1
|
Zhao C, Li Y, Chen Q, Guo Y, Sun B, Liu D. Effect of organic acids on fermentation quality and microbiota of horseshoe residue and corn protein powder. AMB Express 2024; 14:58. [PMID: 38761313 PMCID: PMC11102418 DOI: 10.1186/s13568-024-01686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/03/2024] [Indexed: 05/20/2024] Open
Abstract
This experiment aimed to investigate the impact of malic acid (MA) and citric acid (CA) on the nutritional composition, fermentation quality, rumen degradation rate, and microbial diversity of a mixture of apple pomace and corn protein powder during ensiling. The experiment used apple pomace and corn protein powder as raw materials, with four groups: control group (CON), malic acid treatment group (MA, 10 g/kg), citric acid treatment group (CA, 10 g/kg), and citric acid + malic acid treatment group (MA, 10 g/kg + CA, 10 g/kg). Each group has 3 replicates, with 2 repetitions in parallel, subjected to mixed ensiling for 60 days. The results indicated: (1) Compared to the CON group, the crude protein content significantly increased in the MA, CA, and MA + CA groups (p < 0.05), with the highest content observed in the MA + CA group. The addition of MA and CA effectively reduced the water-soluble carbohydrate (WSC) content (p < 0.05). Simultaneously, the CA group showed a decreasing trend in NDFom and hemicellulose content (p = 0.08; p = 0.09). (2) Compared to the CON group, the pH significantly decreased in the MA, CA, and MA + CA groups (p < 0.01), and the three treatment groups exhibited a significant increase in lactic acid and acetic acid content (p < 0.01). The quantity of lactic acid bacteria increased significantly (p < 0.01), with the MA + CA group showing a more significant increase than the MA and CA groups (p < 0.05). (3) Compared to the CON group, the in situ dry matter disappearance (ISDMD) significantly increased in the MA, CA, and MA + CA groups (p < 0.05). All three treatment groups showed highly significant differences in in situ crude protein disappearance (ISCPD) compared to the CON group (p < 0.01). (4) Good's Coverage for all experimental groups was greater than 0.99, meeting the conditions for subsequent sequencing. Compared to the CON group, the Shannon index significantly increased in the CA group (p < 0.01), and the Simpson index increased significantly in the MA group (p < 0.05). However, there was no significant difference in the Chao index among the three treatment groups and the CON group (p > 0.05). At the genus level, the abundance of Lentilactobacillus in the MA, CA, and MA + CA groups was significantly higher than in the control group (p < 0.05). PICRUSt prediction results indicated that the metabolic functional microbial groups in the CA and MA treatment groups were significantly higher than in the CON group (p < 0.05), suggesting that the addition of MA or CA could reduce the loss of nutritional components such as protein and carbohydrates in mixed ensilage. In conclusion, the addition of malic acid and citric acid to a mixture of apple pomace and corn protein powder during ensiling reduces nutritional losses, improves fermentation quality and rumen degradation rate, enhances the diversity of the microbial community in ensiled feed, and improves microbial structure. The combined addition of malic acid and citric acid demonstrates a superior effect.
Collapse
Affiliation(s)
- Chao Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yue Li
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qiong Chen
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
2
|
Książek E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules 2023; 29:22. [PMID: 38202605 PMCID: PMC10779990 DOI: 10.3390/molecules29010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Citric acid finds broad applications in various industrial sectors, such as the pharmaceutical, food, chemical, and cosmetic industries. The bioproduction of citric acid uses various microorganisms, but the most commonly employed ones are filamentous fungi such as Aspergillus niger and yeast Yarrowia lipolytica. This article presents a literature review on the properties of citric acid, the microorganisms and substrates used, different fermentation techniques, its industrial utilization, and the global citric acid market. This review emphasizes that there is still much to explore, both in terms of production process techniques and emerging new applications of citric acid.
