1
|
Ning YN, Tian D, Zhao S, Feng JX. Regulation of genes encoding polysaccharide-degrading enzymes in Penicillium. Appl Microbiol Biotechnol 2024; 108:16. [PMID: 38170318 DOI: 10.1007/s00253-023-12892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024]
Abstract
Penicillium fungi, including Penicillium oxalicum, can secrete a range of efficient plant-polysaccharide-degrading enzymes (PPDEs) that is very useful for sustainable bioproduction, using renewable plant biomass as feedstock. However, the low efficiency and high cost of PPDE production seriously hamper the industrialization of processes based on PPDEs. In Penicillium, the expression of PPDE genes is strictly regulated by a complex regulatory system and molecular breeding to modify this system is a promising way to improve fungal PPDE yields. In this mini-review, we present an update on recent research progress concerning PPDE distribution and function, the regulatory mechanism of PPDE biosynthesis, and molecular breeding to produce PPDE-hyperproducing Penicillium strains. This review will facilitate future development of fungal PPDE production through metabolic engineering and synthetic biology, thereby promoting PPDE industrial biorefinery applications. KEY POINTS: • This mini review summarizes PPDE distribution and function in Penicillium. • It updates progress on the regulatory mechanism of PPDE biosynthesis in Penicillium. • It updates progress on breeding of PPDE-hyperproducing Penicillium strains.
Collapse
Affiliation(s)
- Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
2
|
Zhao S, Zhang T, Hasunuma T, Kondo A, Zhao XQ, Feng JX. Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi Penicillium oxalicum and Trichoderma reesei. Crit Rev Biotechnol 2024; 44:1241-1261. [PMID: 38035670 DOI: 10.1080/07388551.2023.2280810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially Trichoderma reesei and Penicillium oxalicum. However, an in-depth comparison of these two producers has not been performed. Although both P. oxalicum and T. reesei harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in P. oxalicum and T. reesei, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that "every road leads to Rome." An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Hu Z, Liu Q, Ouyang B, Wang G, Wei C, Zhao X. Recent advances in genetic engineering to enhance plant-polysaccharide-degrading enzyme expression in Penicillium oxalicum: A brief review. Int J Biol Macromol 2024; 278:134775. [PMID: 39153674 DOI: 10.1016/j.ijbiomac.2024.134775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
With the depletion of non-renewable fossil fuels, there has been an increasing emphasis on renewable biomass. Penicillium oxalicum is notable for its exceptional capacity to secrete a diverse array of enzymes that degrade plant polysaccharides into monosaccharides. These valuable monosaccharides can be harnessed in the production of bioethanol and other sustainable forms of energy. By enhancing the production of plant-polysaccharide-degrading enzymes (PPDEs) in P. oxalicum, we can optimize the utilization of plant biomass. This paper presents recent advances in augmenting PPDE expression in P. oxalicum through genetic engineering strategies involving protoplast preparation, transformation, and factors influencing PPDE gene expression.
