1
|
Gosalawit C, Kory S, Phosriran C, Jantama K. Techno-economical valorization of sugarcane bagasse for efficiently producing optically pure D-(-)-lactate approaching the theoretical maximum yield in low-cost salt medium by metabolically engineered Klebsiella oxytoca. BIORESOURCE TECHNOLOGY 2024; 407:131145. [PMID: 39043279 DOI: 10.1016/j.biortech.2024.131145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Sugarcane bagasse (SCB) was utilized for efficiently producing optically pure D-(-)-lactate by Klebsiella oxytoca KIS004-91T strain. Cellulase (15 U/g NaOH-treated SCB) sufficiently liberated high sugars with saccharifications of 79.8 % cellulose and 52.5 % hemicellulose. For separated hydrolysis and fermentation, D-(-)-lactate was produced at 53.5 ± 2.1 g/L (0.98 ± 0.01 g/g sugar utilized or 0.71 ± 0.01 g/g total sugars) while D-(-)-lactate at 47.2 ± 1.8 g/L (0.78 ± 0.03 g/g sugar used or 0.69 ± 0.01 g/g total sugars) was obtained under simultaneous saccharification and fermentation (SSF). D-(-)-lactate at 99.9 ± 0.9 g/L (0.97 ± 0.01 g/g sugar utilized or 0.78 ± 0.01 g/g total sugars) was improved via fed-batch SSF. Based on mass balance, raw SCB of 7 kg is required to produce 1 kg D-(-)-lactate. Unlike others, D-(-)-lactate production was performed in low-cost salt medium without requirements of rich nutrients. Costs regarding medium, purification, and waste disposal may be reduced. This unlocks economic capability of SCB bioconversion or agricultural and agro-industrial wastes into high valuable D-(-)-lactate.
Collapse
Affiliation(s)
- Chotika Gosalawit
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Sokha Kory
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Chutchawan Phosriran
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
2
|
Phosriran C, Wong N, Jantama K. An efficient production of bio-succinate in a novel metabolically engineered Klebsiella oxytoca by rational metabolic engineering and evolutionary adaptation. BIORESOURCE TECHNOLOGY 2024; 393:130045. [PMID: 38006983 DOI: 10.1016/j.biortech.2023.130045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Klebsiella oxytoca KC004 (ΔadhEΔpta-ackAΔldhAΔbudABΔpflB) was engineered to enhance succinate production. The strain exhibited poor growth without succinate production due to its deficiencies in ATP production and NADH reoxidation. To overcome obstacles, evolutionary adaptation with over 6,000 generations of growth-based selection was conducted. Under anaerobic conditions, enhanced productions of ATP for growth and succinate for NADH reoxidation by the evolved KC004-TF160 strain were coupled to an increased transcript of PEP carboxykinase (pck) while those of genes in the oxidative branch of TCA cycle (gltA, acnAB, and icd), and pyruvate and acetate metabolisms (pykA, acs, poxB and tdcD) were alleviated. The expression of pyruvate dehydrogenase repressor (pdhR) decreased whereas threonine decarboxylase (tdcE) increased. KC004-TF160 produced succinate at 84 g/L (0.84 g/g, 79 % theoretical maximum). KC004-TF160 produced succinate at 0.87 g/g non-pretreated sugarcane molasses without addition of nutrients and buffers. KC004-TF160 may be a microbial platform for commercial production of bio-succinate.
