1
|
Liu J, Zhang X, Shao Z, Yang J, Zhang H. Leucine zipper as a bridge for transaminase self-assembly: A fusion enzyme for efficient chiral conversion of d-phenylglycine. Bioorg Chem 2024; 147:107382. [PMID: 38640720 DOI: 10.1016/j.bioorg.2024.107382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Amino acid transferase is a family of enzymes used to catalyze and separate chiral amino acids. However, due to the low efficiency, by-products and reverse reactions occur in cascade reactions. Therefore, in the research, phenylglycine aminotransferase and aspartate aminotransferase were self-assembled in vitro by leucine zipper. The self-assembled enzyme system with d-phenylglycine and α-ketoglutarate as substrates were used for the chiral transformation reaction. By studying the enzyme combination, kinetic reaction stability and catalytic efficiency, it was found that the self-assembled enzyme showed improved stability and better affinity to the substrate than the control and achieved only ee value of 17.86% for the control at the substrate ratio was 1:2. In contrast, the self-assembled enzyme basically catalyzed the complete conversion of d-Phg to l-Phg, with the ee value as 99%. These results demonstrated the feasibility of the leucine zipper and the conversion of d-phenylglycine to the l-type by fusion enzyme.
Collapse
Affiliation(s)
- Jiali Liu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, PR China
| | - Xin Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, PR China
| | - Zilong Shao
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, PR China
| | - Jingwen Yang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, PR China.
| | - Hongbin Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, PR China.
| |
Collapse
|
2
|
Zheng J, You J, Zhang D, Zhang X, Chen F, Yang T, Xu M, Hu Y, Rao Z. Pre-optimization and one-step preparation of cascade enzymes system with broad substrates by model guidance: Application of chiral L-norvaline and L-phenylglycine biosynthesis. BIORESOURCE TECHNOLOGY 2024; 393:130125. [PMID: 38040317 DOI: 10.1016/j.biortech.2023.130125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Cascade biocatalyst systems with catalytic promiscuity can be used for synthesis of a class of chiral chemicals but the optimization of these systems by model guidance is poorly explored. In this study, a cascade system with broad substrate spectrum was characterized and simulated by kinetic model with substrates of DL-Norvaline (DL-Nor) and DL-Phenylglycine (DL-Phg) as examples. To evaluate the optimal cascade system, maximum accumulation of intermediate products and conversion rate in the process were investigated by simultaneous solution of the rate equations for varying enzyme quantities. According to the simulation results, the cascade system was optimized by regulating the expression of D-amino acid oxidase and formate dehydrogenase and was prepared by one-step. The conversion efficiency of DL-Nor and DL-Phg have been significantly improved compared with that of before optimization. Moreover, the total of L-Nor and L-Phg were reached 498.2 mM and 79.5 mM through a gradient fed-batch conversion strategy, respectively.
Collapse
Affiliation(s)
- Junxian Zheng
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Danfeng Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Fan Chen
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Yuanqing Hu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
3
|
Zhao L, Zhang W, Wang Q, Wang H, Gao X, Qin B, Jia X, You S. A novel NADH-dependent leucine dehydrogenase for multi-step cascade synthesis of L-phosphinothricin. Enzyme Microb Technol 2023; 166:110225. [PMID: 36921551 DOI: 10.1016/j.enzmictec.2023.110225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
L-Phosphinothricin (L-PPT) is the effective constituent in racemic PPT (a high-efficiency and broad-spectrum herbicide), and the exploitation of green and sustainable synthesis route for L-PPT has always been the focus in pesticide industry. In recent years, "one-pot, two-step" enzyme-mediated cascade strategy is a mainstream pathway to obtain L-PPT. Herein, RgDAAO and BsLeuDH were applied to expand "one-pot, two-step" process. Notably, a NADH-dependent leucine dehydrogenase from Bacillus subtilis (BsLeuDH) was firstly characterized and attempted to generate L-PPT, achieving an excellent enantioselectivity (99.9% ee). Meanwhile, a formate dehydrogenase from Pichia pastoris (PpFDH) was utilized to implement NADH cofactor regeneration and only CO2 was by-product. Sufficient amount of the corresponding keto acid precursor PPO was obtained by oxidation of D-PPT relying on a D-amino acid oxidase from Rhodotorula gracilis (RgDAAO) with content conversion (46.1%). L-PPT was ultimately prepared from racemized PPT via oxidative deamination catalyzed by RgDAAO and reductive amination catalyzed by BsLeuDH, achieving 80.3% overall yield and > 99.9% ee value.
