1
|
Wang Y, Wang J, Yang S, Liang Q, Gu Z, Wang Y, Mou H, Sun H. Selecting a preculture strategy for improving biomass and astaxanthin productivity of Chromochloris zofingiensis. Appl Microbiol Biotechnol 2024; 108:117. [PMID: 38204137 PMCID: PMC10781847 DOI: 10.1007/s00253-023-12873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 01/12/2024]
Abstract
Chromochloris zofingiensis is a potential source of natural astaxanthin; however, its rapid growth and astaxanthin enrichment cannot be achieved simultaneously. This study established autotrophic, mixotrophic, and heterotrophic preculture patterns to assess their ameliorative effect on the C. zofingiensis heterotrophic growth state. In comparison, mixotrophic preculture (MP) exhibited the best improving effect on heterotrophic biomass concentration of C. zofingiensis (up to 121.5 g L-1) in a 20 L fermenter, reaching the global leading level. The astaxanthin productivity achieved 111 mg L-1 day-1, 7.4-fold higher than the best record. The transcriptome and 13C tracer-based metabolic flux analysis were used for mechanism inquiry. The results revealed that MP promoted carotenoid and lipid synthesis, and supported synthesis preference of low unsaturated fatty acids represented by C18:1 and C16:0. The MP group maintained the best astaxanthin productivity via mastering the balance between increasing glucose metabolism and inhibition of carotenoid synthesis. The MP strategy optimized the physiological state of C. zofingiensis and realized its heterotrophic high-density growth for an excellent astaxanthin yield on a pilot scale. This strategy exhibits great application potential in the microalgae-related industry. KEY POINTS: • Preculture strategies changed carbon flux and gene expression in C. zofingiensis • C. zofingiensis realized a high-density culture with MP and fed-batch culture (FBC) • Astaxanthin productivity achieved 0.111 g L-1 day-1 with MP and FBC.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Ziqiang Gu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Ying Wang
- Marine Science research Institute of Shandong Province, Qingdao, 266003, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Jia YL, Zhang QM, Du F, Yang WQ, Zhang ZX, Xu YS, Ma W, Sun XM, Huang H. Identification of lipid synthesis genes in Schizochytrium sp. and their application in improving eicosapentaenoic acid synthesis in Yarrowia lipolytica. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:32. [PMID: 38402213 PMCID: PMC10894473 DOI: 10.1186/s13068-024-02471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/02/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Eicosapentaenoic acid (EPA) is widely used in the functional food and nutraceutical industries due to its important benefits to human health. Oleaginous microorganisms are considered a promising alternative resource for the production of EPA lipids. However, the storage of EPA in triglyceride (TG) becomes a key factor limiting its level. RESULTS This study aimed to incorporate more EPA into TG storage through metabolic engineering. Firstly, key enzymes for TG synthesis, the diacylglycerol acyltransferase (DGAT) and glycerol-3-phosphate acyltransferase (GPAT) genes from Schizochytrium sp. HX-308 were expressed in Yarrowia lipolytica to enhance lipid and EPA accumulation. In addition, engineering the enzyme activity of DGATs through protein engineering was found to be effective in enhancing lipid synthesis by replacing the conserved motifs "HFS" in ScDGAT2A and "FFG" in ScDGAT2B with the motif "YFP". Notably, combined with lipidomic analysis, the expression of ScDGAT2C and GPAT2 enhanced the storage of EPA in TG. Finally, the accumulation of lipid and EPA was further promoted by identifying and continuing to introduce the ScACC, ScACS, ScPDC, and ScG6PD genes from Schizochytrium sp., and the lipid and EPA titer of the final engineered strain reached 2.25 ± 0.03 g/L and 266.44 ± 5.74 mg/L, respectively, which increased by 174.39% (0.82 ± 0.02 g/L) and 282.27% (69.70 ± 0.80 mg/L) compared to the initial strain, respectively. CONCLUSION This study shows that the expression of lipid synthesis genes from Schizochytrium sp. in Y. lipolytica effectively improves the synthesis of lipids and EPA, which provided a promising target for EPA-enriched microbial oil production.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, China
| | - Qing-Ming Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, China
| | - Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, China
| |
Collapse
|
3
|
Yang Y, Xu J, Li Y, He Y, Yang Y, Liu D, Wu C. Effects of Coumarin on Rhizosphere Microbiome and Metabolome of Lolium multiflorum. PLANTS (BASEL, SWITZERLAND) 2023; 12:1096. [PMID: 36903956 PMCID: PMC10005730 DOI: 10.3390/plants12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Rhizosphere microorganisms can help plants absorb nutrients, coordinate their growth, and improve their environmental adaptability. Coumarin can act as a signaling molecule that regulates the interaction between commensals, pathogens, and plants. In this study, we elucidate the effect of coumarin on plant root microorganisms. To provide a theoretical basis for the development of coumarin-derived compounds as biological pesticides, we determined the effect of coumarin on the root secondary metabolism and rhizosphere microbial community of annual