Collapse
Affiliation(s)
- Chutchawan Phosriran
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Nonthaporn Wong
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
3
|
Tan B, Zheng Y, Yan H, Liu Y, Li ZJ. Metabolic engineering of Halomonas bluephagenesis to metabolize xylose for poly-3-hydroxybutyrate production. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Chaleewong T, Khunnonkwao P, Puchongkawarin C, Jantama K. Kinetic Modeling of Succinate Production from Glucose and Xylose by Metabolically Engineered Escherichia coli KJ12201. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Wong N, Jantama K. Engineering Escherichia coli for a high yield of 1,3-propanediol near the theoretical maximum through chromosomal integration and gene deletion. Appl Microbiol Biotechnol 2022; 106:2937-2951. [PMID: 35416488 DOI: 10.1007/s00253-022-11898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 11/02/2022]
Abstract
Glycerol dehydratase (gdrAB-dhaB123) operon from Klebsiella pneumoniae and NADPH-dependent 1,3-propanediol oxidoreductase (yqhD) from Escherichia coli were stably integrated on the chromosomal DNA of E. coli under the control of the native-host ldhA and pflB constitutive promoters, respectively. The developed E. coli NSK015 (∆ldhA::gdrAB-dhaB123 ∆ackA::FRT ∆pflB::yqhD ∆frdABCD::cat-sacB) produced 1,3-propanediol (1,3-PDO) at the level of 36.8 g/L with a yield of 0.99 mol/mol of glycerol consumed when glucose was used as a co-substrate with glycerol. Co-substrate of glycerol and cassava starch was also utilized for 1,3-PDO production with the concentration and yield of 31.9 g/L and 0.84 mol/mol of glycerol respectively. This represents a work for efficient 1,3-PDO production in which the overexpression of heterologous genes on the E. coli host genome devoid of plasmid expression systems. Plasmids, antibiotics, IPTG, and rich nutrients were omitted during 1,3-PDO production. This may allow a further application of E. coli NSK015 for the efficient 1,3-PDO production in an economically industrial scale. KEY POINTS: • gdrAB-dhaB123 and yqhD were overexpressed in E. coli devoid of a plasmid system • E. coli NSK015 produced a high yield of 1,3-PDO at 99% theoretical maximum • Cassava starch was alternatively used as substrate for economical 1,3-PDO production.
Collapse
Affiliation(s)
- Nonthaporn Wong
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree Sub-District, Suranaree University of Technology, 111 University Avenue, Muang district, Nakhon Ratchasima, 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree Sub-District, Suranaree University of Technology, 111 University Avenue, Muang district, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
6
|
Wang L, Guo S, Zeng B, Wang S, Chen Y, Cheng S, Liu B, Wang C, Wang Y, Meng Q. Draft Genome Assembly and Annotation for Cutaneotrichosporon dermatis NICC30027, an Oleaginous Yeast Capable of Simultaneous Glucose and Xylose Assimilation. MYCOBIOLOGY 2022; 50:69-81. [PMID: 35291590 PMCID: PMC8890563 DOI: 10.1080/12298093.2022.2038844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The identification of oleaginous yeast species capable of simultaneously utilizing xylose and glucose as substrates to generate value-added biological products is an area of key economic interest. We have previously demonstrated that the Cutaneotrichosporon dermatis NICC30027 yeast strain is capable of simultaneously assimilating both xylose and glucose, resulting in considerable lipid accumulation. However, as no high-quality genome sequencing data or associated annotations for this strain are available at present, it remains challenging to study the metabolic mechanisms underlying this phenotype. Herein, we report a 39,305,439 bp draft genome assembly for C. dermatis NICC30027 comprised of 37 scaffolds, with 60.15% GC content. Within this genome, we identified 524 tRNAs, 142 sRNAs, 53 miRNAs, 28 snRNAs, and eight rRNA clusters. Moreover, repeat sequences totaling 1,032,129 bp in length were identified (2.63% of the genome), as were 14,238 unigenes that were 1,789.35 bp in length on average (64.82% of the genome). The NCBI non-redundant protein sequences (NR) database was employed to successfully annotate 11,795 of these unigenes, while 3,621 and 11,902 were annotated with the Swiss-Prot and TrEMBL databases, respectively. Unigenes were additionally subjected to pathway enrichment analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Clusters of orthologous groups for eukaryotic complete genomes (KOG), and Non-supervised Orthologous Groups (eggNOG) databases. Together, these results provide a foundation for future studies aimed at clarifying the mechanistic basis for the ability of C. dermatis NICC30027 to simultaneously utilize glucose and xylose to synthesize lipids.