Collapse
Affiliation(s)
- Ewelina Książek
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| |
Collapse
|
3
|
Chaudhary N, Grover M. Bioindustrial applications of thermostable Endoglucanase purified from Trichoderma viride towards the conversion of agrowastes to value-added products. Protein Expr Purif 2023; 211:106324. [PMID: 37356677 DOI: 10.1016/j.pep.2023.106324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Importance of biocatalytic reactions and biotransformations mediated by fungal enzymes has increased tremendously in various industries. Endoglucanase obtained from Trichoderma viride has been utilized for bioconversion of agrowastes; wheat straw (WS) and corn stover (CS) as biomass into citric acid and single cell protein (SCP) as value-added products. The enzyme was purified to apparent homogeneity with Mr:44.67 kDa; purification-fold, yield, specific activity to be 19.5-, 29.2%, and 150.4 Units.mg-1, respectively, with thermostability up to 70 °C. The enzyme showed a novel N-terminal peptide and its computational analysis revealed a conserved 'SG' amino acid sequence alike microbial cellulases. The experimental results have shown the potential of endoglucanase for the conversion of agrowastes; wheat straw (WS) and corn stover (CS) into citric acid, maximum yield (KgM-3) found in submerged (WS:50;CS:45) fermentation process. Single-cell protein (SCP) production in WS (68 KgM-3) hydrolysate was superior to both CS hydrolysate (60 KgM-3) and YEPD (standard medium) (58 KgM-3).
Collapse
Affiliation(s)
- Nidhee Chaudhary
- Centre of Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Sector-125, Noida, 201313, India.
| | - Monendra Grover
- Centre for Agricultural Bioinformatics, ICAR-IASRI, Library Avenue Pusa, New Delhi, India
| |
Collapse
|
4
|
Liu J, Zhang S, Li W, Wang G, Xie Z, Cao W, Gao W, Liu H. Engineering a Phosphoketolase Pathway to Supplement Cytosolic Acetyl-CoA in Aspergillus niger Enables a Significant Increase in Citric Acid Production. J Fungi (Basel) 2023; 9:jof9050504. [PMID: 37233215 DOI: 10.3390/jof9050504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Citric acid is widely used in the food, chemical and pharmaceutical industries. Aspergillus niger is the workhorse used for citric acid production in industry. A canonical citrate biosynthesis that occurred in mitochondria was well established; however, some research suggested that the cytosolic citrate biosynthesis pathway may play a role in this chemical production. Here, the roles of cytosolic phosphoketolase (PK), acetate kinase (ACK) and acetyl-CoA synthetase (ACS) in citrate biosynthesis were investigated by gene deletion and complementation in A. niger. The results indicated that PK, ACK and ACS were important for cytosolic acetyl-CoA accumulation and had significant effects on citric acid biosynthesis. Subsequently, the functions of variant PKs and phosphotransacetylase (PTA) were evaluated, and their efficiencies were determined. Finally, an efficient PK-PTA pathway was reconstructed in A. niger S469 with Ca-PK from Clostridium acetobutylicum and Ts-PTA from Thermoanaerobacterium saccharolyticum. The resultant strain showed an increase of 96.4% and 88% in the citrate titer and yield, respectively, compared with the parent strain in the bioreactor fermentation. These findings indicate that the cytosolic citrate biosynthesis pathway is important for citric acid biosynthesis, and increasing the cytosolic acetyl-CoA level can significantly enhance citric acid production.
Collapse
Affiliation(s)
- Jiao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shanshan Zhang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenhao Li
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Guanyi Wang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
5
|
Książek EE, Janczar-Smuga M, Pietkiewicz JJ, Walaszczyk E. Optimization of Medium Constituents for the Production of Citric Acid from Waste Glycerol Using the Central Composite Rotatable Design of Experiments. Molecules 2023; 28:molecules28073268. [PMID: 37050031 PMCID: PMC10096785 DOI: 10.3390/molecules28073268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Citric acid is currently produced by submerged fermentation of sucrose with the aid of Aspergillus niger mold. Its strains are characterized by a high yield of citric acid biosynthesis and no toxic by-products. Currently, new substrates are sought for production of citric acid by submerged fermentation. Waste materials such as glycerol or pomace could be used as carbon sources in the biosynthesis of citric acid. Due to the complexity of the metabolic state in fungus, there is an obvious need to optimize the important medium constituents to enhance the accumulation of desired product. Potential optimization approach is a statistical method, such as the central composite rotatable design (CCRD). The aim of this study was to increase the yield of citric acid biosynthesis by Aspergillus niger PD-66 in media with waste glycerol as the carbon source. A mathematical method was used to optimize the culture medium composition for the biosynthesis of citric acid. In order to maximize the efficiency of the biosynthesis of citric acid the central composite, rotatable design was used. Waste glycerol and ammonium nitrate were identified as significant variables which highly influenced the final concentration of citric acid (Y1), volumetric rate of citric acid biosynthesis (Y2), and yield of citric acid biosynthesis (Y3). These variables were subsequently optimized using a central composite rotatable design. Optimal values of input variables were determined using the method of the utility function. The highest utility value of 0.88 was obtained by the following optimal set of conditions: waste glycerol—114.14 g∙L−1and NH4NO3—2.85 g∙L−1.
