1
|
Hou L, Cortez R, Hagerman M, Hu Z, Majumder ELW. Co-occurrence of direct and indirect extracellular electron transfer mechanisms during electroactive respiration in a dissimilatory sulfate reducing bacterium. Microbiol Spectr 2025; 13:e0122624. [PMID: 39636109 PMCID: PMC11705803 DOI: 10.1128/spectrum.01226-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Understanding the extracellular electron transfer mechanisms of electroactive bacteria could help determine their potential in microbial fuel cells (MFCs) and their microbial syntrophy with redox-active minerals in natural environments. However, the mechanisms of extracellular electron transfer to electrodes by sulfate-reducing bacteria (SRB) remain underexplored. Here, we utilized double-chamber MFCs with carbon cloth electrodes to investigate the extracellular electron transfer mechanisms of Desulfovibrio vulgaris Hildenborough (DvH), a model SRB, under varying lactate and sulfate concentrations using different DvH mutants. Our MFC setup indicated that DvH can harvest electrons from lactate at the anode and transfer them to cathode, where DvH could further utilize these electrons. Patterns in current production compared with variations of electron donor/acceptor ratios in the anode and cathode suggested that attachment of DvH to the electrode and biofilm density were critical for effective electricity generation. Electron microscopy analysis of DvH biofilms indicated DvH utilized filaments that resemble pili to attach to electrodes and facilitate extracellular electron transfer from cell to cell and to the electrode. Proteomics profiling indicated that DvH adapted to electroactive respiration by presenting more pili- and flagellar-related proteins. The mutant with a deletion of the major pilus-producing gene yielded less voltage and far less attachment to both anodic and catholic electrodes, suggesting the importance of pili in extracellular electron transfer. The mutant with a deficiency in biofilm formation, however, did not eliminate current production indicating the existence of indirect extracellular electron transfer. Untargeted metabolomics profiling showed flavin-based metabolites, potential electron shuttles.IMPORTANCEWe explored the application of Desulfovibrio vulgaris Hildenborough in microbial fuel cells (MFCs) and investigated its potential extracellular electron transfer (EET) mechanism. We also conducted untargeted proteomics and metabolomics profiling, offering insights into how DvH adapts metabolically to different electron donors and acceptors. An understanding of the EET mechanism and metabolic flexibility of DvH holds promise for future uses including bioremediation or enhancing efficacy in MFCs for wastewater treatment applications.
Collapse
Affiliation(s)
- Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
- Utah Water Research Laboratory, Logan, Utah, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rebecca Cortez
- Department of Mechanical Engineering, Union College, Schenectady, New York, USA
| | - Michael Hagerman
- Department of Chemistry, Union College, Schenectady, New York, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, USA
| | - Erica L.-W. Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Xu H, Ren L, Qin C, Zhang H, Li X, Zhao Y. New insights on zero-valent iron permeable reactive barrier for Cr(VI) removal: The function of FeS reaction zone downstream in-situ generated by sulfate-reducing bacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136282. [PMID: 39486332 DOI: 10.1016/j.jhazmat.2024.136282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
The biogeochemical behavior downstream of the zero-valent iron permeable reactive barrier (ZVI-PRB) plays an enormous positive role in the remediation of contaminated-groundwater, but has been completely neglected for a long time. Therefore, this study conducted a 240-day SRB-enhanced ZVI-PRB column experiment, focusing on what exactly happens downstream of ZVI-PRB. Results show that biosulfidation of SRB inside ZVI-PRB prolonged the complete Cr(VI) removal longevity of ZVI-PRB from 38 days to at least 240 days. More importantly, unlike previous studies that focused on improving the performance of ZVI-PRB itself, this study found an in-situ generated FeS reduction reaction zone downstream of the ZVI-PRB. When the ZVI-PRB fails, the downstream reaction zone can continue to play a role in Cr(VI) removal. The maximum Cr(VI) removal capacity of the aquifer media from the reaction zone reached 155.1 mg/kg, which was 39.7 % of commercial ZVI capacity. The reduction zone was further confirmed to be predominantly FeS rather than FeS2. Biogeochemistry occurring within and downstream of ZVI-PRB leads to the formation of FeS. Gene sequencing revealed significantly higher SRB abundance downstream of ZVI-PRB than within the ZVI-PRB. The understanding of the downstream FeS reaction zone provides new insights for more effective remediation using ZVI-PRB.
