1
|
da Silva JC, Cerny MG, Nascimento BL, Martelli EC, Vieira J, de Souza Marquezoni R, Makita MT, Paula CR, de Assis Baroni F, Gandra RF. Action of mycocins produced by Wickerhamomyces anomalus on Malassezia pachydermatis isolated from the ear canal of dogs. Res Vet Sci 2024; 176:105319. [PMID: 38852554 DOI: 10.1016/j.rvsc.2024.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/22/2023] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
This study aims to examine the effectiveness of mycocins produced by Wickerhamomyces anomalus in inhibiting Malassezia pachydermatis, a yeast commonly found in the ear canal of dogs. M. pachydermatis has a zoophilic origin and can be found in mammals, and frequently in dogs, where it mainly colonizes the ear canal region and the skin, leading to lesions that are difficult to treat. The antimicrobial mechanism was evaluated using dilutions of supernatant with enzymatic activity, which may include β-glucanases, glycoproteins known to act on microorganism cell walls. However, it is important to note that this supernatant may contain other compounds as well. β-glucanases in the mycocins supernatant were found at a concentration of 0.8 U/mg. The susceptibility of M. pachydermatis isolates was tested using the microdilution method. The isolates suffered 100% inhibition when tested with the culture supernatant containing mycocins. In the proteinases production test, 44% of the isolates tested were strong proteinases producers. Subsequently all these isolates suffered inhibition of their activity when tested in research medium containing mycocins supernatant at a subinhibitory concentration of β-glucanases. This shows that mycocins can inhibit the production of proteinases, a virulence factor of M. pachydermatis. The viability test showed the antifungal action of mycocins in inhibiting the viability of M. pachydermatis cells after a period of 8 hours of contact. These results support the antimicrobial potential of mycocins and their promise as a therapeutic option.
Collapse
Affiliation(s)
| | - Maria Gabriele Cerny
- Hospital Universitário, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil
| | | | | | - Jessica Vieira
- Hospital Universitário, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil
| | | | - Mario Tatsuo Makita
- Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Francisco de Assis Baroni
- Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
2
|
Selvaraj S, Gurumurthy K. Metagenomic, organoleptic profiling, and nutritional properties of fermented kombucha tea substituted with recycled substrates. Front Microbiol 2024; 15:1367697. [PMID: 38873151 PMCID: PMC11169636 DOI: 10.3389/fmicb.2024.1367697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Kombucha fermentation yields a diverse range of beneficial macro and micronutrients. In our study, we examined the metabolites, antioxidant activity, organoleptic characteristics, and nutritional attributes of traditionally prepared kombucha tea, using black tea and sugar (control) as substrates, and compared them with tea made from tea dust and blackstrap molasses (test). Kombucha tea crafted from functional raw materials exhibited enhanced sensory qualities and improved health-promoting properties. The levels of tannins, flavonoids, and phenols play a crucial role in determining the antioxidant activity of kombucha tea. Using the DPPH and FRAP methods, we investigated the antioxidant activity throughout the fermentation period, ranging from day 0 to day 12, under optimized conditions. The results consistently demonstrated an initial increase in antioxidant activity from day 0 to 6, followed by a decline from day 6 to 12. Notably, statistical analysis revealed that the antioxidant activity of the test sample was significantly better (p > 0.001) compared to the control sample. The nutritional content of the kombucha from day 6 of the test sample is higher than the control sample provided sugars (fructose 0.4 ± 0.1, glucose 0.7 ± 0.1, sucrose 1.4 ± 0.1) g/100 mL, minerals (calcium, 19.4 ± 0.15, iron 23.1 ± 0.25, and potassium 28.3 ± 0.25) mg/100 mL, vitamins (B1 0.58 ± 0.01, B2 0.30 ± 0.02, B3 0.33 ± 0.02, B6 0.75 ± 0.02, B9 0.19 ± 0.03, B12 0.9 ± 0.03, and C 1.38 ± 0.06) mg/100 mL, sodium 4.35 ± 0.25 mg/100 mL, calories 14.85 ± 0.25 mg/100 mL, carbohydrates 3.135 ± 0.12, and acids (acetic acid 4.20 ± 0.02, glucuronic acid 1.78 ± 0.02) mg/100 mL on day 12. The predominant microbial species identified in both control and test samples included Komagataeibacter rhaeticus, Gluconobacter oxydans, Brettanomyces bruxellensis, and Zygosaccharomyces bailli, each with varying dominance levels. These microorganisms play essential roles in metabolizing sugars, generating acids, and contributing to the distinctive flavor profile of kombucha. Sensory evaluations of the control and test samples were analyzed, and the overall preference was 88% for the test sample with tea dust and molasses. The sensory characteristics of the test sample included a fruity smell (41%), fizzy texture (66%), bright color (47%), and a fruity taste (67%), with overall acceptability (56%) rating it as excellent. Our research contributes to a deeper understanding of the interplay between raw materials, microbial composition, and the resulting composition of bioactive compounds.
Collapse
Affiliation(s)
- Suriyapriya Selvaraj
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kalaichelvan Gurumurthy
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Daute M, Jack F, Walker G. The potential for Scotch Malt Whisky flavour diversification by yeast. FEMS Yeast Res 2024; 24:foae017. [PMID: 38684485 PMCID: PMC11095643 DOI: 10.1093/femsyr/foae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024] Open
Abstract
Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process, which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of 'Scotch'. While each production step contributes significantly to whisky flavour-from malt preparation and mashing to fermentation, distillation, and maturation-the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, e.g. esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of nonconventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.