Collapse
Affiliation(s)
- Ewelina Ewa Książek
- Department of Agroengineering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118–120, 53-345 Wrocław, Poland
| | - Małgorzata Janczar-Smuga
- Department of Food Technology and Nutrition, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118–120, 53-345 Wrocław, Poland
| | - Jerzy Jan Pietkiewicz
- Department of Human Nutrition, Faculty of Health and Physical Culture Sciences, Witelon Collegium State University, Sejmowa 5A, 59-220 Legnica, Poland
| | - Ewa Walaszczyk
- Department of Process Management, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118–120, 53-345 Wrocław, Poland
| |
Collapse
|
6
|
Upgrading Major Waste Streams Derived from the Biodiesel Industry and Olive Mills via Microbial Bioprocessing with Non-Conventional Yarrowia lipolytica Strains. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
This study reports the development of a bioprocess involving the valorization of biodiesel-derived glycerol as the main carbon source for cell proliferation of Yarrowia lipolytica strains and production of metabolic compounds, i.e., citric acid (Cit), polyols, and other bio-metabolites, the substitution of process tap water with olive mill wastewater (OMW) in batch fermentations, and partial detoxification of OMW (up to 31.1% decolorization). Increasing initial phenolics (Phen) of OMW-glycerol blends led to substantial Cit secretion. Maximum Cit values, varying between 64.1–65.1 g/L, combined with high yield (YCit/S = 0.682–0.690 g Cit/g carbon sources) and productivity (0.335–0.344 g/L/h) were achieved in the presence of Phen = 3 g/L. The notable accumulation of endopolysaccharides (EPs) on the produced biomass was determined when Y. lipolytica LMBF Y-46 (51.9%) and ACA-YC 5033 (61.5%) were cultivated on glycerol-based media. Blending with various amounts of OMW negatively affected EPs and polyols biosynthesis. The ratio of mannitol:arabitol:erythritol was significantly affected (p < 0.05) by the fermentation media. Erythritol was the major polyol in the absence of OMW (53.5–62.32%), while blends of OMW-glycerol (with Phen = 1–3 g/L) promoted mannitol production (54.5–76.6%). Nitrogen-limited conditions did not favor the production of cellular lipids (up to 16.6%). This study addressed sustainable management and resource efficiency enabling the bioconversion of high-organic-load and toxic waste streams into valuable products within a circular bioeconomy approach.
Collapse
|
7
|
Citric Acid Production by Yarrowia lipolytica NRRL Y-1094: Optimization of pH, Fermentation Time and Glucose Concentration Using Response Surface Methodology. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, three Yarrowia lipolytica strains (Y. lipolytica NRRL Y-1094, Y. lipolytica NRRL YB-423 and Y. lipolytica IFP29) were screened for acid-production capacity and the maximum zone-area was formed by Y. lipolytica NRRL Y-1094. The strain was then selected as a potential citric-acid (CA) producer for further studies. The CA production by Y. lipolytica NRRL Y-1094 was optimized using response surface methodology (RSM) and considering three factors, comprising initial pH-value, fermentation time, and initial glucose-concentration. The highest CA-concentration was 30.31 g/L under optimum conditions (pH 5.5, 6 days, and 125 g/L glucose) in shake flasks. It has been reported that this result gives better results than many productions with shake flasks. According to estimated regression-coefficients for CA concentration, the fermentation time had the greatest impact on CA production, followed by the substrate concentration and initial pH-level, respectively. On the other hand, this study is a fundamental step in solving and optimizing the production mechanism of Y. lipolytica NRRL Y-1094, a microorganism that has not yet been used in CA production with a glucose-based medium. The results suggest that future studies can perform higher yields by optimizing other medium constituents and environmental factors.