Collapse
Affiliation(s)
- Lu Zhao
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Wenhe Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Qi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xiao Gao
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Xian Jia
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China.
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China.
| |
Collapse
|
4
|
Meng X, Liu Y, Yang L, Li R, Wang H, Shen Y, Wei D. Rational identification of a high catalytic efficiency leucine dehydrogenase and process development for efficient synthesis of l-phenylglycine. Biotechnol J 2023; 18:e2200465. [PMID: 36738237 DOI: 10.1002/biot.202200465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/01/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Enzymatic asymmetric synthesis of chiral amino acids has great industrial potential. However, the low catalytic efficiency of high-concentration substrates limits their industrial application. Herein, using a combination of substrate catalytic efficiency prediction based on "open to closed" conformational change and substrate specificity prediction, a novel leucine dehydrogenase (TsLeuDH), with high substrate catalytic efficiency toward benzoylformic acid (BFA) for producing l-phenylglycine (l-Phg), was directly identified from 4695 putative leucine dehydrogenases in a public database. The specific activity of TsLeuDH was determined to be as high as 4253.8 U mg-1 . Through reaction process optimization, a high-concentration substrate (0.7 m) was efficiently and completely converted within 90 min in a single batch, without any external coenzyme addition. Moreover, a continuous flow-feeding approach was designed using gradient control of the feed rate to reduce substrate accumulation. Finally, the highest overall substrate concentration of up to 1.2 m BFA could be aminated to l-Phg with conversion of >99% in 3 h, demonstrating that this new combination of enzyme process development is promising for large-scale application of l-Phg.
Collapse
Affiliation(s)
- Xiangqi Meng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Lin Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Rui Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Wang P, Zhang X, Tao Y, Lv X, Cheng S, Liu C. Improved l-phenylglycine synthesis by introducing an engineered cofactor self-sufficient system. Synth Syst Biotechnol 2022; 7:513-521. [PMID: 35024478 PMCID: PMC8715069 DOI: 10.1016/j.synbio.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
l-phenylglycine (L-phg) is a valuable non-proteinogenic amino acid used as a precursor to β-lactam antibiotics, antitumor agent taxol and many other pharmaceuticals. L-phg synthesis through microbial bioconversion allows for high enantioselectivity and sustainable production, which will be of great commercial and environmental value compared with organic synthesis methods. In this work, an L-phg synthesis pathway was built in Escherichia coli resulting in 0.23 mM L-phg production from 10 mM l-phenylalanine. Then, new hydroxymandelate synthases and hydroxymandelate oxidases were applied in the L-phg synthesis leading to a 5-fold increase in L-phg production. To address 2-oxoglutarate, NH4 +, and NADH shortage, a cofactor self-sufficient system was introduced, which converted by-product l-glutamate and NAD+ to these three cofactors simultaneously. In this way, L-phg increased 2.5-fold to 2.82 mM. Additionally, in order to reduce the loss of these three cofactors, a protein scaffold between synthesis pathway and cofactor regeneration modular was built, which further improved the L-phg production to 3.72 mM with a yield of 0.34 g/g L-phe. This work illustrated a strategy applying for whole-cell biocatalyst converting amino acid to its value-added chiral amine in a cofactor self-sufficient manner.
