1
|
Massalska MA, Gober HJ. How Children Are Protected From COVID-19? A Historical, Clinical, and Pathophysiological Approach to Address COVID-19 Susceptibility. Front Immunol 2021; 12:646894. [PMID: 34177895 PMCID: PMC8226076 DOI: 10.3389/fimmu.2021.646894] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
The origin and the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) in early 2020 was accompanied by high rates of mortality in regions belonging to the ancient silk road, such as the south of China, Iran, Turkey and the northern parts of Italy. However, children seem to be spared in the epidemic as very small percentage worldwide being ill. The protection of children and neonates suggests the involvement of a specific component of adaptive immunity present at early development. Native immunoglobulin belonging to the class of IgM is abundantly present in neonates and children and is known for its recognition of self- and altered self-antigens. Native IgM may be able to neutralize virus by the recognition of endogenous "danger signal" encoded in the viral envelope and originally imprinted in the membranes of infected and stressed cells. Noteworthy, thrombosis and vasculitis, two symptoms in severely affected adult and pediatric patients are shared between COVID-19 and patients with Behcet's disease, an autoimmune disorder exhibiting a region-specific prevalence in countries of the former silk road. Molecular mechanisms and clinical indicators suggest reactive oxygen species as trigger factor for severe progression of COVID-19 and establish a link to the innate immune defense against bacteria. The selective pressure exerted by bacterial pathogens may have shaped the genetics of inhabitants at this ancient trade route in favor of bacterial defense, to the detriment of severe COVID-19 progression in the 21th century.
Collapse
Affiliation(s)
- Magdalena Anna Massalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, Warsaw, Poland
| | | |
Collapse
|
2
|
Affiliation(s)
- Zhou Yang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| | - Zhijun Min
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| | - Bo Yu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| |
Collapse
|
3
|
To EE, O'Leary JJ, O'Neill LAJ, Vlahos R, Bozinovski S, Porter CJH, Brooks RD, Brooks DA, Selemidis S. Spatial Properties of Reactive Oxygen Species Govern Pathogen-Specific Immune System Responses. Antioxid Redox Signal 2020; 32:982-992. [PMID: 32008365 PMCID: PMC7426979 DOI: 10.1089/ars.2020.8027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Reactive oxygen species (ROS) are often considered to be undesirable toxic molecules that are generated under conditions of cellular stress, which can cause damage to critical macromolecules such as DNA. However, ROS can also contribute to the pathogenesis of cancer and many other chronic inflammatory disease conditions, including atherosclerosis, metabolic disease, chronic obstructive pulmonary disease, neurodegenerative disease, and autoimmune disease. Recent Advances: The field of ROS biology is expanding, with an emerging paradigm that these reactive species are not generated haphazardly, but instead produced in localized regions or in specific subcellular compartments, and this has important consequences for immune system function. Currently, there is evidence for ROS generation in extracellular spaces, in endosomal compartments, and within mitochondria. Intriguingly, the specific location of ROS production appears to be influenced by the type of invading pathogen (i.e., bacteria, virus, or fungus), the size of the invading pathogen, as well as the expression/subcellular action of pattern recognition receptors and their downstream signaling networks, which sense the presence of these invading pathogens. Critical Issues: ROS are deliberately generated by the immune system, using specific NADPH oxidases that are critically important for pathogen clearance. Professional phagocytic cells can sense a foreign bacterium, initiate phagocytosis, and then within the confines of the phagosome, deliver bursts of ROS to these pathogens. The importance of confining ROS to this specific location is the impetus for this perspective. Future Directions: There are specific knowledge gaps on the fate of the ROS generated by NADPH oxidases/mitochondria, how these ROS are confined to specific locations, as well as the identity of ROS-sensitive targets and how they regulate cellular signaling.