Collapse
|
8
|
Jiang C, Wang H, Liu M, Wang L, Yang R, Wang P, Lu Z, Zhou Y, Zheng Z, Zhao G. Identification of chitin synthase activator in Aspergillus niger and its application in citric acid fermentation. Appl Microbiol Biotechnol 2022; 106:6993-7011. [PMID: 36149454 DOI: 10.1007/s00253-022-12174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
The biosynthesis of citric acid (CA) using Aspergillus niger as a carrier is influenced by mycelium morphology, which is determined by the expression level of morphology-related genes. As a key component of the fungal cell wall, chitin content has an important effect on morphogenesis, and to investigate the effects of this on fermentation performance, we used RNA interference to knockdown chitin synthase C (CHSC) and chitin synthase activator (CHS3) to obtain the single-gene mutant strains A. niger chs3 and chsC and the double mutant A. niger chs3C. We found that the CA fermentation performance of the two single mutants was significantly better than that of the double mutant. The mutant A. niger chs3-4 exhibited CA production potential compared to that of the parent strain in scale-up fermentation; we determined certain characteristics of CA high-yielding strain fermentation pellets. In addition, when chsC alone was silenced, there was very little change in chs3 mRNA levels, whereas those of chsC were significantly reduced when only chs3 was silenced. As this may be because of a synergistic effect between chsC and chs3, and we speculated that the latent activation target of CHS3 is CHSC, our results confirmed this hypothesis. This study is the first application of a separation and combination silence strategy of chitin synthase and chitin synthase activator in the morphology of A. niger CA fermentation. Furthermore, it provides new insights into the method for the morphological study of A. niger fermentation and the interaction of homologous genes. KEY POINTS: • The function of chitin synthase C (chsC) and chitin synthase activator (chs3) is tightly interrelated. • Mycelial morphology was optimized by knockdown of CHS3, resulting in the overproduction of citric acid. • The separation and combination silence strategies are promising tools for the interaction of homologous housekeeping genes.
Collapse
Affiliation(s)
- Chunxu Jiang
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China.,University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Han Wang
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China.
| | - Menghan Liu
- COFCO Biotechnology Co, Ltd. No. 1, Zhongliang Avenue, Bengbu Anhui, 233010, People's Republic of China
| | - Li Wang
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China
| | - Ruwen Yang
- COFCO Biotechnology Co, Ltd. No. 1, Zhongliang Avenue, Bengbu Anhui, 233010, People's Republic of China
| | - Peng Wang
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China
| | - Zongmei Lu
- COFCO Biotechnology Co, Ltd. No. 1, Zhongliang Avenue, Bengbu Anhui, 233010, People's Republic of China
| | - Yong Zhou
- COFCO Biotechnology Co, Ltd. No. 1, Zhongliang Avenue, Bengbu Anhui, 233010, People's Republic of China.
| | - Zhiming Zheng
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China.
| | - Genhai Zhao
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China.
| |
Collapse
|
9
|
Melaku M, Zhong R, Han H, Wan F, Yi B, Zhang H. Butyric and Citric Acids and Their Salts in Poultry Nutrition: Effects on Gut Health and Intestinal Microbiota. Int J Mol Sci 2021; 22:10392. [PMID: 34638730 PMCID: PMC8508690 DOI: 10.3390/ijms221910392] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
Intestinal dysfunction of farm animals, such as intestinal inflammation and altered gut microbiota, is the critical problem affecting animal welfare, performance and farm profitability. China has prohibited the use of antibiotics to improve feed efficiency and growth performance for farm animals, including poultry, in 2020. With the advantages of maintaining gut homeostasis, enhancing digestion, and absorption and modulating gut microbiota, organic acids are regarded as promising antibiotic alternatives. Butyric and citric acids as presentative organic acids positively impact growth performance, welfare, and intestinal health of livestock mainly by reducing pathogenic bacteria and maintaining the gastrointestinal tract (GIT) pH. This review summarizes the discovery of butyric acid (BA), citric acid (CA) and their salt forms, molecular structure and properties, metabolism, biological functions and their applications in poultry nutrition. The research findings about BA, CA and their salts on rats, pigs and humans are also briefly reviewed. Therefore, this review will fill the knowledge gaps of the scientific community and may be of great interest for poultry nutritionists, researchers and feed manufacturers about these two weak organic acids and their effects on intestinal health and gut microbiota community, with the hope of providing safe, healthy and nutrient-rich poultry products to consumers.