Collapse
Affiliation(s)
- Ziyan Hu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Qiling Liu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Chenyang Wei
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
4
|
Wang Q, Xiu J, Liu B, Shen L, Wang H, Fang C, Shan S. Enhanced fermentation and deconstruction of natural wheat straw by Trichoderma asperellum T-1 and its positive transcriptional response. BIORESOURCE TECHNOLOGY 2024; 406:130971. [PMID: 38897156 DOI: 10.1016/j.biortech.2024.130971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Microorganisms harvest energy from agricultural waste by degrading its structure. By comparing with Trichoderma reesei QM6a in cellulase production, straw deconstruction and transcriptome response, Trichoderma asperellum T-1 was identified to be prioritized for the fermentation of natural straw. Cellulase activity of T-1 was 50%-102% higher than QM6a. And the degradation rate of hemicellulose and ligin in wheat straw by T-1 reached 40% and 42%. Time-driven changes in the gene expression of extracellular proteins involved in polysaccharide, xylan, and hemicellulose metabolism and hydrolysis indicated that T-1 positively responded in both solid state fermentation and submerged fermentation for lignocellulose degradation. A significantly enriched category encoding carbohydrate-binding modules is considered critical for the deconstruction of the natural structure by T-1. The findings highlight the superiority of T. asperellum T-1 in straw fermentation, base on which, the construction of efficient microbial agents is expected to enhance the utilization of biomass.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Recycling and Eco‑treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Jianghui Xiu
- Key Laboratory of Recycling and Eco‑treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Bingyang Liu
- Key Laboratory of Recycling and Eco‑treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Linpei Shen
- Key Laboratory of Recycling and Eco‑treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Hua Wang
- Key Laboratory of Recycling and Eco‑treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chengran Fang
- Key Laboratory of Recycling and Eco‑treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco‑treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
5
|
Zhao S, Tan MZ, Wang RX, Ye FT, Chen YP, Luo XM, Feng JX. Combination of genetic engineering and random mutagenesis for improving production of raw-starch-degrading enzymes in Penicillium oxalicum. Microb Cell Fact 2022; 21:272. [PMID: 36566178 DOI: 10.1186/s12934-022-01997-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Raw starch-degrading enzyme (RSDE) is applied in biorefining of starch to produce biofuels efficiently and economically. At present, RSDE is obtained via secretion by filamentous fungi such as Penicillium oxalicum. However, high production cost is a barrier to large-scale industrial application. Genetic engineering is a potentially efficient approach for improving production of RSDE. In this study, we combined genetic engineering and random mutagenesis of P. oxalicum to enhance RSDE production. RESULTS A total of 3619 mutated P. oxalicum colonies were isolated after six rounds of ethyl methanesulfonate and Co60-γ-ray mutagenesis with the strain A2-13 as the parent strain. Mutant TE4-10 achieved the highest RSDE production of 218.6 ± 3.8 U/mL with raw cassava flour as substrate, a 23.2% compared with A2-13. Simultaneous deletion of transcription repressor gene PoxCxrC and overexpression of activator gene PoxAmyR in TE4-10 resulted in engineered strain GXUR001 with an RSDE yield of 252.6 U/mL, an increase of 15.6% relative to TE4-10. Comparative transcriptomics and real-time quantitative reverse transcription PCR revealed that transcriptional levels of major amylase genes, including raw starch-degrading glucoamylase gene PoxGA15A, were markedly increased in GXUR001. The hydrolysis efficiency of raw flour from cassava and corn by crude RSDE of GXUR001 reached 93.0% and 100%, respectively, after 120 h and 84 h with loading of 150 g/L of corresponding substrate. CONCLUSIONS Combining genetic engineering and random mutagenesis efficiently enhanced production of RSDE by P. oxalicum. The RSDE-hyperproducing mutant GXUR001 was generated, and its crude RSDE could efficiently degrade raw starch. This strain has great potential for enzyme preparation and further genetic engineering.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China.
| | - Ming-Zhu Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rui-Xian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Fa-Ting Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yuan-Peng Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Zhao S, Xiang B, Yang L, Chen J, Zhu C, Chen Y, Cui J, Hu S, Hu Y. Genetic modifications of critical regulators provide new insights into regulation modes of raw-starch-digesting enzyme expression in Penicillium. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:62. [PMID: 35641999 PMCID: PMC9158223 DOI: 10.1186/s13068-022-02162-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Background Starch is a very abundant and renewable carbohydrate and an important feedstock for industrial applications. However, most starch-based products are not cost-efficient due to the high energy input needed in traditional enzymatic starch conversion processes. Raw-starch-digesting enzymes (RSDEs) from filamentous fungi have great commercial value in starch processing. However, the regulatory mechanisms associated with their production in filamentous fungi remain unknown. Results In this study, we reported the novel finding that cellulolytic fungus Penicillium oxalicum 114-2 has broad RSDE activity. Four regulators, including the amylase transcription activator AmyR, the catabolite repression repressor CreA, the group III G protein α subunit PGA3, and the nonhistone chromosomal protein HepA, have been found to play a crucial regulatory role in RSDE expression. Enzymatic assays revealed that RSDE production significantly increased after the overexpression of AmyR and HepA, the deletion of CreA and the dominant activation of PGA3. RT-qPCR analysis demonstrated that there is a mutual regulation mode between the four regulators, and then formed a cascade regulation mechanism that is involved in RSDE expression. Comparative transcriptomic analysis between the wild-type strain and genetically engineered strains revealed differentially expressed genes that may mediate the RSDE expression. Conclusions The four different types of regulators were systematically investigated and found to form a regulatory network controlling RSDE gene expression. Our results provide a new insight into the regulatory mechanism of fungal amylolytic enzyme expression and offer a theoretical basis to rationally improve the RSDE yield in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02162-6.
