1
|
Llopis-Giménez A, Parenti S, Han Y, Ros VID, Herrero S. A proctolin-like peptide is regulated after baculovirus infection and mediates in caterpillar locomotion and digestion. INSECT SCIENCE 2022; 29:230-244. [PMID: 33783135 DOI: 10.1111/1744-7917.12913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Baculoviruses constitute a large group of invertebrate DNA viruses, predominantly infecting larvae of the insect order Lepidoptera. During a baculovirus infection, the virus spreads throughout the insect body producing a systemic infection in multiple larval tissues, included the central nervous system (CNS). As a main component of the CNS, neuropeptides are small protein-like molecules functioning as neurohormones, neurotransmitters, or neuromodulators. These peptides are involved in regulating animal physiology and behavior and could be altered after baculovirus infection. In this study, we have investigated the effect of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infection on expression of Spodoptera exigua neuropeptides and neuropeptide-like genes. Expression of the gene encoding a polypeptide that resembles the well-known insect neuropeptide proctolin and named as proctolin-like peptide (PLP), was downregulated in the larval brain following infection and was chosen for further analysis. A recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) overexpressing the C-terminal part of the PLP was generated and used in bioassays using S. exigua larvae to study its influence on the viral infection and insect behavior. AcMNPV-PLP-infected larvae showed less locomotion activity and a reduction in growth compared to larvae infected with wild type AcMNPV or mock-infected larvae. These results are indicative of this new peptide as a neuromodulator that regulates visceral and skeletal muscle contractions and offers a novel effector involved in the behavioral changes during baculovirus infection.
Collapse
Affiliation(s)
- Angel Llopis-Giménez
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Stefano Parenti
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Yue Han
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
- Current address. Department of Pathology, University of Cambridge, Cambridge, UK
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Salvador Herrero
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
2
|
Identification and Characterization of the Nucleolar Localization Signal of Autographa californica Multiple Nucleopolyhedrovirus LEF5. J Virol 2020; 94:JVI.01891-19. [PMID: 31776271 DOI: 10.1128/jvi.01891-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) late expression factor 5 (LEF5) is highly conserved in all sequenced baculovirus genomes and plays an important role in production of infectious viral progeny. In this study, nucleolar localization of AcMNPV LEF5 was characterized. Through transcriptome analysis, we identified two putative nucleolar proteins, Spodoptera frugiperda nucleostemin (SfNS) and fibrillarin (SfFBL), from Sf9 cells. Immunofluorescence analysis demonstrated that SfNS and SfFBL were localized to the nucleolus. AcMNPV infection resulted in reorganization of the nucleoli of infected cells. Colocalization of LEF5 and SfNS showed that AcMNPV LEF5 was localized to the nucleolus in Sf9 cells. Bioinformatic analysis revealed that basic amino acids of LEF5 are enriched at residues 184 to 213 and may contain a nucleolar localization signal (NoLS). Green fluorescent protein (GFP) fused to NoLS of AcMNPV LEF5 localized to the nucleoli of transfected cells. Multiple-point mutation analysis demonstrated that amino acid residues 197 to 204 are important for nucleolar localization of LEF5. To identify whether the NoLS in AcMNPV LEF5 is important for production of viral progeny, a lef5-null AcMNPV bacmid was constructed; several NoLS-mutated LEF5 proteins were reinserted into the lef5-null AcMNPV bacmid with a GFP reporter. The constructs containing point mutations at residues 185 to 189 or 197 to 204 in AcMNPV LEF5 resulted in reduction in production of infectious viral progeny and occlusion body yield in bacmid-transfected cells. Together, these data suggested that AcMNPV LEF5 contains an NoLS, which is important for nucleolar localization of LEF5, progeny production, and occlusion body production.IMPORTANCE Many viruses, including human and plant viruses, target nucleolar functions as part of their infection strategy. However, nucleolar localization for baculovirus proteins has not yet been characterized. In this study, two nucleolar proteins, SfNS and SfFBL, were identified in Sf9 cells. Our results showed that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection resulted in redistribution of the nucleoli of infected cells. We demonstrated that AcMNPV late expression factor 5 (LEF5) could localize to the nucleolus and contains a nucleolar localization signal (NoLS), which is important for nucleolar localization of AcMNPV LEF5 and for production of viral progeny and yield of occlusion bodies.