Collapse
Affiliation(s)
- Huichao Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Liming Ren
- Sinopec Research Institute of Petroleum Processing Co., LTD, Beijing 100083, China
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hui Zhang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Xiaoyu Li
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Xu H, Qin C, Zhang H, Zhao Y. New insights into long-lasting Cr(VI) removal from groundwater using in situ biosulfidated zero-valent iron with sulfate-reducing bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120488. [PMID: 38457892 DOI: 10.1016/j.jenvman.2024.120488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
Sulfidation enhances the reactivity of zero-valent iron (ZVI) for Cr(VI) removal from groundwater. Current sulfidation methods mainly focus on chemical and mechanical sulfidation, and there has been little research on biosulfidation using sulfate-reducing bacteria (SRB) and its performance in Cr(VI) removal. Herein, the ability of the SRB-biosulfidated ZVI (SRB-ZVI) system was evaluated and compared with that of the Na2S-sulfidated ZVI system. The SRB-ZVI system forms a thicker and more porous FeSx layer than the Na2S-sulfidated ZVI system, resulting in more sufficient sulfidation of ZVI and a 2.5-times higher Cr(VI) removal rate than that of the Na2S-sulfidated ZVI system. The biosulfidated-ZVI granules and FeSx suspension are the major components of the SRB-ZVI system. The SRB-ZVI system exhibits a long-lasting (11 cycles) Cr(VI) removal performance owing to the regeneration of FeSx. However, the Na2S-sulfidated ZVI system can perform only two Cr(VI) removal cycles. SRB attached to biosulfidated-ZVI can survive in the presence of Cr(VI) because of the protection of the biogenic porous structure, whereas SRB in the suspension is inhibited. After Cr(VI) removal, SRB repopulates in the suspension from biosulfidated-ZVI and produce FeSx, thus providing conditions for subsequent Cr(VI) removal cycles. Overall, the synergistic effect of SRB and ZVI provides a more powerful and environmentally friendly sulfidation method, which has more advantageous for Cr(VI) removal than those of chemical sulfidation. This study provides a visionary in situ remediation strategy for groundwater contamination using ZVI-based technologies.
Collapse
Affiliation(s)
- Huichao Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Hui Zhang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Bryukhanov AL, Khijniak TV. The Application of Sulfate-Reducing Bacteria in the Bioremediation of Heavy Metals and Metalloids. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
5
|
Matturro B, Zeppilli M, Lai A, Majone M, Rossetti S. Metagenomic Analysis Reveals Microbial Interactions at the Biocathode of a Bioelectrochemical System Capable of Simultaneous Trichloroethylene and Cr(VI) Reduction. Front Microbiol 2021; 12:747670. [PMID: 34659183 PMCID: PMC8516407 DOI: 10.3389/fmicb.2021.747670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Bioelectrochemical systems (BES) are attractive and versatile options for the bioremediation of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found as co-contaminants in the environment. The elucidation of the microbial players' role in the bioelectroremediation processes for treating multicontaminated groundwater is still a research need that attracts scientific interest. In this study, 16S rRNA gene amplicon sequencing and whole shotgun metagenomics revealed the leading microbial players and the primary metabolic interactions occurring in the biofilm growing at the biocathode where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) reduction occurred. The presence of Cr(VI) did not negatively affect the TCE degradation, as evidenced by the RD rates estimated during the reactor operation with TCE (111±2 μeq/Ld) and TCE/Cr(VI) (146±2 μeq/Ld). Accordingly, Dehalococcoides mccartyi, the primary biomarker of the RD process, was found on the biocathode treating both TCE (7.82E+04±2.9E+04 16S rRNA gene copies g-1 graphite) and TCE/Cr(VI) (3.2E+07±2.37E+0716S rRNA gene copies g-1 graphite) contamination. The metagenomic analysis revealed a selected microbial consortium on the TCE/Cr(VI) biocathode. D. mccartyi was the sole dechlorinating microbe with H2 uptake as the only electron supply mechanism, suggesting that electroactivity is not a property of this microorganism. Methanobrevibacter arboriphilus and Methanobacterium formicicum also colonized the biocathode as H2 consumers for the CH4 production and cofactor suppliers for D. mccartyi cobalamin biosynthesis. Interestingly, M. formicicum also harbors gene complexes involved in the Cr(VI) reduction through extracellular and intracellular mechanisms.