Collapse
|
7
|
Li CX, Liao LS, Wan XD, Zhang FF, Zhang T, Luo XM, Zhao S, Feng JX. PoxCbh, a novel CENPB-type HTH domain protein, regulates cellulase and xylanase gene expression in Penicillium oxalicum. Mol Microbiol 2021; 116:140-153. [PMID: 33561892 DOI: 10.1111/mmi.14696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 01/10/2023]
Abstract
The essential transcription factor PoxCxrA is required for cellulase and xylanase gene expression in the filamentous fungus Penicillium oxalicum that is potentially applied in biotechnological industry as a result of the existence of the integrated cellulolytic and xylolytic system. However, the regulatory mechanism of cellulase and xylanase gene expression specifically associated with PoxCxrA regulation in fungi is poorly understood. In this study, the novel regulator PoxCbh (POX06865), containing a centromere protein B-type helix-turn-helix domain, was identified through screening for the PoxCxrA regulon under Avicel induction and genetic analysis. The mutant ∆PoxCbh showed significant reduction in cellulase and xylanase production, ranging from 28.4% to 59.8%. Furthermore, PoxCbh was found to directly regulate the expression of important cellulase and xylanase genes, as well as the known regulatory genes PoxNsdD and POX02484, and its expression was directly controlled by PoxCxrA. The PoxCbh-binding DNA sequence in the promoter region of the cellobiohydrolase 1 gene cbh1 was identified. These results expand our understanding of the diverse roles of centromere protein B-like protein, the regulatory network of cellulase and xylanase gene expression, and regulatory mechanisms in fungi.
Collapse
Affiliation(s)
- Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Xu-Dong Wan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Feng-Fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
8
|
El Hajj Assaf C, Zetina-Serrano C, Tahtah N, Khoury AE, Atoui A, Oswald IP, Puel O, Lorber S. Regulation of Secondary Metabolism in the Penicillium Genus. Int J Mol Sci 2020; 21:E9462. [PMID: 33322713 PMCID: PMC7763326 DOI: 10.3390/ijms21249462] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Penicillium, one of the most common fungi occurring in a diverse range of habitats, has a worldwide distribution and a large economic impact on human health. Hundreds of the species belonging to this genus cause disastrous decay in food crops and are able to produce a varied range of secondary metabolites, from which we can distinguish harmful mycotoxins. Some Penicillium species are considered to be important producers of patulin and ochratoxin A, two well-known mycotoxins. The production of these mycotoxins and other secondary metabolites is controlled and regulated by different mechanisms. The aim of this review is to highlight the different levels of regulation of secondary metabolites in the Penicillium genus.