Collapse
Affiliation(s)
- Martina Daute
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Frances Jack
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Graeme Walker
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
| |
Collapse
|
4
|
Pietrafesa R, Siesto G, Tufariello M, Palombi L, Baiano A, Gerardi C, Braghieri A, Genovese F, Grieco F, Capece A. A multivariate approach to explore the volatolomic and sensory profiles of craft Italian Grape Ale beers produced with novel Saccharomyces cerevisiae strains. Front Microbiol 2023; 14:1234884. [PMID: 37577427 PMCID: PMC10414987 DOI: 10.3389/fmicb.2023.1234884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
This study investigated the influence of three Saccharomyces cerevisiae strains, selected from different matrices - CHE-3 (cherry), P4 (sourdough) and TA4-10 (grape must) - on characteristics of Italian Grape Ale (IGA) beers obtained at microbrewery scale. A multidisciplinary approach, combining results from analysis of chemical, volatile and organoleptic profiles of the beers, was adopted to underline the relationships between yeast starter and the quality of final products. Detection volatile organic compounds (VOCs) by Gas-Chromatography coupled with Mass Spectrometry (GC-MS) after extraction carried out by head-space micro-extraction (HS-SPME) revealed that the beer obtained by P4 strain differed from the others for its higher concentrations of esters, alcohols, and terpenes as confirmed by PCA (principal component analysis) and Cluster heatmap. Furthermore, sensorial analysis and consumer test showed that this sample differed from others by more pronounced notes of "fruity smell and floral" and "olfactory finesse," and it was the most appreciated beer for smell, taste, and overall quality. Conversely, CHE-3 was the sample with the lowest concentrations of the identified volatiles and, together TA4-10, showed the highest scores for smoked, yeast, malt, and hop notes. As far as we know, these are the first results on the application of indigenous S. cerevisiae strains in the production of craft IGA beers analyzed through a complex multivariate approach.
Collapse
Affiliation(s)
- Rocchina Pietrafesa
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Gabriella Siesto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
- Spinoff StarFInn S.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Maria Tufariello
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari (ISPA), Lecce, Italy
| | - Lorenzo Palombi
- Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata “Nello Carrara”, Firenze, Italy
| | - Antonietta Baiano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Foggia, Italy
| | - Carmela Gerardi
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari (ISPA), Lecce, Italy
| | - Ada Braghieri
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Francesco Genovese
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Francesco Grieco
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari (ISPA), Lecce, Italy
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
- Spinoff StarFInn S.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
5
|
Agarbati A, Ciani M, Esin S, Agnolucci M, Marcheggiani F, Tiano L, Comitini F. Comparative Zymocidial Effect of Three Different Killer Toxins against Brettanomyces bruxellensis Spoilage Yeasts. Int J Mol Sci 2023; 24:ijms24021309. [PMID: 36674823 PMCID: PMC9866123 DOI: 10.3390/ijms24021309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Three killer toxins that were previously investigated, one excreted by Kluyveromyces wickerhamii and two by different strains of Wickerhamomyces anomalus, were produced at the pilot scale, lyophilized and characterized, and the formulates were assessed for their zymocidial effect against Brettanomyces bruxellensis spoilage yeast. A comparative analysis allowed the evaluation of the minimum inhibitory concentration (MIC) against a sensitive strain. Fungicidal and fungistatic concentrations were used to evaluate the cytocidal effect using a cytofluorimetric approach that confirmed the lethal effect of all lyophilized formulates against B. bruxellensis spoilage yeasts. Moreover, the potential killer toxins' cytotoxicity against human intestinal cells (Caco-2) were evaluated to exclude any possible negative effect on the consumers. Finally, the effective lethal effect of all three lyophilized killer toxins toward B. bruxellensis sensitive strain were tested. The results indicated that all of them acted without dangerous effects on the human epithelial cells, opening the way for their possible commercial application. In particular, D15 showed the lowest MIC and the highest activity, was evaluated also in wine, revealing a strong reduction of Brettamonyces yeast growth and, at the same time, a control of ethyl phenols production.
Collapse
Affiliation(s)
- Alice Agarbati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Correspondence: (M.C.); (F.C.)
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56123 Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Comitini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Correspondence: (M.C.); (F.C.)
| |
Collapse
|
6
|
Bullé Rêgo ES, Santos DL, Hernández-Macedo ML, Padilha FF, López JA. Methods for the prevention and control of microbial spoilage and undesirable compounds in wine manufacturing. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Microbial Resources and Sparkling Wine Differentiation: State of the Arts. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Consumers’ increasing interest in sparkling wine has enhanced the global market’s demand. The pro-technological yeasts strains selected for the formulation of microbial starter cultures are a fundamental parameter for exalting the quality and safety of the final product. Nowadays, the management of the employed microbial resource is highly requested by stakeholders, because of the increasing economic importance of this oenological sector. Here, we report an overview of the production processes of sparkling wine and the main characterisation criteria to select Saccharomyces and non-Saccharomyces strains appropriate for the preparation of commercial starter cultures dedicated to the primary and, in particular, the secondary fermentation of sparkling wines. We also focused on the possible uses of selected indigenous strains to improve the unique traits of sparkling wines from particular productive areas. In summary, the sparkling wine industry will get an important advantage from the management of autochthonous microbial resources associated with vineyard/wine microbial diversity.
Collapse
|
8
|
Wine Spoilage Control: Impact of Saccharomycin on Brettanomyces bruxellensis and Its Conjugated Effect with Sulfur Dioxide. Microorganisms 2021; 9:microorganisms9122528. [PMID: 34946131 PMCID: PMC8705515 DOI: 10.3390/microorganisms9122528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
The yeast Brettanomyces bruxellensis is one of the most dangerous wine contaminants due to the production of phenolic off-flavors such as 4-ethylphenol. This microbial hazard is regularly tackled by addition of sulfur dioxide (SO2). Nevertheless, B. bruxellensis is frequently found at low levels (ca 103 cells/mL) in finished wines. Besides, consumers health concerns regarding the use of sulfur dioxide encouraged the search for alternative biocontrol measures. Recently, we found that Saccharomyces cerevisiae secretes a natural biocide (saccharomycin) that inhibits the growth of different B. bruxellensis strains during alcoholic fermentation. Here we investigated the ability of S. cerevisiae CCMI 885 to prevent B. bruxellensis ISA 2211 growth and 4-ethylphenol production in synthetic and true grape must fermentations. Results showed that B. bruxellensis growth and 4-ethylphenol production was significantly inhibited in both media, although the effect was more pronounced in synthetic grape must. The natural biocide was added to a simulated wine inoculated with 5 × 102 cells/mL of B. bruxellensis, which led to loss of culturability and viability (100% dead cells at day-12). The conjugated effect of saccharomycin with SO2 was evaluated in simulated wines at 10, 12, 13 and 14% (v/v) ethanol. Results showed that B. bruxellensis proliferation in wines at 13 and 14% (v/v) ethanol was completely prevented by addition of 1.0 mg/mL of saccharomycin with 25 mg/L of SO2, thus allowing to significantly reduce the SO2 levels commonly used in wines (150–200 mg/L).