Collapse
Affiliation(s)
- Laiyou Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Shuxian Guo
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Bo Zeng
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Shanshan Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Yan Chen
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Shuang Cheng
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Bingbing Liu
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Chunyan Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Yu Wang
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Qingshan Meng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Ioannidou SM, Ladakis D, Moutousidi E, Dheskali E, Kookos IK, Câmara-Salim I, Moreira MT, Koutinas A. Techno-economic risk assessment, life cycle analysis and life cycle costing for poly(butylene succinate) and poly(lactic acid) production using renewable resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150594. [PMID: 34610401 DOI: 10.1016/j.scitotenv.2021.150594] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The sustainable production of poly(lactic acid) (PLA) or poly(butylene succinate) (PBS) from corn glucose syrup, corn stover and sugar beet pulp (SBP) have been assessed via process design, preliminary techno-economic evaluation, life cycle assessment and life cycle costing (LCC). Cost-competitive PLA and PBS production can be achieved in a SBP-based biorefinery, including separation of crude pectin-rich extract as co-product, leading to minimum selling prices of $1.14/kgPLA and $1.37/kgPBS. Acidification Potential, Eutrophication Potential and Human Toxicity Potential are lower when SBP is used. The LCC of PLA ($1.42/kgPLA) and PBS ($1.72/kgPBS) production from SBP are lower than biaxial oriented polypropylene (BOPP, $1.66/kg) and general purpose polystyrene (GPPS, $2.04/kg) at pectin-rich extract market prices of $3/kg and $4/kg, respectively. Techno-economic risk assessment via Monte-Carlo simulations showed that PLA and PBS could be produced from SBP at the market prices of BOPP ($1.4/kg) and GPPS ($1.72/kg) with 100% probability to achieve a positive Net Present Value at pectin-rich extract market prices of $3/kg and $4/kg, respectively. This study demonstrated that SBP-based biorefinery development ensures sustainable production of PLA and PBS as compared to fossil-derived counterparts and single product bioprocesses using glucose syrup and corn stover.
Collapse
Affiliation(s)
- Sofia Maria Ioannidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Eleni Moutousidi
- Department of Chemical Engineering, University of Patras, Rio, 26504 Patras, Greece
| | - Endrit Dheskali
- Department of Chemical Engineering, University of Patras, Rio, 26504 Patras, Greece
| | - Ioannis K Kookos
- Department of Chemical Engineering, University of Patras, Rio, 26504 Patras, Greece
| | - Iana Câmara-Salim
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Teresa Moreira
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
8
|
Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. SUSTAINABLE ENERGY & FUELS 2021; 6:29-65. [PMID: 35028420 PMCID: PMC8691124 DOI: 10.1039/d1se00927c] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 05/30/2023]
Abstract
Biologists and engineers are making tremendous efforts in contributing to a sustainable and green society. To that end, there is growing interest in waste management and valorisation. Lignocellulosic biomass (LCB) is the most abundant material on the earth and an inevitable waste predominantly originating from agricultural residues, forest biomass and municipal solid waste streams. LCB serves as the renewable feedstock for clean and sustainable processes and products with low carbon emission. Cellulose and hemicellulose constitute the polymeric structure of LCB, which on depolymerisation liberates oligomeric or monomeric glucose and xylose, respectively. The preferential utilization of glucose and/or absence of the xylose metabolic pathway in microbial systems cause xylose valorization to be alienated and abandoned, a major bottleneck in the commercial viability of LCB-based biorefineries. Xylose is the second most abundant sugar in LCB, but a non-conventional industrial substrate unlike glucose. The current review seeks to summarize the recent developments in the biological conversion of xylose into a myriad of sustainable products and associated challenges. The review discusses the microbiology, genetics, and biochemistry of xylose metabolism with hurdles requiring debottlenecking for efficient xylose assimilation. It further describes the product formation by microbial cell factories which can assimilate xylose naturally and rewiring of metabolic networks to ameliorate xylose-based bioproduction in native as well as non-native strains. The review also includes a case study that provides an argument on a suitable pathway for optimal cell growth and succinic acid (SA) production from xylose through elementary flux mode analysis. Finally, a product portfolio from xylose bioconversion has been evaluated along with significant developments made through enzyme, metabolic and process engineering approaches, to maximize the product titers and yield, eventually empowering LCB-based biorefineries. Towards the end, the review is wrapped up with current challenges, concluding remarks, and prospects with an argument for intense future research into xylose-based biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