Collapse
Affiliation(s)
- Christelle El Hajj Assaf
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Chrystian Zetina-Serrano
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Nadia Tahtah
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
- Centre D’analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael, Beirut 1104, Lebanon;
| | - André El Khoury
- Centre D’analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael, Beirut 1104, Lebanon;
| | - Ali Atoui
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadath Campus, P.O. Box 5, Beirut 1104, Lebanon;
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| |
Collapse
|
9
|
Pirayre A, Duval L, Blugeon C, Firmo C, Perrin S, Jourdier E, Margeot A, Bidard F. Glucose-lactose mixture feeds in industry-like conditions: a gene regulatory network analysis on the hyperproducing Trichoderma reesei strain Rut-C30. BMC Genomics 2020; 21:885. [PMID: 33302864 PMCID: PMC7731781 DOI: 10.1186/s12864-020-07281-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/25/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The degradation of cellulose and hemicellulose molecules into simpler sugars such as glucose is part of the second generation biofuel production process. Hydrolysis of lignocellulosic substrates is usually performed by enzymes produced and secreted by the fungus Trichoderma reesei. Studies identifying transcription factors involved in the regulation of cellulase production have been conducted but no overview of the whole regulation network is available. A transcriptomic approach with mixtures of glucose and lactose, used as a substrate for cellulase induction, was used to help us decipher missing parts in the network of T. reesei Rut-C30. RESULTS Experimental results on the Rut-C30 hyperproducing strain confirmed the impact of sugar mixtures on the enzymatic cocktail composition. The transcriptomic study shows a temporal regulation of the main transcription factors and a lactose concentration impact on the transcriptional profile. A gene regulatory network built using BRANE Cut software reveals three sub-networks related to i) a positive correlation between lactose concentration and cellulase production, ii) a particular dependence of the lactose onto the β-glucosidase regulation and iii) a negative regulation of the development process and growth. CONCLUSIONS This work is the first investigating a transcriptomic study regarding the effects of pure and mixed carbon sources in a fed-batch mode. Our study expose a co-orchestration of xyr1, clr2 and ace3 for cellulase and hemicellulase induction and production, a fine regulation of the β-glucosidase and a decrease of growth in favor of cellulase production. These conclusions provide us with potential targets for further genetic engineering leading to better cellulase-producing strains in industry-like conditions.
Collapse
Affiliation(s)
- Aurélie Pirayre
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France.
| | - Laurent Duval
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France
- Laboratoire d'Informatique Gaspard-Monge (LIGM), ESIEE Paris, Université-Gustave Eiffel, Marne-la-Vallée, F-77454, France
| | - Corinne Blugeon
- Genomic facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Cyril Firmo
- Genomic facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Sandrine Perrin
- Genomic facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Etienne Jourdier
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France
| | - Antoine Margeot
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France
| | - Frédérique Bidard
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France
| |
Collapse
|
10
|
Zhang T, Liao LS, Li CX, Liao GY, Lin X, Luo XM, Zhao S, Feng JX. Identification of a Novel Transcription Factor TP05746 Involved in Regulating the Production of Plant-Biomass-Degrading Enzymes in Talaromyces pinophilus. Front Microbiol 2020; 10:2875. [PMID: 31921053 PMCID: PMC6923684 DOI: 10.3389/fmicb.2019.02875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/28/2019] [Indexed: 12/31/2022] Open
Abstract
Limited information on transcription factor (TF)-mediated regulation exists for most filamentous fungi, specifically for regulation of the production of plant-biomass-degrading enzymes (PBDEs). The filamentous fungus, Talaromyces pinophilus, can secrete integrative cellulolytic and amylolytic enzymes, suggesting a promising application in biotechnology. In the present study, the regulatory roles of a Zn2Cys6 protein, TP05746, were investigated in T. pinophilus through the use of biochemical, microbiological and omics techniques. Deletion of the gene TP05746 in T. pinophilus led to a 149.6% increase in soluble-starch-degrading enzyme (SSDE) production at day one of soluble starch induction but an approximately 30% decrease at days 2 to 4 compared with the parental strain ΔTpKu70. In contrast, the