Collapse
Affiliation(s)
| | - Marco Zeppilli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Agnese Lai
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
6
|
Genetic Basis of Chromate Adaptation and the Role of the Pre-existing Genetic Divergence during an Experimental Evolution Study with Desulfovibrio vulgaris Populations. mSystems 2021; 6:e0049321. [PMID: 34061571 PMCID: PMC8579811 DOI: 10.1128/msystems.00493-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a common environmental pollutant. However, little is known about the genetic basis of microbial evolution under Cr(VI) stress and the influence of the prior evolution histories on the subsequent evolution under Cr(VI) stress. In this study, Desulfovibrio vulgaris Hildenborough (DvH), a model sulfate-reducing bacterium, was experimentally evolved for 600 generations. By evolving the replicate populations of three genetically diverse DvH clones, including ancestor (AN, without prior experimental evolution history), non-stress-evolved EC3-10, and salt stress-evolved ES9-11, the contributions of adaptation, chance, and pre-existing genetic divergence to the evolution under Cr(VI) stress were able to be dissected. Significantly decreased lag phases under Cr(VI) stress were observed in most evolved populations, while increased Cr(VI) reduction rates were primarily observed in populations evolved from EC3-10 and ES9-11. The pre-existing genetic divergence in the starting clones showed strong influences on the changes in lag phases, growth rates, and Cr(VI) reduction rates. Additionally, the genomic mutation spectra in populations evolved from different starting clones were significantly different. A total of 14 newly mutated genes obtained mutations in at least two evolved populations, suggesting their importance in Cr(VI) adaptation. An in-frame deletion mutation of one of these genes, the chromate transporter gene DVU0426, demonstrated that it played an important role in Cr(VI) tolerance. Overall, our study identified potential key functional genes for Cr(VI) tolerance and demonstrated the important role of pre-existing genetic divergence in evolution under Cr(VI) stress conditions. IMPORTANCE Chromium is one of the most common heavy metal pollutants of soil and groundwater. The potential of Desulfovibrio vulgaris Hildenborough in heavy metal bioremediation such as Cr(VI) reduction was reported previously; however, experimental evidence of key functional genes involved in Cr(VI) resistance are largely unknown. Given the genetic divergence of microbial populations in nature, knowledge on how this divergence affects the microbial adaptation to a new environment such as Cr(VI) stress is very limited. Taking advantage of our previous study, three groups of genetically diverse D. vulgaris Hildenborough populations with or without prior experimental evolution histories were propagated under Cr(VI) stress for 600 generations. Whole-population genome resequencing of the evolved populations revealed the genomic changes underlying the improved Cr(VI) tolerance. The strong influence of the pre-existing genetic divergence in the starting clones on evolution under Cr(VI) stress conditions was demonstrated at both phenotypic and genetic levels.