Collapse
|
3
|
Zhao Z, Ye B, Yue D, Li P, Zhang B, Wang L, Fan Q. Construction of a Baculovirus Derivative to Produce Linearized Antheraea pernyi (Lepidoptera: Saturniidae) Multicapsid Nucleopolyhedrovirus Genomic DNA. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5812899. [PMID: 32219450 PMCID: PMC7136005 DOI: 10.1093/jisesa/ieaa011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 06/10/2023]
Abstract
In the Antheraea pernyi multicapsid nucleopolyhedrovirus (AnpeNPV)-based expression vector system, the frequency of homologous recombination events between wild-type AnpeNPV DNA and the transfer vector is low, resulting in a small amount of recombinant virus. Previous reports have indicated that linearized baculovirus DNA can increase the proportion of recombinant virus relative to the total progeny. To improve the recombination efficiency, we constructed a linearized derivative of AnpeNPV, referred to as AnpeNPVPhEGFP-AvrII, in which egfp flanked by AvrII restriction sites was located at the polyhedrin locus and driven by the polyhedrin promoter. Linear AnpeNPV DNA was obtained by the treatment of AnpeNPVPhEGFP-AvrII genomic DNA with AvrII endonuclease. The infectivity and recombinogenic activity between the linearized and circular viral DNA were evaluated by quantitative real-time polymerase chain reactions. We demonstrated that the linearized AnpeNPV DNA produced only small numbers of infectious budded viruses, accounting for approximately 4.5% of the budded virus production of wild-type AnpeNPV DNA in A. pernyi pupae. However, the linearized AnpeNPV DNA substantially increased recombinant virus production after cotransfection with an appropriate transfer vector; relative abundance of the recombinant virus was approximately 5.5-fold higher than that of the wild-type AnpeNPV DNA in A. pernyi pupae. The linearization of AnpeNPV DNA will facilitate the purification of recombinant viruses using the AnpeNPV-based expression vector system and the construction of an AnpeNPV-based bacmid system.
Collapse
Affiliation(s)
- Zhenjun Zhao
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Bo Ye
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Dongmei Yue
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Peipei Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Bo Zhang
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Linmei Wang
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Qi Fan
- Corresponding author, e-mail:
| |
Collapse
|
5
|
Wu Y, Jiang L, Geng H, Yang T, Han Z, He X, Lin K, Xu F. A Recombinant Baculovirus Efficiently Generates Recombinant Adeno-Associated Virus Vectors in Cultured Insect Cells and Larvae. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:38-47. [PMID: 29988889 PMCID: PMC6034586 DOI: 10.1016/j.omtm.2018.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Current large-scale recombinant adeno-associated virus (rAAV) production systems based on the baculovirus expression vector (BEV) remain complicated and cost-intensive, and they lack versatility and flexibility. Here we present a novel recombinant baculovirus integrated with all packaging elements for the production of rAAV. To optimize BEV construction, ribosome leaky-scanning mechanism was used to express AAV Rep and Cap proteins downstream of the PH and P10 promoters in the pFast.Bac.Dual vector, respectively, and the rAAV genome was inserted between the two promoters. The yields of rAAV2, rAAV8, and rAAV9 derived from the BEV-infected Sf9 cells exceeded 105 vector genomes (VG) per cell. The BEV was shown to be stable and showed no apparent decrease of rAAV yield after at least four serial passages. The rAAVs derived from the new Bac system displayed high-quality and high-transduction activity. Additionally, rAAV2 could be efficiently generated from BEV-infected beet armyworm larvae at a per-larvae yield of 2.75 ± 1.66 × 1010 VG. The rAAV2 derived from larvae showed a structure similar to the rAAV2 derived from HEK293 cells, and it also displayed high-transduction activity. In summary, the novel BEV is ideally suitable for large-scale rAAV production. Further, this study exploits a potential cost-efficient platform for rAAV production in insect larvae.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liangyu Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hao Geng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tian Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zengpeng Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaobing He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kunzhang Lin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|