Collapse
|
9
|
Diez-Ozaeta I, Lavilla M, Amárita F. Wine aroma profile modification by Oenococcus oeni strains from Rioja Alavesa region: selection of potential malolactic starters. Int J Food Microbiol 2021; 356:109324. [PMID: 34474175 DOI: 10.1016/j.ijfoodmicro.2021.109324] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Previously six selected Oenococcus oeni strains (P2A, P3A, P3G, P5A, P5C and P7B) have been submitted to further characterization in order to clarify their potential as malolactic starters. Laboratory scale vinifications gave an insight of the most vigorous strains: both P2A and P3A strains were able to conclude malolactic fermentation (MLF) in less than 15 days. The remaining strains showed good viability and were able to successfully finish MLF in the established analysis time, except for the strain P5A, which viability was totally lost after inoculation. Also spontaneous fermentation was not initiated. None of the strains was biogenic amine producer; however, P5C strain significantly increased the concentration of volatile phenol-precursor hydroxycinnamic acids after MLF. Regarding the evolution of wine aromatic compounds, main changes were detected for both ethyl and acetate esters after MLF; however, key aromatic compounds including alcohols, terpenes or acids were also found to significantly increase. Principal component analysis classified the strains in two distinct groups, each one correlated with different key volatile compounds. P2A, P3A, P3G and P5C strains were mainly linked to esters, while P7B and the commercial strain Viniflora OENOS showed higher score for diverse compounds as hexanoic acid, β-damascenone, linalool or 2-phenylethanol. These results confirmed the specific impact of each strain on wine aroma profile, which could lead to the production of wines with individual characteristics, in which the reliability and safety of MLF is also ensured.
Collapse
Affiliation(s)
- Iñaki Diez-Ozaeta
- AZTI, Food Research, Basque Research & Technology Alliance (BRTA), Astondo Bidea 609, 48160 Derio, Spain.
| | - María Lavilla
- AZTI, Food Research, Basque Research & Technology Alliance (BRTA), Astondo Bidea 609, 48160 Derio, Spain.
| | - Félix Amárita
- AZTI, Food Research, Basque Research & Technology Alliance (BRTA), Astondo Bidea 609, 48160 Derio, Spain.
| |
Collapse
|
10
|
Morata A, Loira I, González C, Escott C. Non- Saccharomyces as Biotools to Control the Production of Off-Flavors in Wines. Molecules 2021; 26:molecules26154571. [PMID: 34361722 PMCID: PMC8348789 DOI: 10.3390/molecules26154571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Off-flavors produced by undesirable microbial spoilage are a major concern in wineries, as they affect wine quality. This situation is worse in warm areas affected by global warming because of the resulting higher pHs in wines. Natural biotechnologies can aid in effectively controlling these processes, while reducing the use of chemical preservatives such as SO2. Bioacidification reduces the development of spoilage yeasts and bacteria, but also increases the amount of molecular SO2, which allows for lower total levels. The use of non-Saccharomyces yeasts, such as Lachancea thermotolerans, results in effective acidification through the production of lactic acid from sugars. Furthermore, high lactic acid contents (>4 g/L) inhibit lactic acid bacteria and have some effect on Brettanomyces. Additionally, the use of yeasts with hydroxycinnamate decarboxylase (HCDC) activity can be useful to promote the fermentative formation of stable vinylphenolic pyranoanthocyanins, reducing the amount of ethylphenol precursors. This biotechnology increases the amount of stable pigments and simultaneously prevents the formation of high contents of ethylphenols, even when the wine is contaminated by Brettanomyces.
Collapse
|
11
|
Microbial Resources, Fermentation and Reduction of Negative Externalities in Food Systems: Patterns toward Sustainability and Resilience. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the main targets of sustainable development is the reduction of environmental, social, and economic negative externalities associated with the production of foods and beverages. Those externalities occur at different stages of food chains, from the farm to the fork, with deleterious impacts to different extents. Increasing evidence testifies to the potential of microbial-based solutions and fermentative processes as mitigating strategies to reduce negative externalities in food systems. In several cases, innovative solutions might find in situ applications from the farm to the fork, including advances in food matrices by means of tailored fermentative processes. This viewpoint recalls the attention on microbial biotechnologies as a field of bioeconomy and of ‘green’ innovations to improve sustainability and resilience of agri-food systems alleviating environmental, economic, and social undesired externalities. We argue that food scientists could systematically consider the potential of microbes as ‘mitigating agents’ in all research and development activities dealing with fermentation and microbial-based biotechnologies in the agri-food sector. This aims to conciliate process and product innovations with a development respectful of future generations’ needs and with the aptitude of the systems to overcome global challenges.
Collapse
|
12
|
Biodiversity of Oenological Lactic Acid Bacteria: Species- and Strain-Dependent Plus/Minus Effects on Wine Quality and Safety. FERMENTATION 2021. [DOI: 10.3390/fermentation7010024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Winemaking depends on several elaborate biochemical processes that see as protagonist either yeasts or lactic acid bacteria (LAB) of oenological interest. In particular, LAB have a fundamental role in determining the quality chemical and aromatic properties of wine. They are essential not only for malic acid conversion, but also for producing several desired by-products due to their important enzymatic activities that can release volatile aromatic compounds during malolactic fermentation (e.g., esters, carbonyl compounds, thiols, monoterpenes). In addition, LAB in oenology can act as bioprotectors and reduce the content of undesired compounds. On the other hand, LAB can affect wine consumers’ health, as they can produce harmful compounds such as biogenic amines and ethyl carbamate under certain conditions during fermentation. Several of these positive and negative properties are species- and strain-dependent characteristics. This review focuses on these aspects, summarising the current state of knowledge on LAB’s oenological diversity, and highlighting their influence on the final product’s quality and safety. All our reported information is of high interest in searching new candidate strains to design starter cultures, microbial resources for traditional/typical products, and green solutions in winemaking. Due to the continuous interest in LAB as oenological bioresources, we also underline the importance of inoculation timing. The considerable variability among LAB species/strains associated with spontaneous consortia and the continuous advances in the characterisation of new species/strains of interest for applications in the wine sector suggest that the exploitation of biodiversity belonging to this heterogeneous group of bacteria is still rising.