| | - Rylan Cox
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- School of Aerospace, Transport and Manufacturing, Cranfield University Cranfield MK43 0AL UK
| | - Rajesh Bommareddy
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum Mohkampur Dehradun 248005 India
| | - Ejaz Ahmad
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004 India
| | - Kamal Kumar Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo Lorena 12.602.810 Brazil
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University Seoul 05029 Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences Solan 173229 Himachal Pradesh India
| | - Parmeswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 Kerala India
| | | | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| |
Collapse
|
9
|
Soares-Silva I, Ribas D, Sousa-Silva M, Azevedo-Silva J, Rendulić T, Casal M. Membrane transporters in the bioproduction of organic acids: state of the art and future perspectives for industrial applications. FEMS Microbiol Lett 2021; 367:5873408. [PMID: 32681640 PMCID: PMC7419537 DOI: 10.1093/femsle/fnaa118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Organic acids such as monocarboxylic acids, dicarboxylic acids or even more complex molecules such as sugar acids, have displayed great applicability in the industry as these compounds are used as platform chemicals for polymer, food, agricultural and pharmaceutical sectors. Chemical synthesis of these compounds from petroleum derivatives is currently their major source of production. However, increasing environmental concerns have prompted the production of organic acids by microorganisms. The current trend is the exploitation of industrial biowastes to sustain microbial cell growth and valorize biomass conversion into organic acids. One of the major bottlenecks for the efficient and cost-effective bioproduction is the export of organic acids through the microbial plasma membrane. Membrane transporter proteins are crucial elements for the optimization of substrate import and final product export. Several transporters have been expressed in organic acid-producing species, resulting in increased final product titers in the extracellular medium and higher productivity levels. In this review, the state of the art of plasma membrane transport of organic acids is presented, along with the implications for industrial biotechnology.
Collapse
Affiliation(s)
- I Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - D Ribas
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - J Azevedo-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - T Rendulić
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
10
|
Combining metabolic engineering and evolutionary adaptation in Klebsiella oxytoca KMS004 to significantly improve optically pure D-(-)-lactic acid yield and specific productivity in low nutrient medium. Appl Microbiol Biotechnol 2020; 104:9565-9579. [PMID: 33009939 DOI: 10.1007/s00253-020-10933-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/15/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
In this study, K. oxytoca KMS004 (ΔadhE Δpta-ackA) was further reengineered by the deletion of frdABCD and pflB genes to divert carbon flux through D-(-)-lactate production. During fermentation of high glucose concentration, the resulted strain named K. oxytoca KIS004 showed poor in growth and glucose consumption due to its insufficient capacity to generate acetyl-CoA for biosynthesis. Evolutionary adaptation was thus employed with the strain to overcome impaired growth and acetate auxotroph. The evolved K. oxytoca KIS004-91T strain exhibited significantly higher glucose-utilizing rate and D-(-)-lactate production as a primary route to regenerate NAD+. D-(-)-lactate at concentration of 133 g/L (1.48 M), with yield and productivity of 0.98 g/g and 2.22 g/L/h, respectively, was obtained by the strain. To the best of our knowledge, this strain provided a relatively high specific productivity of 1.91 g/gCDW/h among those of other previous works. Cassava starch was also used to demonstrate a potential low-cost renewable substrate for D-(-)-lactate production. Production cost of D-(-)-lactate was estimated at $3.72/kg. Therefore, it is possible for the KIS004-91T strain to be an alternative biocatalyst offering a more economically competitive D-(-)-lactate production on an industrial scale. KEY POINTS: • KIS004-91T produced optically pure D-(-)-lactate up to 1.48 M in a low salts medium. • It possessed the highest specific D-(-)-lactate productivity than other reported strains. • Cassava starch as a cheap and renewable substrate was used for D-(-)-lactate production. • Costs related to media, fermentation, purification, and waste disposal were reduced.