Collapse
|
7
|
Wall JD, Zane GM, Juba TR, Kuehl JV, Ray J, Chhabra SR, Trotter VV, Shatsky M, De León KB, Keller KL, Bender KS, Butland G, Arkin AP, Deutschbauer AM. Deletion Mutants, Archived Transposon Library, and Tagged Protein Constructs of the Model Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough. Microbiol Resour Announc 2021; 10:e00072-21. [PMID: 33737356 PMCID: PMC7975874 DOI: 10.1128/mra.00072-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
The dissimilatory sulfate-reducing deltaproteobacterium Desulfovibrio vulgaris Hildenborough (ATCC 29579) was chosen by the research collaboration ENIGMA to explore tools and protocols for bringing this anaerobe to model status. Here, we describe a collection of genetic constructs generated by ENIGMA that are available to the research community.
Collapse
Affiliation(s)
- Judy D Wall
- Biochemistry Division, University of Missouri, Columbia, Missouri, USA
| | - Grant M Zane
- Biochemistry Division, University of Missouri, Columbia, Missouri, USA
| | - Thomas R Juba
- Biochemistry Division, University of Missouri, Columbia, Missouri, USA
| | - Jennifer V Kuehl
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jayashree Ray
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Swapnil R Chhabra
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Valentine V Trotter
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Maxim Shatsky
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kara B De León
- Biochemistry Division, University of Missouri, Columbia, Missouri, USA
| | - Kimberly L Keller
- Biochemistry Division, University of Missouri, Columbia, Missouri, USA
| | - Kelly S Bender
- Biochemistry Division, University of Missouri, Columbia, Missouri, USA
| | - Gareth Butland
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam M Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
8
|
Mengke-Li, Yuting-Zhuo, Yuting-Hu, Shuzhen-Li, Liang-Hu, Hui-Zhong, Zhiguo-He. Exploration on the bioreduction mechanism of Cr(Ⅵ) by a gram-positive bacterium: Pseudochrobactrum saccharolyticum W1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109636. [PMID: 31536849 DOI: 10.1016/j.ecoenv.2019.109636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Bioremediation of chromium (Cr(Ⅵ)) contaminations has been widely reported, but the research on its removal mechanism is still scarce. Studies on Cr(Ⅵ) removal by strains affiliated to genus Pseudochobactrum revealed the Cr(Ⅵ) efficiency removal through the reduction of Cr(Ⅵ) to Cr(Ⅲ). However, the location of Cr(Ⅵ) reduction reaction and exact mechanism are still unspecified. In this work, a Gram-positive bacterial strain, Pseudochrobactrum saccharolyticum W1 (P. saccharolyticum W1) was isolated and tested to remove approximately 53.7% of Cr(Ⅵ) (initial concentration was 200 mg L-1) from the MSM medium. Analysis of SEM-EDS and TEM-EDS indicated that chromium-containing particles precipitated both on the cell surface and in the cytoplasm. Batch experiments indicated that the heat-treated bacterial cells almost had no ability to remove Cr(Ⅵ) from solution, while the resting cells could remove 62.0% of Cr(Ⅵ) at the initial concentration of 10 mg L-1. Additionally, at this concentration, 64.8% and 70.8% of Cr(Ⅵ) was reduced by cell envelope components and intracellular soluble substances after 6 h, respectively. These results suggested that the removal of Cr(Ⅵ) by P. saccharolyticum W1 was through direct reduction, which occurred on both cell envelop and cytoplasm. The results also showed that cytoplasm was the main site for Cr(Ⅵ) reduction compared to the cell envelop. Further analysis of FTIR and XPS verified that C-H, C-C, CO, C-OH and C-O-C groups of cells involved in correlation with chromium during Cr(Ⅵ) reduction. The study offered an insight into the Cr(VI) reduction mechanism of P. saccharolyticum W1.