Collapse
|
13
|
Comitini F, Agarbati A, Canonico L, Galli E, Ciani M. Purification and Characterization of WA18, a New Mycocin Produced by Wickerhamomyces anomalus Active in Wine Against Brettanomyces bruxellensis Spoilage Yeasts. Microorganisms 2020; 9:microorganisms9010056. [PMID: 33379214 PMCID: PMC7824415 DOI: 10.3390/microorganisms9010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023] Open
Abstract
Wickerhamomyces anomalus strain 18, isolated from a natural underground cheese ripening pit, secretes a mycocin named WA18 that inhibits wine spoilage yeasts belonging to Brettanomyces bruxellensis species, with a broad-spectrum of activity. WA18 was purified, and the purified protein was digested with specific restriction enzymes (lysine K and arginine R cut sites). The LC-MS and LC-MS/MS analysis after enzymatic digestions revealed a molecular weight of 31 kDa. Bioinformatics processing and database research of digested pure killer protein showed 99% identity with a UDP-glycosyltransferase protein. Competitive inhibition assay of killer activity by cell-wall polysaccharides suggests that branched glucans represent the first receptor site of the toxin on the envelope of the sensitive target. The WA18 partially purified crude extract (PPCE) showed high stability of antimicrobial activity at the physicochemical conditions suitable for the winemaking process. Indeed, in wine WA18 was able to counteract B. bruxellensis and control the production of ethyl phenols. In addition, the strain WA18 was compatible with Saccharomyces cerevisiae in co-culture conditions with a potential application together with commercial starter cultures. These data suggest that WA18 mycocin is a promising biocontrol agent against spoilage yeasts in winemaking, particularly during wine storage.
Collapse
|
14
|
Pachnowska K, Cendrowski K, Stachurska X, Nawrotek P, Augustyniak A, Mijowska E. Potential Use of Silica Nanoparticles for the Microbial Stabilisation of Wine: An In Vitro Study Using Oenococcus oeni as a Model. Foods 2020; 9:E1338. [PMID: 32971933 PMCID: PMC7555740 DOI: 10.3390/foods9091338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 01/20/2023] Open
Abstract
The emerging trend towards the reduction of SO2 in winemaking has created a need to look for alternative methods to ensure the protection of wine against the growth of undesired species of microorganisms and to safely remove wine microorganisms. This study describes the possible application of silica nanospheres as a wine stabilisation agent, with Oenococcus oeni (DSM7008) as a model strain. The experiment was conducted firstly on model solutions of phosphate-buffered saline and 1% glucose. Their neutralising effect was tested under stirring with the addition of SiO2 (0.1, 0.25, and 0.5 mg/mL). Overall, the highest concentration of nanospheres under continuous stirring resulted in the greatest decrease in cell counts. Transmission electron microscope (TEM) and scanning electron microscopy (SEM) analyses showed extensive damage to the bacterial cells after stirring with silica nanomaterials. Then, the neutralising effect of 0.5 mg/mL SiO2 was tested in young red wine under stirring, where cell counts were reduced by over 50%. The obtained results suggest that silica nanospheres can serve as an alternative way to reduce or substitute the use of sulphur dioxide in the microbial stabilisation of wine. In addition, further aspects of following investigations should focus on the protection against enzymatic and chemical oxidation of wine.
Collapse
Affiliation(s)
- Kamila Pachnowska
- Department of Nanomaterials Physicochemistry, Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland; (K.P.); (K.C.); (E.M.)
| | - Krzysztof Cendrowski
- Department of Nanomaterials Physicochemistry, Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland; (K.P.); (K.C.); (E.M.)
| | - Xymena Stachurska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland;
| | - Paweł Nawrotek
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland;
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland;
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Ewa Mijowska
- Department of Nanomaterials Physicochemistry, Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland; (K.P.); (K.C.); (E.M.)
| |
Collapse
|
15
|
De Simone N, Pace B, Grieco F, Chimienti M, Tyibilika V, Santoro V, Capozzi V, Colelli G, Spano G, Russo P. Botrytis cinerea and Table Grapes: A Review of the Main Physical, Chemical, and Bio-Based Control Treatments in Post-Harvest. Foods 2020; 9:E1138. [PMID: 32824971 PMCID: PMC7555317 DOI: 10.3390/foods9091138] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
Consumers highly appreciate table grapes for their pleasant sensory attributes and as good sources of nutritional and functional compounds. This explains the rising market and global interest in this product. Along with other fruits and vegetables, table grapes are considerably perishable post-harvest due to the growth of undesired microorganisms. Among the microbial spoilers, Botrytis cinerea represents a model organism because of its degrading potential and the huge economic losses caused by its infection. The present review provides an overview of the recent primary physical, chemical, and biological control treatments adopted against the development of B. cinerea in table grapes to extend shelf life. These treatments preserve product quality and safety. This article also focuses on the compliance of different approaches with organic and sustainable production processes. Tailored approaches include those that rely on controlled atmosphere and the application of edible coating and packaging, as well as microbial-based activities. These strategies, applied alone or in combination, are among the most promising solutions in order to prolong table grape quality during cold storage. In general, the innovative design of applications dealing with hurdle technologies holds great promise for future improvements.