Collapse
Affiliation(s)
- Pengchao Wang
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
- Key Laboratory for Enzymes and Enzyme-like Material Engineering of Heilongjiang, PR China
| | - Xiwen Zhang
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yucheng Tao
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Xubing Lv
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Shengjie Cheng
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Chengwei Liu
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
- Key Laboratory for Enzymes and Enzyme-like Material Engineering of Heilongjiang, PR China
| |
Collapse
|
6
|
Zhu Y, Yuan J. A Four-Step Enzymatic Cascade for Efficient Production of L-Phenylglycine from Biobased L-Phenylalanine. Chembiochem 2022; 23:e202100661. [PMID: 35132758 DOI: 10.1002/cbic.202100661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/06/2022] [Indexed: 11/09/2022]
Abstract
Enantiopure amino acids are of particular interest in the agrochemical and pharmaceutical industries. Here, we reported a multi-enzyme cascade for efficient production of L-phenylglycine (L-Phg) from biobased L-phenylalanine (L-Phe). We first attempted to engineer Escherichia coli for expressing L-amino acid deaminase (LAAD) from Proteus mirabilis, hydroxymandelate synthase (HmaS) from Amycolatopsis orientalis, (S)-mandelate dehydrogenase (SMDH) from Pseudomonas putida, the endogenous aminotransferase (AT) encoded by ilvE and L-glutamate dehydrogenase (GluDH) from E. coli. However, 10 mM L-Phe only afforded the synthesis of 7.21 ± 0.15 mM L-Phg. The accumulation of benzoylformic acid suggested that the transamination step might be rate-limiting. We next used leucine dehydrogenase (LeuDH) from Bacillus cereus to bypass the use of L-glutamate as amine donor, and 40 mM L-Phe gave 39.97 ± 3.84 mM (6.04 ± 0.58 g/L) L-Phg, reaching 99.9% conversion. In summary, this work demonstrated a concise four-step enzymatic cascade for the L-Phg synthesis from biobased L-Phe, with a potential for future industrial applications.
Collapse
Affiliation(s)
- Yuling Zhu
- Xiamen University, School of Life Sciences, CHINA
| | - Jifeng Yuan
- Xiamen University, School of Life Sciences, #C220, School of Life Sciences, Xiangan District, Xiamen University, 361102, Xiamen, CHINA
| |
Collapse
|
7
|
Huang JJ, Wei T, Ye ZW, Zheng QW, Jiang BH, Han WF, Ye AQ, Han PY, Guo LQ, Lin JF. Microbial Cell Factory of Baccatin III Preparation in Escherichia coli by Increasing DBAT Thermostability and in vivo Acetyl-CoA Supply. Front Microbiol 2022; 12:803490. [PMID: 35095813 PMCID: PMC8790024 DOI: 10.3389/fmicb.2021.803490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Given the rapid development of genome mining in this decade, the substrate channel of paclitaxel might be identified in the near future. A robust microbial cell factory with gene dbat, encoding a key rate-limiting enzyme 10-deacetylbaccatin III-10-O-transferase (DBAT) in paclitaxel biosynthesis to synthesize the precursor baccatin III, will lay out a promising foundation for paclitaxel de novo synthesis. Here, we integrated gene dbat into the wild-type Escherichia coli BW25113 to construct strain BWD01. Yet, it was relatively unstable in baccatin III synthesis. Mutant gene dbat S189V with improved thermostability was screened out from a semi-rational mutation library of DBAT. When it was over-expressed in an engineered strain N05 with improved acetyl-CoA generation, combined with carbon source optimization of fermentation engineering, the production level of baccatin III was significantly increased. Using this combination, integrated strain N05S01 with mutant dbat S189V achieved a 10.50-fold increase in baccatin III production compared with original strain BWD01. Our findings suggest that the combination of protein engineering and metabolic engineering will become a promising strategy for paclitaxel production.
Collapse
Affiliation(s)
- Jia-jun Huang
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhi-wei Ye
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Qian-wang Zheng
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Bing-hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Wen-feng Han
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - An-qi Ye
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Pei-yun Han
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Li-qiong Guo
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Jun-fang Lin
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
8
|
Yin X, Zeng Y, Chen J, Liu L, Gao Z. Combined active pocket and hinge region engineering to develop an NADPH-dependent phenylglycine dehydrogenase. Bioorg Chem 2022; 120:105601. [PMID: 35033816 DOI: 10.1016/j.bioorg.2022.105601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/20/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
NADPH-dependent amino acid dehydrogenases (AADHs) are favorable enzymes to construct artificial biosynthetic pathways in whole-cell for high-value noncanonical amino acids (NcAAs) production. Glutamate dehydrogenases (GluDHs) represent attractive candidates for the development of novel NADPH-dependent AADHs. Here, we report the development of a novel NADPH-dependent phenylglycine dehydrogenase by combining active pocket engineering and hinge region engineering of a GluDH from Pseudomonas putida (PpGluDH). The active pocket of PpGluDH was firstly tailored to optimize its binding mode with bulky substrate α-oxobenzeneacetic acid (α-OA), and then, the hinge region was further engineered to tune the protein conformational dynamics, which finally resulted in a mutant M3 (T196A/T121I/L123D) with a 103-fold increase of catalytic efficiency (kcat/Km) toward α-OA. The M3 mutant exhibited high catalytic performance in both in vitro biocatalysis preparation and in vivo biosynthesis of l-phenylglycine, indicating its promising practical applications. Our results demonstrated that co-engineering of the active pocket and hinge region is an effective strategy for developing novel NADPH-dependent AADHs from GluDHs for NcAAs production.