Collapse
Affiliation(s)
- Mebratu Melaku
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
- Department of Animal Production and Technology, College of Agriculture, Woldia University, Woldia P.O. Box 400, Ethiopia
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
| | - Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
| | - Fan Wan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
| |
Collapse
|
10
|
Adeoye AO, Lateef A. Biotechnological valorization of cashew apple juice for the production of citric acid by a local strain of Aspergillus niger LCFS 5. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:137. [PMID: 34533689 PMCID: PMC8448800 DOI: 10.1186/s43141-021-00232-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/21/2021] [Indexed: 01/22/2023]
Abstract
Background This work investigates the production of citric acid from cashew apple juice, an abundant waste in the processing of cashew, using a local strain of Aspergillus niger and the application of the citric acid as a coagulant for the production of soy cheese. Fungal isolates were obtained from a cashew plantation in Ogbomoso, Nigeria, using potato dextrose agar. Further screening was undertaken to determine the qualitative strength of acid production by the fungi on Czapek-Dox agar supplemented with bromocresol green, with the development of yellow zone taken as an indication of citric acid production. Thereafter, the best producing strain was cultivated in a cashew apple juice medium. Results Out of 150 fungal isolates generated from the cashew plantation, 92 (61.3%), 44 (29.3%) and 14 (9.3%) were obtained from cashew fruits, soil and cashew tree surfaces, respectively. Different strains of fungi isolated include Aspergillus niger, A. flavus, A. foetidus, A. heteromorphus, A. nidulans and A. viridinutans. The isolates produced yellow zonation of 0.4–5.5 cm on modified Czapek-Dox agar; the highest was observed for a strain of A. niger LCFS 5, which was identified using molecular tools. In the formulated cashew apple juice medium, the citric acid yield of LCFS 5 ranged 16.0–92.8 g/l with the peak obtained on the 10th day of fermentation. The citric acid produced was recovered using the double precipitation method with Ca(OH)2 and H2SO4 having ≈ 70% purity of citric acid on HPLC. The citric acid acted as a coagulant to produce soy cheese with 66.67% acceptability by panelists. Conclusion This work has extended the frontiers of valorization of cashew waste by a strain of A. niger to produce citric acid in high yield, with potential application in food industries.
Collapse
Affiliation(s)
- Adekunle Olusegun Adeoye
- Department of Food Science, Ladoke Akintola University of Technology, PMB, 4000, Ogbomoso, Nigeria
| | - Agbaje Lateef
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB, 4000, Ogbomoso, Nigeria.
| |
Collapse
|
11
|
Recent Advances in Lactic Acid Production by Lactic Acid Bacteria. Appl Biochem Biotechnol 2021; 193:4151-4171. [PMID: 34519919 DOI: 10.1007/s12010-021-03672-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Lactic acid can synthesize high value-added chemicals such as poly lactic acid. In order to further minimize the cost of lactic acid production, some effective strategies (e.g., effective mutagenesis and metabolic engineering) have been applied to increase productive capacity of lactic acid bacteria. In addition, low-cost cheap raw materials (e.g., cheap carbon source and cheap nitrogen source) are also used to reduce the cost of lactic acid production. In this review, we summarized the recent developments in lactic acid production, including efficient strain modification technology (high-efficiency mutagenesis means, adaptive laboratory evolution, and metabolic engineering), the use of low-cost cheap raw materials, and also discussed the future prospects of this field, which could promote the development of lactic acid industry.
Collapse
|
12
|
Xue X, Bi F, Liu B, Li J, Zhang L, Zhang J, Gao Q, Wang D. Improving citric acid production of an industrial Aspergillus niger CGMCC 10142: identification and overexpression of a high-affinity glucose transporter with different promoters. Microb Cell Fact 2021; 20:168. [PMID: 34446025 PMCID: PMC8394697 DOI: 10.1186/s12934-021-01659-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 08/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucose transporters play an important role in the fermentation of citric acid. In this study, a high-affinity glucose transporter (HGT1) was identified and overexpressed in the industrial strain A. niger CGMCC 10142. HGT1-overexpressing strains using the PglaA and Paox1 promoters were constructed to verify the glucose transporter functions. RESULT As hypothesized, the HGT1-overexpressing strains showed higher citric acid production and lower residual sugar contents. The best-performing strain A. niger 20-15 exhibited a reduction of the total sugar content and residual reducing sugars by 16.5 and 44.7%, while the final citric acid production was significantly increased to 174.1 g/L, representing a 7.3% increase compared to A. niger CGMCC 10142. Measurement of the mRNA expression levels of relevant genes at different time-points during the fermentation indicated that in addition to HGT1, citrate synthase and glucokinase were also expressed at higher levels in the overexpression strains. CONCLUSION The results indicate that HGT1 overexpression resolved the metabolic bottleneck caused by insufficient sugar transport and thereby improved the sugar utilization rate. This study demonstrates the usefulness of the high-affinity glucose transporter HGT1 for improving the citric acid fermentation process of Aspergillus niger CGMCC 10142.