Collapse
|
9
|
Guan X, Yang H, Sun Y, Qiao J. Enhanced immobilization of chromium(VI) in soil using sulfidated zero-valent iron. CHEMOSPHERE 2019; 228:370-376. [PMID: 31042610 DOI: 10.1016/j.chemosphere.2019.04.132] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Batch tests were conducted in this study to evaluate the influence of sulfidation on the remediation of Cr(VI) in soil by zero-valent iron (ZVI). It was demonstrated that sulfidated ZVI synthesized by ball-milling with elemental sulfur (S-ZVIbm) could reduce and immobilize Cr(VI) in soil more rapidly and efficiently than unamended ZVI (ZVIbm). Specifically, with the optimal S/Fe molar ratio of 0.05 and ZVI dosage of 5 wt%, S-ZVIbm could completely sequestrate water soluble Cr(VI) (as high as 17.5 mg/L) within 3 h, while negligible Cr(VI) was reduced by ZVIbm over a 3-day incubation period under identical conditions. Furthermore, sequential extraction analysis revealed that S-ZVIbm treatment also promoted the conversion of exchangeable Cr to more stable forms (i.e., mainly as FeMn oxides bound fraction). XPS analysis showed that reduction was the main Cr(VI) remediation mechanism by ZVI, and alkaline extraction experiments further demonstrated Cr(VI) concentration in soil could be decreased from 153.6 mg/kg to 23.4 and 131.6 mg/kg by S-ZVIbm and ZVIbm, respectively. A magnetic separation process was introduced in this study to physically remove the residual ZVI particles and attached iron (hydr)oxides so as to minimize the re-release risk of immobilized Cr. Results revealed that, 71-89% of the added Fe and 9.5-33.6% of Cr could be retrieved from S-ZVIbm-treated soil. These findings highlighted the potential of S-ZVIbm as a promising amendment for immobilizing Cr(VI) in soil and the potential of magnetic separation as an alternative option for preventing the re-mobilization of sequestered Cr.
Collapse
Affiliation(s)
- Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China.
| | - Hongyi Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Yuankui Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
10
|
Krantz GP, Lucas K, Wunderlich EL, Hoang LT, Avci R, Siuzdak G, Fields MW. Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm. BIOFOULING 2019; 35:669-683. [PMID: 31402749 DOI: 10.1080/08927014.2019.1646731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Desulfovibrio alaskensis G20 biofilms were cultivated on 316 steel, 1018 steel, or borosilicate glass under steady-state conditions in electron-acceptor limiting (EAL) and electron-donor limiting (EDL) conditions with lactate and sulfate in a defined medium. Increased corrosion was observed on 1018 steel under EDL conditions compared to 316 steel, and biofilms on 1018 carbon steel under the EDL condition had at least twofold higher corrosion rates compared to the EAL condition. Protecting the 1018 metal coupon from biofilm colonization significantly reduced corrosion, suggesting that the corrosion mechanism was enhanced through attachment between the material and the biofilm. Metabolomic mass spectrometry analyses demonstrated an increase in a flavin-like molecule under the 1018 EDL condition and sulfonates under the 1018 EAL condition. These data indicate the importance of S-cycling under the EAL condition, and that the EDL is associated with increased biocorrosion via indirect extracellular electron transfer mediated by endogenously produced flavin-like molecules.