Collapse
Affiliation(s)
- Xinjian Yin
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yujing Zeng
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China
| | - Jun Chen
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China
| | - Lan Liu
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Zhizeng Gao
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
9
|
Directed evolution of formate dehydrogenase and its application in the biosynthesis of L-phenylglycine from phenylglyoxylic acid. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Zhao J, Wei H, Chen J, Li L, Li K, Liu J. Efficient biosynthesis of D-allulose in Bacillus subtilis through D-psicose 3-epimerase translation modification. Int J Biol Macromol 2021; 187:1-8. [PMID: 34293357 DOI: 10.1016/j.ijbiomac.2021.07.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
The combined catalysis of glucose isomerase (GI) and D-psicose 3-epimerase (DPEase) provided a convenient route for the direct synthesis of D-allulose from d-glucose, whose cost is lower than d-fructose. In the present research, the weak activity of DPEase was the key rate-limiting step and resulted in the accumulation of d-fructose in engineered Bacillus subtilis. Then, the 5'-untranslated region (5'-UTR) structure of the mRNA translational initiation region was optimized for the precise control of DPEase expression. The manipulation of the 5'-UTR region promoted the accessibility to ribosome binding and the stability of mRNA, resulting in a maximum of 1.73- and 1.98-fold increase in DPEase activity and intracellular mRNA amount, respectively. Under the optimal catalytic conditions of 75 °C, pH 6.5, 110 g/L d-glucose, and 1 mmol/L Co2+, the reaction equilibrium time was reduced from 7.6 h to 6.1 h. We hope that our results could provide a facilitated strategy for large-scale production of D-allulose at low-cost.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Hongbei Wei
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Jing Chen
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Lihong Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China; Sugar Industry Collaborative Innovation Center, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China; Sugar Industry Collaborative Innovation Center, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| |
Collapse
|
11
|
Construction of recombinant Escherichia coli for production of L-phenylalanine-derived compounds. World J Microbiol Biotechnol 2021; 37:84. [PMID: 33855641 DOI: 10.1007/s11274-021-03050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
L-phenylalanine is an important amino acid that is widely used in the fields of food flavors and pharmaceuticals. Apart from L-phenylalanine itself, various commercially valuable chemical compounds can also be generated via the L-phenylalanine biosynthesis pathway. Compared with direct extraction from plants or synthesis by chemical reaction, microbial production of L-phenylalanine -derived compounds can overcome the drawbacks of environmental pollution, low yield, and mixtures of stereoisomeric products. Accordingly, increasing intracellular levels of precursors, deregulating feedback inhibition and transcription repression, engineering global regulators and other effective strategies have been implemented to produce different L-phenylalanine -derived compounds in the excellent chassis host Escherichia coli. Finally, this review highlights principal strategies for improving the production of L-phenylalanine and/or its derivatives in E. coli, and discusses the future outlook for further enhancing the titer and yields of these compounds.
Collapse
|
12
|
Cui X, Wang Z, Li Z, Zhang X, Li Z. Programming Integrative Multienzyme Systems and Ionic Strength For Recyclable Synthesis of Glutathione. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3887-3894. [PMID: 33764060 DOI: 10.1021/acs.jafc.1c00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the enzymatic cascade catalysis, it is a big challenge to construct a stable and reusable catalyst with targeted enzymes. The artificial multienzyme reactor has attracted great attention due to its potential for facilitating the performance of enzyme catalysis. In this study, we set up a reliable system that could assemble polyphosphate kinase (PPK) with bifunctional glutathione synthetase (GshF) via SpyCatcher/SpyTag to form multienzyme systems (MESs). Furthermore, MESs could assemble into nanoaggregates by altering the ionic strength, and the larger nanoaggregates could be applied in robust and reusable synthesis of glutathione (GSH). To enhance MES levels in vivo, gene duplication and different coexpression modes were performed. Finally, the optimized production of GSH and oxidized glutathione (GSSG) reached 102.6 and 6.7 mM within 2 h. Compared with the first round, the total yield only decreased by 9.4% after five continuous rounds of biocatalysis.