Collapse
Affiliation(s)
- Nicola De Simone
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (G.C.); (G.S.); (P.R.)
| | - Bernardo Pace
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Francesco Grieco
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | | | | | - Vincenzo Santoro
- A.B.A. Mediterranea s.c.a.r.l., Via Parini, 1, 74013 Ginosa, Italy;
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Giancarlo Colelli
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (G.C.); (G.S.); (P.R.)
| | - Giuseppe Spano
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (G.C.); (G.S.); (P.R.)
| | - Pasquale Russo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (G.C.); (G.S.); (P.R.)
| |
Collapse
|
16
|
Simonin S, Roullier-Gall C, Ballester J, Schmitt-Kopplin P, Quintanilla-Casas B, Vichi S, Peyron D, Alexandre H, Tourdot-Maréchal R. Bio-Protection as an Alternative to Sulphites: Impact on Chemical and Microbial Characteristics of Red Wines. Front Microbiol 2020; 11:1308. [PMID: 32612594 PMCID: PMC7308991 DOI: 10.3389/fmicb.2020.01308] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
In wine, one method of limiting the addition of sulphites, a harmful and allergenic agent, is bio-protection. This practice consists of the early addition of microorganisms on grape must before fermentation. Non-Saccharomyces yeasts have been proposed as an interesting alternative to sulphite addition. However, scientific data proving the effectiveness of bio-protection remains sparse. This study provides the first analysis of the chemical and microbiological effects of a Metschnikowia pulcherrima strain inoculated at the beginning of the red winemaking process in three wineries as an alternative to sulphiting. Like sulphiting, bio-protection effectively limited the growth of spoilage microbiota and had no influence on the phenolic compounds protecting musts and wine from oxidation. The bio-protection had no effect on the volatile compounds and the sensory differences were dependent on the experimental sites. However, a non-targeted metabolomic analysis by FTICR-MS highlighted a bio-protection signature.
Collapse
Affiliation(s)
- Scott Simonin
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Chloé Roullier-Gall
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Jordi Ballester
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA-Université de Bourgogne Franche Comté, Dijon, France
| | - Philippe Schmitt-Kopplin
- Analytical Food Chemistry, Technische Universität München, Munich, Germany.,Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Beatriz Quintanilla-Casas
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Stefania Vichi
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Dominique Peyron
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA-Université de Bourgogne Franche Comté, Dijon, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| |
Collapse
|
17
|
Villalba ML, Mazzucco MB, Lopes CA, Ganga MA, Sangorrín MP. Purification and characterization of Saccharomyces eubayanus killer toxin: Biocontrol effectiveness against wine spoilage yeasts. Int J Food Microbiol 2020; 331:108714. [PMID: 32544792 DOI: 10.1016/j.ijfoodmicro.2020.108714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
Microbiological contamination by spoilage yeasts species are frequent during winemaking, and biological control using antagonistic yeasts is considered a more beneficial alternative to conventional synthetic antimicrobials. Saccharomyces eubayanus killer toxin (SeKT) was produced and purified in a synthetic optimized medium. Purification procedure allowed the identification of SeKT as protein with an apparent molecular mass of 70 kDa and activity at physicochemical conditions suitable for winemaking process. Purified SeKT reduced the levels of volatile phenols produced by the spoilage yeasts Brettanomyces bruxellensis, Pichia membranifaciens, Meyerozyma guilliermondii and Pichia manshurica in wine-like medium. The putative mode of action of SeKT on sensitive yeast strains comprises cell wall disruption through β-glucanase and chitinase activities as well as necrotic and apoptotic death in a toxin dose dependent manner. Thus, SeKT appears to be a promising biocontrol agent against spoilage yeasts during wine aging and storing.
Collapse
Affiliation(s)
- María Leticia Villalba
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Tecnológicas - Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina.
| | - María Belén Mazzucco
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Tecnológicas - Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
| | - Christian Ariel Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Tecnológicas - Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Ruta 151 km 12-5, Cinco Saltos, Río Negro, Argentina.
| | - María Angélica Ganga
- Laboratorio de Biotecnología y Microbiología Aplicada, Departamento en Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile.
| | - Marcela Paula Sangorrín
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Tecnológicas - Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina.
| |
Collapse
|
18
|
PTR-ToF-MS for the Online Monitoring of Alcoholic Fermentation in Wine: Assessment of VOCs Variability Associated with Different Combinations of Saccharomyces/Non-Saccharomyces as a Case-Study. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6020055] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The management of the alcoholic fermentation (AF) in wine is crucial to shaping product quality. Numerous variables (e.g., grape varieties, yeast species/strains, technological parameters) can affect the performances of this fermentative bioprocess. The fact that these variables are often interdependent, with a high degree of interaction, leads to a huge ‘oenological space’ associated with AF that scientists and professionals have explored to obtain the desired quality standards in wine and to promote innovation. This challenge explains the high interest in approaches tested to monitor this bioprocess including those using volatile organic compounds (VOCs) as target molecules. Among direct injection mass spectrometry approaches, no study has proposed an untargeted online investigation of the diversity of volatiles associated with the wine headspace. This communication proposed the first application of proton-transfer reaction-mass spectrometry coupled to a time-of-flight mass analyzer (PTR-ToF-MS) to follow the progress of AF and evaluate the impact of the different variables of wine quality. As a case study, the assessment of VOC variability associated with different combinations of Saccharomyces/non-Saccharomyces was selected. The different combinations of microbial resources in wine are among the main factors susceptible to influencing the content of VOCs associated with the wine headspaces. In particular, this investigation explored the effect of multiple combinations of two Saccharomyces strains and two non-Saccharomyces strains (belonging to the species Metschnikowia pulcherrima and Torulaspora delbrueckii) on the content of VOCs in wine, inoculated both in commercial grape juice and fresh grape must. The results demonstrated the possible exploitation of non-invasive PTR-ToF-MS monitoring to explore, using VOCs as biomarkers, (i) the huge number of variables influencing AF in wine, and (ii) applications of single/mixed starter cultures in wine. Reported preliminary findings underlined the presence of different behaviors on grape juice and on must, respectively, and confirmed differences among the single yeast strains ‘volatomes’. It was one of the first studies to include the simultaneous inoculation on two non-Saccharomyces species together with a S. cerevisiae strain in terms of VOC contribution. Among the other outcomes, evidence suggests that the addition of M. pulcherrima to the coupled S. cerevisiae/T. delbrueckii can modify the global release of volatiles as a function of the characteristics of the fermented matrix.