Collapse
Affiliation(s)
- Xianli Xue
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Futi Bi
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, 300457, People's Republic of China
| | - Boya Liu
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, 300457, People's Republic of China
| | - Jie Li
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lan Zhang
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jian Zhang
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qiang Gao
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Depei Wang
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China. .,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, 300457, People's Republic of China. .,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
13
|
Wang Y, Shang X, Cao F, Yang H. Research Progress and Prospects for Fructosyltransferases. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yitian Wang
- Yangzhou University Clinical Medical College 225009 Yangzhou China
- Northern Jiangsu People's Hospital 225001 Yangzhou China
- Jiangnan University School of Biotechnology 214122 Wuxi China
| | - Xiujie Shang
- Yangzhou University Clinical Medical College 225009 Yangzhou China
- Qingdao Dengta Flavoring and Food Co. Ltd 266399 Qingdao China
| | - Fan Cao
- Vanderbilt University Department of Biochemistry 37235 Nashville TN USA
| | - Haiquan Yang
- Jiangnan University School of Biotechnology 214122 Wuxi China
- Jiangnan University The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education 214122 Wuxi China
| |
Collapse
|
14
|
Mores S, Vandenberghe LPDS, Magalhães Júnior AI, de Carvalho JC, de Mello AFM, Pandey A, Soccol CR. Citric acid bioproduction and downstream processing: Status, opportunities, and challenges. BIORESOURCE TECHNOLOGY 2021; 320:124426. [PMID: 33249260 DOI: 10.1016/j.biortech.2020.124426] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Citric acid (CA) has been widely used in different industrial sectors, being produced through fermentation of low-cost feedstock. The development of downstream processes, easier to operate, environmentally friendly, and more economic than precipitation, is certainly a challenge in CA bioproduction. Large volumes of by-products generated in precipitation require treatment before disposal. Adsorption, extraction, and membrane separation have been shown to have a lower environmental impact than precipitation, but the technological maturity of these methods is still limited. However, reactive extraction and adsorption have great potential for industrial applications. This review shows that there is still much to be explored, both about the factors that are intrinsic to the techniques, but also in their combination for new processes' development. This review reports the most recent advances on CA bioproduction, with significant information about recovery and purification methods involving this highly industrially demanded organic acid.
Collapse
Affiliation(s)
- Sabrina Mores
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil.
| | - Antonio Irineudo Magalhães Júnior
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Júlio César de Carvalho
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Ariane Fátima Murawski de Mello
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Carlos Ricardo Soccol
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| |
Collapse
|
15
|
Shah SS, Palmieri MC, Sponchiado SRP, Bevilaqua D. Enhanced bio-recovery of aluminum from low-grade bauxite using adapted fungal strains. Braz J Microbiol 2020; 51:1909-1918. [PMID: 32748245 DOI: 10.1007/s42770-020-00342-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/17/2020] [Indexed: 01/10/2023] Open
Abstract
Filamentous fungi have been proved to have a pronounced capability to recover metals from mineral ores. However, the metal recovery yield is reduced due to toxic effects triggered by various heavy metals present in the ore. The current study highlights the fungal adaptations to the toxic effects of metals at higher pulp densities for the enhanced bio-recovery of aluminum from low-grade bauxite. In the previous studies, a drastic decrease in the aluminum dissolution was observed when the bauxite pulp density was increased from 1 to 10% (w/v) due to the high metal toxicity and low tolerance of Aspergillus niger and Penicillium simplicissium to heavy metals. These fungi were adapted in order to increase heavy metal tolerance of these fungal strains and also to get maximum Al dissolution. A novel approach was employed for the adaptation of fungal strains using a liquid growth medium containing 5% bauxite pulp density supplemented with molasses as an energy source. The mycelia of adapted strains were harvested and subsequently cultured in a low-cost oat-agar medium. Batch experiments were performed to compare the aluminum leaching efficiencies in the direct one-step and the direct two-step bioleaching processes. FE-SEM analysis revealed the direct destructive and corrosive action by the bauxite-tolerant strains due to the extension and penetration of the vegetative mycelium filaments into the bauxite matrix. XRD analysis of the bioleached bauxite samples showed a considerable decline in oxide minerals such as corundum and gibbsite. Results showed a high amount of total Al (≥ 98%) was successfully bioleached and solubilized from low-grade bauxite by the adapted fungal strains grown in the presence of 5% pulp density and molasses as a low-cost substrate. Graphical abstract.