Collapse
Affiliation(s)
- Gregory P Krantz
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Kilean Lucas
- Image and Chemical Analysis Laboratory, Montana State University, Bozeman, USA
| | - Erica L- Wunderlich
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, USA
| | - Linh T Hoang
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, USA
| | - Recep Avci
- Image and Chemical Analysis Laboratory, Montana State University, Bozeman, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, USA
- Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Matthew W Fields
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
- Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
11
|
Shi J, Zhang B, Qiu R, Lai C, Jiang Y, He C, Guo J. Microbial Chromate Reduction Coupled to Anaerobic Oxidation of Elemental Sulfur or Zerovalent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3198-3207. [PMID: 30776217 DOI: 10.1021/acs.est.8b05053] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chromate (Cr(VI)), as one of ubiquitous contaminants in groundwater, has posed a major threat to public health and ecological environment. Although various electron donors (e.g., organic carbon, hydrogen, and methane) have been proposed to drive chromate removal from contaminated water, little is known for microbial chromate reduction coupled to elemental sulfur (S(0)) or zerovalent iron (Fe(0)) oxidation. This study demonstrated chromate could be biologically reduced by using S(0) or Fe(0) as inorganic electron donor. After 60-day cultivation, the sludge achieved a high Cr(VI) removal efficiency of 92.9 ± 1.1% and 98.1 ± 1.2% in two independent systems with S(0) or Fe(0) as the sole electron donor, respectively. The deposited Cr(III) was identified as the main reduction product based on X-ray photoelectron spectroscopy. High-throughput 16S rRNA gene sequencing indicated that Cr(VI) reduction coupled to S(0) or Fe(0) oxidation was mediated synergically by a microbial consortia. In such the consortia, S(0)- or Fe(0)-oxidizing bacteria (e.g., Thiobacillus or Ferrovibrio) could generate volatile fatty acids as metabolites, which were further utilized by chromate-reducing bacteria (e.g., Geobacter or Desulfovibrio) to reduce chromate. Our findings advance our understanding on microbial chromate reduction supported by solid electron donors and also offer a promising process for groundwater remediation.
Collapse
Affiliation(s)
- Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution , China University of Geosciences (Beijing) , Beijing 100083 , P. R. China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution , China University of Geosciences (Beijing) , Beijing 100083 , P. R. China
| | - Rui Qiu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution , China University of Geosciences (Beijing) , Beijing 100083 , P. R. China
| | - Chunyu Lai
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Yufeng Jiang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution , China University of Geosciences (Beijing) , Beijing 100083 , P. R. China
| | - Chao He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution , China University of Geosciences (Beijing) , Beijing 100083 , P. R. China
| | - Jianhua Guo
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| |
Collapse
|
12
|
Chai L, Ding C, Tang C, Yang W, Yang Z, Wang Y, Liao Q, Li J. Discerning three novel chromate reduce and transport genes of highly efficient Pannonibacter phragmitetus BB: From genome to gene and protein. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:139-146. [PMID: 29990725 DOI: 10.1016/j.ecoenv.2018.06.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Here, Pannonibacter phragmitetus BB was investigated at genomic, genetic and protein levels to explore molecular mechanisms of chromium biotransformation, respectively. The results of Miseq sequencing uncovered that a high-qualified bacterial genome draft was achieved with 5.07 Mb in length. Three novel genes involved in chromate reduce and transport, named nitR, chrA1 and chrA2, were identified by alignment, annotation and phylogenetic tree analyses, which encode a chromate reductase (NitR) and two chromate transporters (ChrA1 and ChrA2). Reverse transcription real-time polymerase chain reaction (RT-qPCR) analyses showed that the relative quantitative transcription of the three genes as the maximum reduction rate of Cr(VI) were significantly up-regulated with the increasing initial Cr(VI) concentrations. However, at the maximum cell growth points nitR was in a low transcription level, while the transcription of chrA1 and chrA2 were hold at a relatively high level and decreased with the increasing initial Cr(VI) concentrations. The ex-situ chromate reducing activity of NitR was revealed a Vmax of 34.46 µmol/min/mg enzyme and Km of 14.55 µmol/L, suggesting feasibility of the reaction with Cr(VI) as substrate. The multiple alignment demonstrates that NitR is potentially a nicotinamide adenine dinucleotide phosphate (NADPH) dependent flavin mononucleotide (FMN) reductase of Class I chromate reductases. Our results will prompt a large-scaled bioremediation on the contaminated soils and water by Pannonibacter phragmitetus BB, taking advantage of uncovering its molecular mechanisms of chromium biotransformation.
Collapse
Affiliation(s)
- Liyuan Chai
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China
| | - Chunlian Ding
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Chongjian Tang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China
| | - Weichun Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China
| | - Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China
| | - Yangyang Wang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; College of Environment and Planning, Henan University, 475004 Kaifeng, China
| | - Qi Liao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China.
| | - Jiawei Li
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| |
Collapse
|