Collapse
|
19
|
Tufariello M, Capozzi V, Spano G, Cantele G, Venerito P, Mita G, Grieco F. Effect of Co-Inoculation of Candida zemplinina, Saccharomyces cerevisiae and Lactobacillus plantarum for the Industrial Production of Negroamaro Wine in Apulia (Southern Italy). Microorganisms 2020; 8:E726. [PMID: 32414096 PMCID: PMC7285497 DOI: 10.3390/microorganisms8050726] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 01/11/2023] Open
Abstract
The employment of multi-species starter cultures has growing importance in modern winemaking for improving the complexity and wine attributes. The assessment of compatibility for selected species/strains at the industrial-scale is crucial to assure the quality and the safety associated with fermentations. An aspect particularly relevant when the species belong to non-Saccharomyces, Saccharomyces spp. and malolactic bacteria, three categories with different biological characteristics and oenological significance. To the best of our knowledge, the present report is the first study regarding the utilization of a combined starter culture composed of three strains of non-Saccharomyces, Saccharomyces cerevisiae and Lactobacillus plantarum for production of wine at the industrial scale. More in-depth, this work investigated the oenological potential of the autochthonous characterized strains from the Apulian region (Southern Italy), Candida zemplinina (syn. Starmerella bacillaris) 35NC1, S. cerevisiae (NP103), and L. plantarum (LP44), in co-inoculation following a complete scale-up scheme. Microbial dynamics, fermentative profiles and production of volatile secondary compounds were assessed in lab-scale micro-vinification tests and then the performances of the mixed starter formulation were further evaluated by pilot-scale wine production. The above results were finally validated by performing an industrial-scale vinification on 100HL of Negroamaro cultivar grape must. The multi-starter formulation was able to rule the different stages of the fermentation processes effectively, and the different microbial combinations enhanced the organoleptic wine features to different extents. The findings indicated that the simultaneous inoculation of the three species affect the quality and quantity of several volatile compounds, confirming that the complexity of the wine can reflect the complexity of the starter cultures. Moreover, the results underlined that the same mixed culture could differently influence wine quality when tested at the lab-, pilot- and industrial-scale. Finally, we highlighted the significance of employment non-Saccharomyces and L. plantarum, together with S. cerevisiae, autochthonous strains in the design of custom-made starter culture formulation for typical regional wine production with pronounced unique quality.
Collapse
Affiliation(s)
- Maria Tufariello
- Institute of Sciences of Food Production, National Research Council, 73100 Lecce, Italy;
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council, c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Giuseppe Spano
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, 71121 Foggia, Italy;
| | | | - Pasquale Venerito
- Center for Research, Experimentation and Training in Agriculture “Basile Caramia”, 70010 Locorotondo, Italy;
| | - Giovanni Mita
- Institute of Sciences of Food Production, National Research Council, 73100 Lecce, Italy;
| | - Francesco Grieco
- Institute of Sciences of Food Production, National Research Council, 73100 Lecce, Italy;
| |
Collapse
|
20
|
Pinto L, Baruzzi F, Cocolin L, Malfeito-Ferreira M. Emerging technologies to control Brettanomyces spp. in wine: Recent advances and future trends. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Nardi T. Microbial Resources as a Tool for Enhancing Sustainability in Winemaking. Microorganisms 2020; 8:microorganisms8040507. [PMID: 32252445 PMCID: PMC7232173 DOI: 10.3390/microorganisms8040507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
In agriculture, the wine sector is one of the industries most affected by the sustainability issue. It is responsible for about 0.3% of annual global greenhouse gas emissions from anthropogenic activities. Sustainability in vitiviniculture was firstly linked to vineyard management, where the use of fertilizers, pesticides and heavy metals is a major concern. More recently, the contribution of winemaking, from grape harvest to bottling, has also been considered. Several cellar processes could be improved for reducing the environmental impact of the whole chain, including microbe-driven transformations. This paper reviews the potential of microorganisms and interactions thereof as a natural, environmentally friendly tool to improve the sustainability aspects of winemaking, all along the production chain. The main phases identified as potentially interesting for exploiting microbial activities to lower inputs are: (i) pre-fermentative stages, (ii) alcoholic fermentation, (iii) stage between alcoholic and malolactic fermentation, (iv) malolactic fermentation, (v) stabilization and spoilage risk management, and (vi) by-products and wastewater treatment. The presence of proper yeast or bacterial strains, the management and timing of inoculation of starter cultures, and some appropriate technological modifications that favor selected microbial activities can lead to several positive effects, including (among other) energy savings, reduction of chemical additives such as sulfites, and reuse of certain residues.
Collapse
Affiliation(s)
- Tiziana Nardi
- CREA-Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| |
Collapse
|
22
|
Hu L, Liu R, Wang X, Zhang X. The Sensory Quality Improvement of Citrus Wine through Co-Fermentations with Selected Non- Saccharomyces Yeast Strains and Saccharomyces cerevisiae. Microorganisms 2020; 8:microorganisms8030323. [PMID: 32110914 PMCID: PMC7143248 DOI: 10.3390/microorganisms8030323] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Co-fermentation of selected non-Saccharomyces yeast strain with Saccharomyces cerevisiae is regarded as a promising approach to improve the sensory quality of fruit wine. To evaluate the effects of co-fermentations between the selected non-Saccharomyces yeast strains (Hanseniaspora opuntiae, Hanseniaspora uvarum and Torulaspora delbrueckii) and S. cerevisiae on the sensory quality of citrus wine, the fermentation processes, the chemical compositions, and the sensory evaluations of citrus wines were analyzed. Compared with those of S. cerevisiae fermentation, co-fermentations produced high sensory qualities, and S. cerevisiae/H. opuntiae co-fermentation had the best sensory quality followed by Sc-Hu and Sc-Td co-fermentations. Additionally, all the co-fermentations had a lower amount of ethanol and total acidity, higher pH value, and higher content of volatile aroma compounds, especially the content of higher alcohol and ester compounds, than those of S. cerevisiae fermentation. Therefore, co-fermentations of the non-Saccharomyces yeast strains and S. cerevisiae could be employed to improve the sensory quality of citrus wines. These results would provide not only methods to improve the sensory quality of citrus wine, but also a valuable reference for the selection of non-Saccharomyces yeast strains for fruit wine fermentation.
Collapse
Affiliation(s)
- Lanlan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (R.L.); (X.W.)
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (R.L.); (X.W.)
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (R.L.); (X.W.)
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuyan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (R.L.); (X.W.)