Collapse
|
11
|
Flores AD, Choi HG, Martinez R, Onyeabor M, Ayla EZ, Godar A, Machas M, Nielsen DR, Wang X. Catabolic Division of Labor Enhances Production of D-Lactate and Succinate From Glucose-Xylose Mixtures in Engineered Escherichia coli Co-culture Systems. Front Bioeng Biotechnol 2020; 8:329. [PMID: 32432089 PMCID: PMC7214542 DOI: 10.3389/fbioe.2020.00329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
Although biological upgrading of lignocellulosic sugars represents a promising and sustainable route to bioplastics, diverse and variable feedstock compositions (e.g., glucose from the cellulose fraction and xylose from the hemicellulose fraction) present several complex challenges. Specifically, sugar mixtures are often incompletely metabolized due to carbon catabolite repression while composition variability further complicates the optimization of co-utilization rates. Benefiting from several unique features including division of labor, increased metabolic diversity, and modularity, synthetic microbial communities represent a promising platform with the potential to address persistent bioconversion challenges. In this work, two unique and catabolically orthogonal Escherichia coli co-cultures systems were developed and used to enhance the production of D-lactate and succinate (two bioplastic monomers) from glucose-xylose mixtures (100 g L-1 total sugars, 2:1 by mass). In both cases, glucose specialist strains were engineered by deleting xylR (encoding the xylose-specific transcriptional activator, XylR) to disable xylose catabolism, whereas xylose specialist strains were engineered by deleting several key components involved with glucose transport and phosphorylation systems (i.e., ptsI, ptsG, galP, glk) while also increasing xylose utilization by introducing specific xylR mutations. Optimization of initial population ratios between complementary sugar specialists proved a key design variable for each pair of strains. In both cases, ∼91% utilization of total sugars was achieved in mineral salt media by simple batch fermentation. High product titer (88 g L-1 D-lactate, 84 g L-1 succinate) and maximum productivity (2.5 g L-1 h-1 D-lactate, 1.3 g L-1 h-1 succinate) and product yield (0.97 g g-total sugar-1 for D-lactate, 0.95 g g-total sugar-1 for succinate) were also achieved.
Collapse
Affiliation(s)
- Andrew D. Flores
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Hyun G. Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Rodrigo Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Moses Onyeabor
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - E. Zeynep Ayla
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Amanda Godar
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Michael Machas
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - David R. Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
12
|
Zhao C, Zhang Y, Li Y. Production of fuels and chemicals from renewable resources using engineered Escherichia coli. Biotechnol Adv 2019; 37:107402. [DOI: 10.1016/j.biotechadv.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
|
13
|
Kurgan G, Sievert C, Flores A, Schneider A, Billings T, Panyon L, Morris C, Taylor E, Kurgan L, Cartwright R, Wang X. Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli. Biotechnol Bioeng 2019; 116:2074-2086. [PMID: 31038200 PMCID: PMC11161036 DOI: 10.1002/bit.27004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 12/25/2022]
Abstract
Efficient xylose utilization will facilitate microbial conversion of lignocellulosic sugar mixtures into valuable products. In Escherichia coli, xylose catabolism is controlled by carbon catabolite repression (CCR). However, in E. coli such as the succinate-producing strain KJ122 with disrupted CCR, xylose utilization is still inhibited under fermentative conditions. To probe the underlying genetic mechanisms inhibiting xylose utilization, we evolved KJ122 to enhance its xylose fermentation abilities in parallel and characterized the potential convergent genetic changes shared by multiple independently evolved strains. Whole-genome sequencing revealed that convergent mutations occurred in the galactose regulon during adaptive laboratory evolution potentially decreasing the transcriptional level or the activity of GalP, a galactose permease. We showed that deletion of galP increased xylose utilization in both KJ122 and wild-type E. coli, demonstrating a common repressive role of GalP for xylose fermentation. Concomitantly, induced expression of galP from a plasmid repressed xylose fermentation. Transcriptome analysis using RNA sequencing indicates that galP inactivation increases transcription levels of many catabolic genes for secondary sugars including xylose and arabinose. The repressive role of GalP for fermenting secondary sugars in E. coli suggests that utilization of GalP as a substitute glucose transporter is undesirable for conversion of lignocellulosic sugar mixtures.