ryegrass (Lolium multiflorum Lam.). We observed that a 200 mg/kg coumarin treatment had a negligible effect on the rhizosphere soil bacterial species of the annual ryegrass rhizosphere, though it exhibited a significant effect on the abundance of bacteria in the rhizospheric microbial community. Under coumarin-induced allelopathic stress, annual ryegrass can stimulate the colonization of beneficial flora in the root rhizosphere; however, certain pathogenic bacteria, such as Aquicella species, also multiply in large numbers in such conditions, which may be one of the main reasons for a sharp decline in the annual ryegrass biomass production. Further, metabolomics analysis revealed that the 200 mg/kg coumarin treatment triggered the accumulation of a total of 351 metabolites, of which 284 were found to be significantly upregulated, while 67 metabolites were significantly downregulated in the T200 group (treated with 200 mg/kg coumarin) compared to the CK group (control group) (p < 0.05). Further, the differentially expressed metabolites were primarily associated with 20 metabolic pathways, including phenylpropanoid biosynthesis, flavonoid biosynthesis, glutathione metabolism, etc. We found significant alterations in the phenylpropanoid biosynthesis and purine metabolism pathways (p < 0.05). In addition, there were significant differences between the rhizosphere soil bacterial community and root metabolites. Furthermore, changes in the bacterial abundance disrupted the balance of the rhizosphere micro-ecosystem and indirectly regulated the level of root metabolites. The current study paves the way towards comprehensively understanding the specific relationship between the root metabolite levels and the abundance of the rhizosphere microbial community.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Caixia Wu
- Correspondence: ; Tel.: +86-(13)-665293134
| |
Collapse
|
4
|
Jia YL, Du F, Nong FT, Li J, Huang PW, Ma W, Gu Y, Sun XM. Function of the Polyketide Synthase Domains of Schizochytrium sp. on Fatty Acid Synthesis in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2446-2454. [PMID: 36696156 DOI: 10.1021/acs.jafc.2c08383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is well known that polyunsaturated fatty acids (PUFAs) in Schizochytrium sp. are mainly synthesized via the polyketide synthase (PKS) pathway. However, the specific mechanism of PKS in fatty acid synthesis is still unclear. In this work, the functions of ORFA, ORFB, ORFC, and their individual functional domain genes on fatty acid synthesis were investigated through heterologous expression in Yarrowia lipolytica. The results showed that the expression of ORFA, ORFB, ORFC, and their individual functional domains all led to the increase of the very long-chain PUFA content (mainly eicosapentaenoic acid). Furthermore, the transcriptomic analysis showed that except for the 3-ketoacyl-ACP synthase (KS) domain of ORFB, the expression of an individual functional domain, including malonyl-CoA: ACP acyltransferase, 3-hydroxyacyl-ACP dehydratase (DH), 3-ketoacyl-ACP reductase, and KS domains of ORFA, acyltransferase domains of ORFB, and two DH domains of ORFC resulted in upregulation of the tricarboxylic acid cycle and pentose phosphate pathway, downregulation of the triacylglycerol biosynthesis, fatty acid synthesis pathway, and β-oxidation in Yarrowia lipolytica. These results provide a theoretical basis for revealing the function of PKS in fatty acid synthesis in Y. lipolytica and elucidate the possible mechanism for PUFA biosynthesis.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| |
Collapse
|
5
|
Transcriptome Analysis of the Accumulation of Astaxanthin in Haematococcus pluvialis Treated with White and Blue Lights as well as Salicylic Acid. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4827595. [PMID: 35903581 PMCID: PMC9315456 DOI: 10.1155/2022/4827595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022]
Abstract
Haematococcus pluvialis is the most commercially valuable microalga for the production of natural astaxanthin, showing enhanced production of astaxanthin with the treatments of high-intensity light and hormones. The molecular mechanisms regulating the biosynthesis of astaxanthin in H. pluvialis treated with white light, blue light, and blue light with salicylic acid (SA) were investigated based on the transcriptome analysis. Results showed that the combined treatment with both blue light and SA generated the highest production of astaxanthin. A total of 109,443 unigenes were identified to show that the genes involved in the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway (PPP), and the astaxanthin biosynthesis were significantly upregulated to increase the production of the substrates for the synthesis of astaxanthin, i.e., pyruvate and glyceraldehyde-3-phosphate generated in the TCA cycle and PPP, respectively. Results of transcriptome analysis were further verified by the quantitative real-time PCR (qRT-PCR) analysis, showing that the highest content of astaxanthin was obtained with the expression of the bkt gene significantly increased. Our study provided the novel insights into the molecular mechanisms regulating the synthesis of astaxanthin and an innovative strategy combining the exogenous hormone and physical stress to increase the commercial production of astaxanthin by H. pluvialis.