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel./Fax: +86-278-7282-927
| |
Collapse
|
23
|
Anti-Contamination Strategies for Yeast Fermentations. Microorganisms 2020; 8:microorganisms8020274. [PMID: 32085437 PMCID: PMC7074673 DOI: 10.3390/microorganisms8020274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 01/07/2023] Open
Abstract
Yeasts are very useful microorganisms that are used in many industrial fermentation processes such as food and alcohol production. Microbial contamination of such processes is inevitable, since most of the fermentation substrates are not sterile. Contamination can cause a reduction of the final product concentration and render industrial yeast strains unable to be reused. Alternative approaches to controlling contamination, including the use of antibiotics, have been developed and proposed as solutions. However, more efficient and industry-friendly approaches are needed for use in industrial applications. This review covers: (i) general information about industrial uses of yeast fermentation, (ii) microbial contamination and its effects on yeast fermentation, and (iii) currently used and suggested approaches/strategies for controlling microbial contamination at the industrial and/or laboratory scale.
Collapse
|
24
|
Abstract
The aim of this work was to study the fungal colonization of a new winery over time, specifically for Saccharomyces cerevisiae. Therefore, we analyzed the flora present before the arrival of the first harvest on the floor, the walls and the equipment of this new winery by Illumina MiSeq. The genus Saccharomyces (≤0.3%) was detected on floor and equipment but the presence of S. cerevisiae species was not reported. Wild S. cerevisiae strains were isolated from a ‘Pied de Cuve’ used during the first vintage to ensure the alcoholic fermentation (AF). Among 25 isolates belonging to this species, 17 different strains were identified highlighting a great intraspecific diversity. S. cerevisiae strains were also isolated from different vats throughout the spontaneous fermentations during the first vintage. The following year, some of these strains were isolated again during AF. Some of them (four) were found in the winery equipment before the arrival of the third harvest suggesting a potential colonization by these strains. To better understand what promotes the yeast colonization of the winery’s environment, the ability to form a biofilm on solid surfaces for eight colonizing or non-colonizing strains was studied. This capacity, different according to the strains, could partly explain the colonization observed for certain strains.
Collapse
|
25
|
Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, Mayo B, Westerik N, Hutkins R. Fermented foods in a global age: East meets West. Compr Rev Food Sci Food Saf 2020; 19:184-217. [PMID: 33319517 DOI: 10.1111/1541-4337.12520] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Fermented foods and alcoholic beverages have long been an important part of the human diet in nearly every culture on every continent. These foods are often well-preserved and serve as stable and significant sources of proteins, vitamins, minerals, and other nutrients. Despite these common features, however, many differences exist with respect to substrates and products and the types of microbes involved in the manufacture of fermented foods and beverages produced globally. In this review, we describe these differences and consider the influence of geography and industrialization on fermented foods manufacture. Whereas fermented foods produced in Europe, North America, Australia, and New Zealand usually depend on defined starter cultures, those made in Asia and Africa often rely on spontaneous fermentation. Likewise, in developing countries, fermented foods are not often commercially produced on an industrial scale. Although many fermented products rely on autochthonous microbes present in the raw material, for other products, the introduction of starter culture technology has led to greater consistency, safety, and quality. The diversity and function of microbes present in a wide range of fermented foods can now be examined in detail using molecular and other omic approaches. The nutritional value of fermented foods is now well-appreciated, especially in resource-poor regions where yoghurt and other fermented foods can improve public health and provide opportunities for economic development. Manufacturers of fermented foods, whether small or large, should follow Good Manufacturing Practices and have sustainable development goals. Ultimately, preferences for fermented foods and beverages depend on dietary habits of consumers, as well as regional agricultural conditions and availability of resources.
Collapse
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Paul D Cotter
- Food Biosciences, Principal Research Officer, Teagasc Food Research Centre, Moorepark, Fermoy and APC Microbiome Ireland, Cork, Ireland
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Nam Soo Han
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Remco Kort
- Department of Molecular Cell Biology, VU University Amsterdam, The Netherlands.,Yoba for Life foundation, Amsterdam, The Netherlands
| | - Shao Quan Liu
- Food Science and Technology Programme, National University of Singapore
| | - Baltasar Mayo
- Department of Microbiology and Chemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Nieke Westerik
- Department of Molecular Cell Biology, VU University Amsterdam, The Netherlands.,Yoba for Life foundation, Amsterdam, The Netherlands
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
26
|
Climate Changes and Food Quality: The Potential of Microbial Activities as Mitigating Strategies in the Wine Sector. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040085] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Climate change threatens food systems, with huge repercussions on food security and on the safety and quality of final products. We reviewed the potential of food microbiology as a source of biotechnological solutions to design climate-smart food systems, using wine as a model productive sector. Climate change entails considerable problems for the sustainability of oenology in several geographical regions, also placing at risk the wine typicity. The main weaknesses identified are: (i) The increased undesired microbial proliferation; (ii) the improved sugars and, consequently, ethanol content; (iii) the reduced acidity and increased pH; (iv) the imbalanced perceived sensory properties (e.g., colour, flavour); and (v) the intensified safety issues (e.g., mycotoxins, biogenic amines). In this paper, we offer an overview of the potential microbial-based strategies suitable to cope with the five challenges listed above. In terms of microbial diversity, our principal focus was on microorganisms isolated from grapes/musts/wines and on microbes belonging to the main categories with a recognized positive role in oenological processes, namely Saccharomyces spp. (e.g., Saccharomyces cerevisiae), non-Saccharomyces yeasts (e.g., Metschnikowia pulcherrima, Torulaspora delbrueckii, Lachancea thermotolerans, and Starmerella bacillaris), and malolactic bacteria (e.g., Oenococcus oeni, Lactobacillus plantarum).