T. pinophilus mutant ΔTP05746 exhibited a 136.8-240.0% increase in raw-starch-degrading enzyme (RSDE) production, as well as a 90.3 to 519.1% increase in cellulase and xylanase production following induction by culturing on wheat bran plus Avicel, relative to that exhibited by ΔTpKu70. Additionally, the mutant ΔTP05746 exhibited accelerated mycelial growth at the early stage of cultivation and decreased conidiation. Transcriptomic profiling and real-time quantitative reverse transcription-PCR (RT-qPCR) analyses revealed that TP05746 dynamically regulated the expression of genes encoding major PBDEs and their regulatory genes, as well as fungal development-regulated genes. Furthermore, in vitro binding experiments confirmed that TP05746 bound to the promoter regions of the genes described above. These results will contribute to our understanding of the regulatory mechanism of PBDE genes and provide a promising target for genetic engineering for improved PBDE production in filamentous fungi.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Gui-Yan Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiong Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
11
|
Wang Q, Chen L, Fang C, Wang H, Shi Y, Zhao Y. The overexpression of one single cbh gene making Trichoderma asperellum T-1 a better cellulase producer. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01458-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
12
|
Zhang MY, Zhao S, Ning YN, Fu LH, Li CX, Wang Q, You R, Wang CY, Xu HN, Luo XM, Feng JX. Identification of an essential regulator controlling the production of raw-starch-digesting glucoamylase in Penicillium oxalicum. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:7. [PMID: 30622649 PMCID: PMC6318894 DOI: 10.1186/s13068-018-1345-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/20/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Raw-starch-digesting glucoamylases (RSDGs) from filamentous fungi have great commercial values in starch processing; however, the regulatory mechanisms associated with their production in filamentous fungi remain unknown. Penicillium oxalicum HP7-1 isolated by our laboratory secretes RSDG with suitable properties but at low production levels. Here, we screened and identified novel regulators of RSDG gene expression in P. oxalicum through transcriptional profiling and genetic analyses. RESULTS Penicillium oxalicum HP7-1 transcriptomes in the presence of glucose and starch, respectively, used as the sole carbon source were comparatively analyzed, resulting in screening of 23 candidate genes regulating the expression of RSDG genes. Following deletion of 15 of the candidate genes in the parental P. oxalicum strain ∆PoxKu70, enzymatic assays revealed five mutants exhibiting significant reduction in the production of raw-starch-digesting enzymes (RSDEs). The deleted genes (POX01907, POX03446, POX06509, POX07078, and POX09752), were the first report to regulate RSDE production of P. oxalicum. Further analysis revealed that ∆POX01907 lost the most RSDE production (83.4%), and that POX01907 regulated the expression of major amylase genes, including the RSDG gene POX01356/PoxGA15A, a glucoamylase gene POX02412, and the α-amylase gene POX09352/Amy13A, during the late-stage growth of P. oxalicum. CONCLUSION Our results revealed a novel essential regulatory gene POX01907 encoding a transcription factor in controlling the production of RSDE, regulating the expression of an important RSDG gene POX01356/PoxGA15A, in P. oxalicum. These results provide insight into the regulatory mechanism of fungal amylolytic enzyme production.
Collapse
Affiliation(s)
- Mei-Yuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Li-Hao Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Qi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Ran You
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Chen-Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Han-Nan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| |
Collapse
|
13
|
Zhao S, Liu Q, Wang JX, Liao XZ, Guo H, Li CX, Zhang FF, Liao LS, Luo XM, Feng JX. Differential transcriptomic profiling of filamentous fungus during solid-state and submerged fermentation and identification of an essential regulatory gene PoxMBF1 that directly regulated cellulase and xylanase gene expression. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:103. [PMID: 31164922 PMCID: PMC6489320 DOI: 10.1186/s13068-019-1445-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/18/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Solid-state fermentation (SSF) mimics the natural decay environment of soil fungi and can be employed to investigate the production of plant biomass-degrading enzymes. However, knowledge on the transcriptional regulation of fungal genes during SSF remains limited. Herein, transcriptional profiling was performed on the filamentous fungus Penicillium oxalicum strain HP7-1 cultivated in medium containing wheat bran plus rice straw (WR) under SSF (WR_SSF) and submerged fermentation (WR_SmF; control) conditions. Novel key transcription factors (TFs) regulating fungal cellulase and xylanase gene expression during SSF were identified via comparative transcriptomic and genetic analyses. RESULTS Expression of major cellulase genes was higher under WR_SSF condition than that under WR_SmF, but the expression of genes involved in the citric acid cycle was repressed under WR_SSF condition. Fifty-six candidate regulatory genes for cellulase production were screened out from transcriptomic profiling of P. oxalicum HP7-1 for knockout experiments in the parental strain ∆PoxKu70, resulting in 43 deletion mutants including 18 constructed in the previous studies. Enzyme activity assays revealed 14 novel regulatory genes involved in cellulase production in P. oxalicum during SSF. Remarkably, deletion of the essential regulatory gene PoxMBF1, encoding Multiprotein Bridging Factor 1, resulted in doubled cellulase and xylanase production at 2 days after induction during both SSF and SmF. PoxMBF1 dynamically and differentially regulated transcription of a subset of cellulase and xylanase genes during SSF and SmF, and conferred stress resistance. Importantly, PoxMBF1 bound specifically to the putative promoters of major cellulase and xylanase genes in vitro. CONCLUSIONS We revealed differential transcriptional regulation of P. oxalicum during SSF and SmF, and identified PoxMBF1, a novel TF that directly regulates cellulase and xylanase gene expression during SSF and SmF. These findings expand our understanding of regulatory mechanisms of cellulase and xylanase gene expression during fungal fermentation.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Qi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jiu-Xiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Xu-Zhong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Hao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Feng-Fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| |
Collapse
|
14
|
Liao GY, Zhao S, Zhang T, Li CX, Liao LS, Zhang FF, Luo XM, Feng JX. The transcription factor TpRfx1 is an essential regulator of amylase and cellulase gene expression in Talaromyces pinophilus. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:276. [PMID: 30337955 PMCID: PMC6174557 DOI: 10.1186/s13068-018-1276-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/26/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Perfect and low cost of fungal amylolytic and cellulolytic enzymes are prerequisite for the industrialization of plant biomass biorefinergy to biofuels. Genetic engineering of fungal strains based on regulatory network of transcriptional factors (TFs) and their targets is an efficient strategy to achieve the above described aim. Talaromyces pinophilus produces integrative amylolytic and cellulolytic enzymes; however, the regulatory mechanism associated with the expression of amylase and cellulase genes in T. pinophilus remains unclear. In this study, we screened for and identified novel TFs regulating amylase and/or cellulase gene expression in T. pinophilus 1-95 through comparative transcriptomic and genetic analyses. RESULTS Comparative analysis of the transcriptomes from T. pinophilus 1-95 grown on media in the presence and absence of glucose or soluble starch as the sole carbon source screened 33 candidate TF-encoding genes that regulate amylase gene expression. Thirty of the 33 genes were successfully knocked out in the parental strain T. pinophilus ∆TpKu70, with seven of the deletion mutants firstly displaying significant changes in amylase production as compared with the parental strain. Among these, ∆TpRfx1 (TpRfx1: Talaromyces pinophilus Rfx1) showed the most significant decrease (81.5%) in amylase production, as well as a 57.7% reduction in filter paper cellulase production. Real-time quantitative reverse transcription PCR showed that TpRfx1 dynamically regulated the expression of major amylase and cellulase genes during cell growth, and in vitro electrophoretic mobility shift assay revealed that TpRfx1 bound the promoter regions of genes encoding α-amylase (TP04014/Amy13A), glucoamylase (TP09267/Amy15A), cellobiohydrolase (TP09412/cbh1), β-glucosidase (TP05820/bgl1), and endo-β-1,4-glucanase (TP08514/eg1). TpRfx1 protein containing a regulatory factor X (RFX) DNA-binding domain belongs to RFX family. CONCLUSION We identified a novel RFX protein TpRFX1 that directly regulates the expression of amylase and cellulase genes in T. pinophilus, which provides new insights into the regulatory mechanism of fungal amylase and cellulase gene expression.
Collapse
Affiliation(s)
- Gui-Yan Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Feng-Fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| |
Collapse
|