Collapse
Affiliation(s)
- Eunice E To
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia.,Infection and Immunity Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - John J O'Leary
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland.,Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin, Ireland.,Emer Casey Research Laboratory, Molecular Pathology Laboratory, The Coombe Women and Infants University Hospital, Dublin, Ireland.,CERVIVA Research Consortium, Trinity College Dublin, Dublin, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ross Vlahos
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Steven Bozinovski
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Christopher J H Porter
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.,Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Robert D Brooks
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Doug A Brooks
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland.,School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia.,Infection and Immunity Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
4
|
Zheng K, Hao J, Xiao L, Wang M, Zhao Y, Fan D, Li Y, Wang X, Zhang L. Expression of nicotinamide adenine dinucleotide phosphate oxidase in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2020; 10:646-655. [PMID: 32052917 DOI: 10.1002/alr.22530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/30/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase produces reactive oxygen species (ROS) involved in oxidative stress and signal transduction. Recent studies have suggested that NADPH oxidase is associated with the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). The aim of this study was to detect the expression of NADPH oxidase subunits and 4-hydroxynonenal (4-HNE) in nasal polyp tissue and normal nasal mucosa, in order to explore the possible role played by NADPH oxidase in the pathogenesis of CRSwNP. METHODS Thirteen patients with CRSwNP and 9 normal control subjects were selected to participate in this study, in which we evaluated the expression of different NADPH oxidase subunits (gp91phox , p67phox , p47phox , and p22phox ) in nasal polyp (NP) tissue and control mucosa by Western blotting and real-time polymerase chain reaction (PCR). Immunohistochemistry and immunofluorescence staining were used to detect expression of the p67phox subunit and 4-HNE in NP tissue and normal nasal mucosa. RESULTS Western blot and real-time PCR results showed that p67phox expression was significantly increased in NP tissue when compared with its expression in control mucosa (p = 0.004). p67phox was expressed in the eosinophils and neutrophils found in NP tissue, but not in the macrophages. Additionally, the levels of 4-HNE expression were also significantly increased in NP tissue when compared with control mucosa (p = 0.001). CONCLUSION The levels of p67phox messenger RNA (mRNA) and protein as well as 4-HNE were both upregulated in NP tissue, suggesting that p67phox and oxidative stress play roles in the pathogenesis of CRSwNP.
Collapse
Affiliation(s)
- Kaili Zheng
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jin Hao
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Lei Xiao
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Min Wang
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Dachuan Fan
- Department of Otolaryngology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| |
Collapse
|
5
|
Inducible lung epithelial resistance requires multisource reactive oxygen species generation to protect against bacterial infections. PLoS One 2019; 14:e0208216. [PMID: 30794556 PMCID: PMC6386317 DOI: 10.1371/journal.pone.0208216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022] Open
Abstract
Pneumonia remains a global health threat, in part due to expanding categories of susceptible individuals and increasing prevalence of antibiotic resistant pathogens. However, therapeutic stimulation of the lungs’ mucosal defenses by inhaled exposure to a synergistic combination of Toll-like receptor (TLR) agonists known as Pam2-ODN promotes mouse survival of pneumonia caused by a wide array of pathogens. This inducible resistance to pneumonia relies on intact lung epithelial TLR signaling, and inducible protection against viral pathogens has recently been shown to require increased production of epithelial reactive oxygen species (ROS) from multiple epithelial ROS generators. To determine whether similar mechanisms contribute to inducible antibacterial responses, the current work investigates the role of ROS in therapeutically-stimulated protection against Pseudomonas aerugnosa challenges. Inhaled Pam2-ODN treatment one day before infection prevented hemorrhagic lung cytotoxicity and mouse death in a manner that correlated with reduction in bacterial burden. The bacterial killing effect of Pam2-ODN was recapitulated in isolated mouse and human lung epithelial cells, and the protection correlated with inducible epithelial generation of ROS. Scavenging or targeted blockade of ROS production from either dual oxidase or mitochondrial sources resulted in near complete loss of Pam2-ODN-induced bacterial killing, whereas deficiency of induced antimicrobial peptides had little effect. These findings support a central role for multisource epithelial ROS in inducible resistance against a bacterial pathogen and provide mechanistic insights into means to protect vulnerable patients against lethal infections.
Collapse
|