Collapse
Affiliation(s)
- Xiangwei Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zeyuan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zonglin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
13
|
Dai Y, Li M, Jiang B, Zhang T, Chen J. Whole-cell biosynthesis of d-tagatose from maltodextrin by engineered Escherichia coli with multi-enzyme co-expression system. Enzyme Microb Technol 2021; 145:109747. [PMID: 33750537 DOI: 10.1016/j.enzmictec.2021.109747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 01/11/2023]
Abstract
d-tagatose is a functional sweetener that occurs in small quantity in nature. It is mainly produced through the isomerization of d-galactose by l-arabinose isomerase (l-AI; EC 5.3.1.4). However, the cost of d-galactose is much higher than those commonly used for the production of functional sweeteners such as glucose, maltodextrin, or starch. Here, a multi-enzyme catalytic system consists of five enzymes that utilizes maltodextrin as substrate to synthesize d-tagatose were co-expressed in E. coli, resulting in recombinant cells harboring the plasmids pETDuet-αgp-pgm and pCDFDuet-pgi-gatz-pgp. The activity of this whole-cell catalyst was optimal at 60 °C and pH 7.5, and 1 mM Mg2+ and 50 mM phosphate were the optimal cofactors for activity. Under the optimal reaction conditions, 2.08 and 3.2 g L-1d-tagatose were produced by using 10 and 20 g L-1 maltodextrin as substrates with recombinant cells for 24 h. This co-expression system provides a one-pot synthesis approach for the production of d-tagatose using inexpensive substrate, avoiding enzymes purification steps and supplementation of expensive cofactors.
Collapse
Affiliation(s)
- Yiwei Dai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
14
|
One-Pot Biocatalytic Preparation of Enantiopure Unusual α-Amino Acids from α-Hydroxy Acids via a Hydrogen-Borrowing Dual-Enzyme Cascade. Catalysts 2020. [DOI: 10.3390/catal10121470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Unusual α-amino acids (UAAs) are important fundamental building blocks and play a key role in medicinal chemistry. Here, we constructed a hydrogen-borrowing dual-enzyme cascade for efficient synthesis of UAAs from α-hydroxy acids (α-HAs). D-mandelate dehydrogenase from Lactobacillus brevis (LbMDH) was screened for the catalysis of α-HAs to α-keto acids but with low activity towards aliphatic α-HAs. Therefore, we rational engineered LbMDH to improve its activity towards aliphatic α-HAs. The substitution of residue Leu243 located in the substrate entrance channel with nonpolar amino acids like Met, Trp, and Ile significantly influenced the enzyme activity towards different α-HAs. Compared with wild type (WT), variant L243W showed 103 U/mg activity towards D-α-hydroxybutyric acid, 1.7 times of the WT’s 60.2 U/mg, while its activity towards D-mandelic acid decreased. Variant L243M showed 2.3 times activity towards D-mandelic acid compared to WT, and its half-life at 40 °C increased to 150.2 h comparing with 98.5 h of WT. By combining LbMDH with L-leucine dehydrogenase from Bacillus cereus, the synthesis of structurally diverse range of UAAs from α-HAs was constructed. We achieved 90.7% conversion for L-phenylglycine production and 66.7% conversion for L-α-aminobutyric acid production. This redox self-sufficient cascade provided high catalytic efficiency and generated pure products.
Collapse
|
15
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
16
|
Genetic engineering approaches for the fermentative production of phenylglycines. Appl Microbiol Biotechnol 2020; 104:3433-3444. [PMID: 32078019 PMCID: PMC7089894 DOI: 10.1007/s00253-020-10447-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
L-phenylglycine (L-Phg) is a rare non-proteinogenic amino acid, which only occurs in some natural compounds, such as the streptogramin antibiotics pristinamycin I and virginiamycin S or the bicyclic peptide antibiotic dityromycin. Industrially, more interesting than L-Phg is the enantiomeric D-Phg as it plays an important role in the fine chemical industry, where it is used as a precursor for the production of semisynthetic β-lactam antibiotics. Based on the natural L-Phg operon from Streptomyces pristinaespiralis and the stereo-inverting aminotransferase gene hpgAT from Pseudomonas putida, an artificial D-Phg operon was constructed. The natural L-Phg operon, as well as the artificial D-Phg operon, was heterologously expressed in different actinomycetal host strains, which led to the successful production of Phg. By rational genetic engineering of the optimal producer strains S. pristinaespiralis and Streptomyces lividans, Phg production could be improved significantly. Here, we report on the development of a synthetic biology-derived D-Phg pathway and the optimization of fermentative Phg production in actinomycetes by genetic engineering approaches. Our data illustrate a promising alternative for the production of Phgs.