Collapse
|
6
|
Crucial carotenogenic genes elevate hyperaccumulation of both fucoxanthin and β-carotene in Phaeodactylum tricornutum. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Zeng L, Bi Y, Guo P, Bi Y, Wang T, Dong L, Wang F, Chen L, Zhang W. Metabolic Analysis of Schizochytrium Mutants With High DHA Content Achieved With ARTP Mutagenesis Combined With Iodoacetic Acid and Dehydroepiandrosterone Screening. Front Bioeng Biotechnol 2021; 9:738052. [PMID: 34869256 PMCID: PMC8637758 DOI: 10.3389/fbioe.2021.738052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
High DHA production cost caused by low DHA titer and productivity of the current Schizochytrium strains is a bottleneck for its application in competition with traditional fish-oil based approach. In this study, atmospheric and room-temperature plasma with iodoacetic acid and dehydroepiandrosterone screening led to three mutants, 6–8, 6–16 and 6–23 all with increased growth and DHA accumulations. A LC/MS metabolomic analysis revealed the increased metabolism in PPP and EMP as well as the decreased TCA cycle might be relevant to the increased growth and DHA biosynthesis in the mutants. Finally, the mutant 6–23, which achieved the highest growth and DHA accumulation among all mutants, was evaluated in a 5 L fermentor. The results showed that the DHA concentration and productivity in mutant 6–23 were 41.4 g/L and 430.7 mg/L/h in fermentation for 96 h, respectively, which is the highest reported so far in literature. The study provides a novel strain improvement strategy for DHA-producing Schizochytrium.
Collapse
Affiliation(s)
- Lei Zeng
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Yanqi Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Pengfei Guo
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Yali Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tiantian Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Liang Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
8
|
Jia YL, Geng SS, Du F, Xu YS, Wang LR, Sun XM, Wang QZ, Li Q. Progress of metabolic engineering for the production of eicosapentaenoic acid. Crit Rev Biotechnol 2021; 42:838-855. [PMID: 34779326 DOI: 10.1080/07388551.2021.1971621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Eicosapentaenoic Acid (EPA) is an essential ω-3 polyunsaturated fatty acid for human health. Currently, high-quality EPA production is largely dependent on the extraction of fish oil, but this unsustainable approach cannot meet its rising market demand. Biotechnological approaches for EPA production from microorganisms have received increasing attention due to their suitability for large-scale production and independence of the seasonal or climate restrictions. This review summarizes recent research on different microorganisms capable of producing EPA, such as microalgae, bacteria, and fungi, and introduces the different EPA biosynthesis pathways. Notably, some novel engineering strategies have been applied to endow and improve the abilities of microorganisms to synthesize EPA, including the construction and optimization of the EPA biosynthesis pathway, an increase in the acetyl-CoA pool supply, the increase of NADPH and the inhibition of competing pathways. This review aims to provide an updated summary of EPA production.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Shan-Shan Geng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qing-Zhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Shi Y, Chen Z, Li Y, Cao X, Yang L, Xu Y, Li Z, He N. Function of ORFC of the polyketide synthase gene cluster on fatty acid accumulation in Schizochytrium limacinum SR21. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:163. [PMID: 34301326 PMCID: PMC8305795 DOI: 10.1186/s13068-021-02014-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND As a potential source of polyunsaturated fatty acids (PUFA), Schizochytrium sp. has been widely used in industry for PUFA production. Polyketide synthase (PKS) cluster is supposed to be the primary way of PUFA synthesis in Schizochytrium sp. As one of three open reading frames (ORF) in the PKS cluster, ORFC plays an essential role in fatty acid biosynthesis. However, the function of domains in ORFC in the fatty acid synthesis of Schizochytrium sp. remained unclear. RESULTS In this study, heterologous expression and overexpression were carried out to study the role of ORFC and its domains in fatty acid accumulation. Firstly, ORFC was heterologously expressed in yeast which increased the PUFA content significantly. Then, the dehydratase (DH) and enoyl reductase (ER) domains located on ORFC were overexpressed in Schizochytrium limacinum SR21, respectively. Fatty acids profile analysis showed that the contents of PUFA and saturated fatty acid were increased in the DH and ER overexpression strains, respectively. This indicated that the DH and ER domains played distinct roles in lipid accumulation. Metabolic and transcriptomic analysis revealed that the pentose phosphate pathway and triacylglycerol biosynthesis were enhanced, while the tricarboxylic acid cycle and fatty acids oxidation were weakened in DH-overexpression strain. However, the opposite effect was found in the ER-overexpression strain. CONCLUSION Therefore, ORFC was required for the biosynthesis of fatty acid. The DH domain played a crucial role in PUFA synthesis, whereas the ER domain might be related to saturated fatty acids (SFA) synthesis in Schizochytrium limacinum SR21. This research explored the role of ORFC in the PKS gene cluster in Schizochytrium limacinum and provided potential genetic modification strategies for improving lipid production and regulating PUFA and SFA content.