Collapse
Affiliation(s)
- Gavin Kurgan
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Christian Sievert
- School of Life Sciences, Arizona State University, Tempe, Arizona
- The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Andrew Flores
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona
| | - Aidan Schneider
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Thomas Billings
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Larry Panyon
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Chandler Morris
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Eric Taylor
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Logan Kurgan
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Reed Cartwright
- School of Life Sciences, Arizona State University, Tempe, Arizona
- The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
14
|
Jampatesh S, Sawisit A, Wong N, Jantama SS, Jantama K. Evaluation of inhibitory effect and feasible utilization of dilute acid-pretreated rice straws on succinate production by metabolically engineered Escherichia coli AS1600a. BIORESOURCE TECHNOLOGY 2019; 273:93-102. [PMID: 30419446 DOI: 10.1016/j.biortech.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
This work demonstrated a pioneer work in the pre-treatment of rice straw by phosphoric acid (H3PO4) for succinate production. The optimized pre-treatment condition of rice straw was at 121 °C for 30 min with 2 N H3PO4. With this condition, total sugar concentration of 31.2 g/L with the highest hemicellulose saccharification yield of 94% was obtained. The physicochemical analysis of the pre-treated rice straw showed significant changes in its structure thus enhancing enzymatic saccharification. Succinate concentrations of 78.5 and 63.8 g/L were produced from hydrolysate liquor (L) and solid fraction (S) of the pre-treated rice straw respectively, with a comparable yield of 86% by E. coli AS1600a. Use of a combined L + S fraction in simultaneous saccharification and fermentation (LS + SSF) further improved succinate production at a concentration and yield of 85.6 g/L and 90% respectively. The results suggested that H3PO4 pre-treated rice straw may be utilized for economical succinate production by E. coli AS1600a.
Collapse
Affiliation(s)
- Surawee Jampatesh
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Apichai Sawisit
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nonthaporn Wong
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirima Suvarnakuta Jantama
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
15
|
Sawisit A, Jampatesh S, Jantama SS, Jantama K. Optimization of sodium hydroxide pretreatment and enzyme loading for efficient hydrolysis of rice straw to improve succinate production by metabolically engineered Escherichia coli KJ122 under simultaneous saccharification and fermentation. BIORESOURCE TECHNOLOGY 2018; 260:348-356. [PMID: 29649727 DOI: 10.1016/j.biortech.2018.03.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
Rice straw was pretreated with sodium hydroxide (NaOH) before subsequent use for succinate production by Escherichia coli KJ122 under simultaneous saccharification and fermentation (SSF). The NaOH pretreated rice straw was significantly enhanced lignin removal up to 95%. With the optimized enzyme loading of 4% cellulase complex + 0.5% xylanase (endo-glucanase 67 CMC-U/g, β-glucosidase 26 pNG-U/g and xylanase 18 CMC-U/g dry biomass), total sugar conversion reached 91.7 ± 0.8% (w/w). The physicochemical analysis of NaOH pretreated rice straw indicated dramatical changes in its structure, thereby favoring enzymatic saccharification. In batch SSF, succinate production of 69.8 ± 0.3 g/L with yield and productivity of 0.84 g/g pretreated rice straw and 0.76 ± 0.02 g/L/h, respectively, was obtained. Fed-batch SSF significantly improved succinate concentration and productivity to 103.1 ± 0.4 g/L and 1.37 ± 0.07 g/L/h with a comparable yield. The results demonstrated a feasibility of sequential saccharification and fermentation of rice straw as a promising process for succinate production in industrial scale.
Collapse
Affiliation(s)
- Apichai Sawisit
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Surawee Jampatesh
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirima Suvarnakuta Jantama
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|