolism, and a cell reactive oxygen species stress response system. The phylogenetic analysis of merA protein homologs suggests that the Hg(II) reduction by merA is widely distributed in fungi. Overall, this study provides evidence for the reduction of Hg(II) to Hg(0) in fungi via the mer-mediated Hg detoxification system and offers a comprehensive explanation for its role within Hg biogeochemical cycling. These findings offer a strong theoretical basis for the application of fungi in the bioremediation of Hg-contaminated envionments.
Collapse
Affiliation(s)
- Junjun Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan Kunming, 650091, China
| | - Guangzheng Si
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Jia Dong
- International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan Kunming, 650091, China
| | - Qingchen Yang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Yu Shi
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Yaling Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Kexin Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinquan Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan Kunming, 650091, China.
| |
Collapse
|
8
|
Saavedra A, Aguirre P, Gentina JC. Biooxidation of Iron by Acidithiobacillus ferrooxidans in the Presence of D-Galactose: Understanding Its Influence on the Production of EPS and Cell Tolerance to High Concentrations of Iron. Front Microbiol 2020; 11:759. [PMID: 32390992 PMCID: PMC7191041 DOI: 10.3389/fmicb.2020.00759] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
Acidithiobacillus ferrooxidans, together with other microorganisms, has an important role on biohydrometallurgical processes. Such bacterium gets its energy from the oxidation of ferrous ion and reduced sulfur; in the first case, the accumulation of ferric ion as a product can cause its inhibition. It is known that the extracellular polymeric substances (EPS) may have an important role in the adaptation and tolerance to diverse inhibiting conditions. In the present study, it was tested how D-galactose can influence the production of extracellular polymeric substances (EPS) on At. ferrooxidans by evaluating at the same time its biooxidant activity and capacity to tolerate high concentrations of ferric ion. The visualization and quantification of EPS was done through a confocal laser scanning microscope (CLSM). The results show that at low cellular concentrations, the D-galactose inhibits the microbial growth and the biooxidation of ferrous ion; however, when the quantity of microorganisms is high enough, the inhibition is not present. By means of chemostat tests, several concentrations of D-galactose (0; 0.15; 0.25; and 0.35%) were evaluated, thus reaching the highest production of EPS when using 0.35% of this sugar. In cultures with such concentration of D-galactose, the tolerance of the bacterium was tested at high concentrations of ferric ion and it was compared with cultures in which sugar was not added. The results show that cultures with D-galactose reached a higher tolerance to ferric ion (48.15 ± 1.9 g L-1) compare to cultures without adding D-galactose (38.7 ± 0.47 g L-1 ferric ion). Also it was observed a higher amount of EPS on cells growing in the presence of D-galactose suggesting its influence on the greater tolerance of At. ferrooxidans to ferric ion. Therefore, according to the results, the bases of a strategy are considered to overproduce EPS by means of At. ferrooxidans in planktonic state, so that, it can be used as a pre-treatment to increase its resistance and tolerance to high concentrations of ferric ion and improve the efficiency of At. ferrooxidans when acting in biohydrometallurgical processes.
Collapse
Affiliation(s)
- Albert Saavedra
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paulina Aguirre
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Departamento de Química y Ciencias Exactas (Sección de Ingeniería Ambiental), Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Juan Carlos Gentina
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
9
|
Pandey N, Manjunath K, Sahu K. Screening of plant growth promoting attributes and arsenic remediation efficacy of bacteria isolated from agricultural soils of Chhattisgarh. Arch Microbiol 2019; 202:567-578. [PMID: 31741012 DOI: 10.1007/s00203-019-01773-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 11/25/2022]
Abstract
Arsenic (As) resistant indigenous bacteria with discrete minimum inhibitory concentration values for arsenate [As(V)] and arsenite [As(III)] were isolated from the paddy fields of different regions of Chhattisgarh, India, following enrichment culture technique. Evaluation of the plant growth promoting (PGP) properties of the isolates revealed that two rod-shaped Gram-positive bacteria viz., ARP2 and ART2 acquired various PGP traits, including phosphate solubilization, production of siderophore, indole acetic acid, ammonia, and exopolysaccharide. Both the isolates significantly increased (40-80%) the root length of Oryza sativa L. even under As-exposure. Sequencing of 16S rRNA gene identified these isolates as Bacillus nealsonii strain ARP2 and Bacillus tequilensis strain ART2, respectively. Isolate ARP2 exhibited arsenate reductase activity thereby rapidly reduced As(V) into As(III), achieving a reduction rate of 37.5 μM min-1. Alike, strain ART2 was capable of oxidizing As(III) into As(V) via arsenite oxidase enzyme, and revealed the oxidation rate of 21.8 μM min-1. Quantitative estimation of As through atomic absorption spectrophotometer revealed that the isolates ARP2 and ART2 removed 93 ± 0.2% and 77 ± 0.14% of As(V) and As(III), respectively, from As-containing culture media. The FTIR analysis showed the interaction of As with the cell membrane and was further confirmed by SEM and TEM techniques, which marked the increase in cell volume owing to successive accumulation of As. The As-resistant and PGP properties of above two isolates demonstrates their potentiality for sustainable bioremediation of As, and establishment of flora in As-rich environment.
Collapse
Affiliation(s)
- Neha Pandey
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
- Kristu Jayanti College (Autonomous), K. Narayanapura, Kothanur, Bengaluru, 560 077, India
| | - Kiragandur Manjunath
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
| | - Keshavkant Sahu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India.
| |
Collapse
|
10
|
Shukla A, Parmar P, Saraf M, Patel B. Isolation and screening of bacteria from radionuclide containing soil for bioremediation of contaminated sites. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42398-019-00068-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|