Collapse
|
27
|
The biotechnological potential of the yeast Dekkera bruxellensis. World J Microbiol Biotechnol 2019; 35:103. [PMID: 31236799 DOI: 10.1007/s11274-019-2678-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
Abstract
Dekkera bruxellensis is an industrial yeast mainly regarded as a contaminant species in fermentation processes. In winemaking, it is associated with off-flavours that cause wine spoilage, while in bioethanol production this yeast is linked to a reduction of industrial productivity by competing with Saccharomyces cerevisiae for the substrate. In spite of that, this point of view is gradually changing, mostly because D. bruxellensis is also able to produce important metabolites, such as ethanol, acetate, fusel alcohols, esters and others. This dual role is likely due to the fact that this yeast presents a set of metabolic traits that might be either industrially attractive or detrimental, depending on how they are faced and explored. Therefore, a proper industrial application for D. bruxellensis depends on the correct assembly of its central metabolic puzzle. In this sense, researchers have addressed issues regarding the physiological and genetic aspects of D. bruxellensis, which have brought to light much of our current knowledge on this yeast. In this review, we shall outline what is presently understood about the main metabolic features of D. bruxellensis and how they might be managed to improve its current or future industrial applications (except for winemaking, in which it is solely regarded as a contaminant). Moreover, we will discuss the advantages and challenges that must be overcome in order to take advantage of the full biotechnological potential of this yeast.
Collapse
|
28
|
Sulfur dioxide response of Brettanomyces bruxellensis strains isolated from Greek wine. Food Microbiol 2018; 78:155-163. [PMID: 30497597 DOI: 10.1016/j.fm.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/27/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022]
Abstract
Brettanomyces bruxellensis is the most common spoilage wine yeast which can provoke great economic damage to the wine industry due to the production of undesirable odors. The capacity of the species to adapt in various environmental conditions offers a selective advantage that is reflected by intraspecific variability at genotypic and phenotypic level. In this study, microsatellite analysis of 22 strains isolated from Greek wine revealed the existence of distinct genetic subgroups that are correlated with their geographical origin. The response of these strains to increasing levels of sulfur dioxide confirmed the presence of both sensitive and tolerant strains, which belong to distinguished genetic clusters. The genetic categorization of B. bruxellensis strains could be used by the winemakers as a diagnostic tool regarding sulfur dioxide sensitivity.
Collapse
|
29
|
Tubia I, Prasad K, Pérez-Lorenzo E, Abadín C, Zumárraga M, Oyanguren I, Barbero F, Paredes J, Arana S. Beverage spoilage yeast detection methods and control technologies: A review of Brettanomyces. Int J Food Microbiol 2018; 283:65-76. [DOI: 10.1016/j.ijfoodmicro.2018.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022]
|
30
|
Abstract
Nowadays it is widely accepted that non-Saccharomyces yeasts, which prevail during the early stages of alcoholic fermentation, contribute significantly to the character and quality of the final wine. Among these yeasts, Wickerhamomyces anomalus (formerly Pichia anomala, Hansenula anomala, Candida pelliculosa) has gained considerable importance for the wine industry since it exhibits interesting and potentially exploitable physiological and metabolic characteristics, although its growth along fermentation can still be seen as an uncontrollable risk. This species is widespread in nature and has been isolated from different environments including grapes and wines. Its use together with Saccharomyces cerevisiae in mixed culture fermentations has been proposed to increase wine particular characteristics. Here, we review the ability of W. anomalus to produce enzymes and metabolites of oenological relevance and we discuss its potential as a biocontrol agent in winemaking. Finally, biotechnological applications of W. anomalus beyond wine fermentation are briefly described.
Collapse
|
31
|
Avramova M, Vallet-Courbin A, Maupeu J, Masneuf-Pomarède I, Albertin W. Molecular Diagnosis of Brettanomyces bruxellensis' Sulfur Dioxide Sensitivity Through Genotype Specific Method. Front Microbiol 2018; 9:1260. [PMID: 29942296 PMCID: PMC6004410 DOI: 10.3389/fmicb.2018.01260] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/24/2018] [Indexed: 11/13/2022] Open
Abstract
The yeast species Brettanomyces bruxellensis is associated with important economic losses due to red wine spoilage. The most common method to prevent and/or control B. bruxellensis spoilage in winemaking is the addition of sulfur dioxide into must and wine. However, recently, it was reported that some B. bruxellensis strains could be tolerant to commonly used doses of SO2. In this work, B. bruxellensis response to SO2 was assessed in order to explore the relationship between SO2 tolerance and genotype. We selected 145 isolates representative of the genetic diversity of the species, and from different fermentation niches (roughly 70% from grape wine fermentation environment, and 30% from beer, ethanol, tequila, kombucha, etc.). These isolates were grown in media harboring increasing sulfite concentrations, from 0 to 0.6 mg.L-1 of molecular SO2. Three behaviors were defined: sensitive strains showed longer lag phase and slower growth rate and/or lower maximum population size in presence of increasing concentrations of SO2. Tolerant strains displayed increased lag phase, but maximal growth rate and maximal population size remained unchanged. Finally, resistant strains showed no growth variation whatever the SO2 concentrations. 36% (52/145) of B. bruxellensis isolates were resistant or tolerant to sulfite, and up to 43% (46/107) when considering only wine isolates. Moreover, most of the resistant/tolerant strains belonged to two specific genetic groups, allowing the use of microsatellite genotyping to predict the risk of sulfur dioxide resistance/tolerance with high reliability (>90%). Such molecular diagnosis could help the winemakers to adjust antimicrobial techniques and efficient spoilage prevention with minimal intervention.
Collapse
Affiliation(s)
- Marta Avramova
- USC 1366 INRA, Institut des Sciences de la Vigne et du Vin, Unité de Recherche Œnologie EA 4577, University of Bordeaux, Bordeaux, France.,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Amélie Vallet-Courbin
- Microflora-ADERA, Institut des Sciences de la Vigne et du Vin, Unité de Rrecherche Œnologie EA 4577, Bordeaux, France
| | - Julie Maupeu
- Microflora-ADERA, Institut des Sciences de la Vigne et du Vin, Unité de Rrecherche Œnologie EA 4577, Bordeaux, France
| | - Isabelle Masneuf-Pomarède
- USC 1366 INRA, Institut des Sciences de la Vigne et du Vin, Unité de Recherche Œnologie EA 4577, University of Bordeaux, Bordeaux, France.,Bordeaux Sciences Agro, Gradignan, France
| | - Warren Albertin
- USC 1366 INRA, Institut des Sciences de la Vigne et du Vin, Unité de Recherche Œnologie EA 4577, University of Bordeaux, Bordeaux, France.,École Nationale Supérieure de Chimie de Biologie et de Physique, Institut Polytechnique de Bordeaux, Bordeaux, France
| |
Collapse
|