Collapse
|
17
|
Tang CD, Shi HL, Jia YY, Li X, Wang LF, Xu JH, Yao LG, Kan YC. High level and enantioselective production of L-phenylglycine from racemic mandelic acid by engineered Escherichia coli using response surface methodology. Enzyme Microb Technol 2020; 136:109513. [PMID: 32331718 DOI: 10.1016/j.enzmictec.2020.109513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
L-Phenylglycine (L-PHG) is a member of unnatural amino acids, and becoming more and more important as intermediate for pharmaceuticals, food additives and agrochemicals. However, the existing synthetic methods for L-PHG mainly rely on toxic cyanide chemistry and multistep processes. To provide green, safe and high enantioselective alternatives, we envisaged cascade biocatalysis for the one-pot synthesis of L-PHG from racemic mandelic acid. A engineered E. coli strain was established to co-express mandelate racemase, D-mandelate dehydrogenase and L-leucine dehydrogenase and catalyze a 3-step reaction in one pot, enantioselectively transforming racemic mandelic acid to give L-PHG (e.e. >99 %). After the conditions for biosynthesis of L-PHG optimized by response surface methodology, the yield and space-time yield of L-PHG can reach 87.89 % and 79.70 g·L-1·d-1, which was obviously improved. The high-yielding and enantioselective synthetic methods use cheap and green reagents, and E. coli whole-cell catalysts, thus providing green and useful alternative methods for manufacturing L-PHG.
Collapse
Affiliation(s)
- Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Hong-Ling Shi
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Yuan-Yuan Jia
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Xiang Li
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Lin-Feng Wang
- State Key Laboratory of Automotive Biofuel Technology, 1 Tianguan Avenue, Nanyang, Henan, 473000, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Lun-Guang Yao
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China.
| | - Yun-Chao Kan
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China.
| |
Collapse
|
18
|
Li Y, Liu S, You C. Permeabilized
Escherichia coli
Whole Cells Containing Co‐Expressed Two Thermophilic Enzymes Facilitate the Synthesis of
scyllo
‐Inositol from
myo
‐Inositol. Biotechnol J 2019; 15:e1900191. [DOI: 10.1002/biot.201900191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/28/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yuan Li
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 P. R. China
| | - Shan Liu
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 P. R. China
| | - Chun You
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
19
|
Hou Y, Gao B, Cui J, Tan Z, Qiao C, Jia S. Combination of multi-enzyme expression fine-tuning and co-substrates addition improves phenyllactic acid production with an Escherichia coli whole-cell biocatalyst. BIORESOURCE TECHNOLOGY 2019; 287:121423. [PMID: 31103936 DOI: 10.1016/j.biortech.2019.121423] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to develop an environmentally safe and efficient method for phenyllactic acid (PLA) production using whole-cell cascade catalysis with l-amino acid deaminase (l-AAD), lactate dehydrogenase (LDH), and formate dehydrogenase (FDH). The PPA titer was low due to relatively low expression of LDH, intermediate accumulation, and lack of cofactors. To address this issue, ribosome binding site regulation, gene duplication, and induction optimization were performed to increased the PLA titer to 43.8 g/L. Then co-substrates (glucose, yeast extract, and glycerol) were used to increase NADH concentration and cell stability, resulting that the PLA titer was increased to 54.0 g/L, which is the highest reported production by biocatalyst. Finally, glucose was replaced with wheat straw hydrolysate as co-substrate to decrease the cost. Notably, the strategies reported herein may be generally applicable to other whole-cell cascade biocatalysts.
Collapse
Affiliation(s)
- Ying Hou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457 Tianjin, China.
| | - Bo Gao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457 Tianjin, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457 Tianjin, China
| | - Zhilei Tan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457 Tianjin, China
| | - Changsheng Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Peiyang Biotrans Co., Ltd, Tianjin 300457, China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457 Tianjin, China.
| |
Collapse
|
20
|
Characterization of the phenylglycine aminotransferase PglE from Streptomyces pristinaespiralis. J Biotechnol 2018; 278:34-38. [DOI: 10.1016/j.jbiotec.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/16/2023]
|