Collapse
Affiliation(s)
- Yanyan Shi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Yixin Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
10
|
Xue J, Li T, Chen TT, Balamurugan S, Yang WD, Li HY. Regulation of malate-pyruvate pathway unifies the adequate provision of metabolic carbon precursors and NADPH in Tetradesmus obliquus. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Mao X, Lao Y, Sun H, Li X, Yu J, Chen F. Time‑resolved transcriptome analysis during transitions of sulfur nutritional status provides insight into triacylglycerol (TAG) and astaxanthin accumulation in the green alga Chromochloris zofingiensis. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:128. [PMID: 32695224 PMCID: PMC7367374 DOI: 10.1186/s13068-020-01768-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/11/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chromochloris zofingiensis, an oleaginous microalga, is a promising feedstock for the co-production of triacylglycerol (TAG)-based biodiesel and the high-value product astaxanthin. To reveal the molecular mechanism of TAG and astaxanthin biosynthesis during transitions of sulfur nutritional status, namely sulfur-starvation (SS) and sulfur-replenishment (SR), the physiological responses and the transcriptomic dynamics of C. zofingiensis were examined. RESULTS The results revealed a reversible TAG and astaxanthin accumulation under SS, which is correlated with the reduction of cell growth and protein content, indicating the reallocation of carbon. By correlating the data on the physiological and transcriptional responses to different sulfur nutritional status, a model for the underlying mechanism of TAG and astaxanthin accumulation in C. zofingiensis was postulated, which involved up-regulation of key genes including diacylglycerol acyltransferase (DGTT5) and beta-carotene ketolase (BKT1), increased energy and NADPH supply by elevating the tricarboxylic acid (TCA) cycle and the oxidative pentose phosphate (OPP) pathway, and the increased carbon precursors (pyruvate and acetyl-CoA) through central carbon metabolism. In addition, the net enhancement of the de novo biosynthesis of fatty acids and the re-direction of the terpenoid precursors toward the branch catalyzed by lycopene beta cyclase (LCYb) and BKT1 escalated the substrate availability for the biosynthesis of TAG and astaxanthin, respectively. CONCLUSIONS In this study, the time-resolved transcriptional analysis of C. zofingiensis under SS and SR conditions was reported for the first time to elucidate the regulatory roles of key enzymes, including DGTT5, BKT1 and LCYb, in the underlying mechanisms of TAG and astaxanthin accumulation.
Collapse
Affiliation(s)
- Xuemei Mao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060 China
| | - Yongmin Lao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060 China
| | - Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Xiaojie Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060 China
| | - Jianfeng Yu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060 China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060 China
| |
Collapse
|
12
|
Ran W, Wang H, Liu Y, Qi M, Xiang Q, Yao C, Zhang Y, Lan X. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. BIORESOURCE TECHNOLOGY 2019; 291:121894. [PMID: 31387839 DOI: 10.1016/j.biortech.2019.121894] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/28/2023]
Abstract
Microalgae accumulate starch and lipid as storage metabolites under nutrient depletion, which can be used as sustainable feedstock for biorefinery. Omics analysis coupled with enzymatic and genetic verifications uncovered a partial picture of pathways and important enzymes or regulators related to starch and lipid biosynthesis as well as the carbon partitioning between them under nutrient depletion conditions. Depletion of macronutrients (N, P, and S) resulted in considerable enhancement of starch and/or lipid content in microalgae, but the accompanying declined photosynthesis hampered the achievements of high concentrations. This review summarized the current knowledge on the pathways and the committed steps as well as their carbon allocation involved in starch and lipid biosynthesis, and focused on the manipulation of different nutrients and the alleviation of oxidative stress for enhanced storage metabolites production. The biological and engineering approaches to cope with the conflict between biomass production and storage metabolites accumulation are proposed.
Collapse
Affiliation(s)
- Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Haitao Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yinghui Liu
- Information Management Center of Sichuan University, Chengdu, Sichuan 610065, China
| | - Man Qi
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xianqiu Lan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|