Collapse
Affiliation(s)
- Syed Sikandar Shah
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry Araraquara, Araraquara, SP, 14800-060, Brazil. .,Department of Chemical Engineering, Polytechnic School of University of Sao Paulo (USP), Sao Paulo, SP, 05508-010, Brazil.
| | | | - Sandra Regina Pombeiro Sponchiado
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry Araraquara, Araraquara, SP, 14800-060, Brazil
| | - Denise Bevilaqua
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry Araraquara, Araraquara, SP, 14800-060, Brazil
| |
Collapse
|
16
|
Izquierdo-Vega JA, Arteaga-Badillo DA, Sánchez-Gutiérrez M, Morales-González JA, Vargas-Mendoza N, Gómez-Aldapa CA, Castro-Rosas J, Delgado-Olivares L, Madrigal-Bujaidar E, Madrigal-Santillán E. Organic Acids from Roselle ( Hibiscus sabdariffa L.)-A Brief Review of Its Pharmacological Effects. Biomedicines 2020; 8:E100. [PMID: 32354172 PMCID: PMC7277581 DOI: 10.3390/biomedicines8050100] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
Roselle (Hibiscus sabdariffa L.), also known as jamaica in Spanish, is a perennial plant that grows in tropical and subtropical regions, including China, Egypt, Indonesia, Mexico, Nigeria, Thailand, and Saudi Arabia. It has a long history of uses, mainly focused on culinary, botanical, floral, cosmetic, and medicinal uses. The latter being of great impact due to the diuretic, choleretic, analgesic, antitussive, antihypertensive, antimicrobial, immunomodulatory, hepatoprotective, antioxidant, and anti-cancer effects. These therapeutic properties have been attributed to the bioactive compounds of the plant, mainly phenolic acids, flavonoids, anthocyanins, and organic acids (citric, hydroxycitric, hibiscus, tartaric, malic, and ascorbic). Most literature reviews and meta-analyses on the therapeutic potential of Hibiscus sabdariffa L. (Hs) compounds have not adequately addressed the contributions of its organic acids present in the Hs extracts. This review compiles information from published research (in vitro, in vivo, and clinical studies) on demonstrated pharmacological properties of organic acids found in Hs. The intent is to encourage and aid researchers to expand their studies on the pharmacologic and therapeutic effects of Hs to include assessments of the organic acid components.
Collapse
Affiliation(s)
- Jeannett A. Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42080, Mexico
| | - Diego A. Arteaga-Badillo
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42080, Mexico
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42080, Mexico
| | - José A. Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Nancy Vargas-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Carlos A. Gómez-Aldapa
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto 42184, Mexico
| | - Javier Castro-Rosas
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto 42184, Mexico
| | - Luis Delgado-Olivares
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42080, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| |
Collapse
|
17
|
Sustainable Animal Feed Protein through the Cultivation of YARROWIA Lipolytica on Agro-Industrial Wastes and by-Products. SUSTAINABILITY 2020. [DOI: 10.3390/su12041398] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are essential constituents of animal feeds, which comprise mainly vegetable protein (e.g., soybean meal), which is produced and transported globally. The decoupling of protein-production and livestock-growth areas results in protein deficiencies in certain parts of the world, and in significant environmental stress. Alternative, more sustainable protein feeds are necessary to meet the increasing needs, and to decrease the environmental footprint of animal products. Yeast Single Cell Proteins (SCP), produced locally using various agro-industrial by-product streams, have significant potential as alternative animal feed protein. Particularly, Yarrowia lipolytica, an oleaginous, non-pathogenic microorganism has been characterized as a “workhorse” in biotechnological studies, drawing the attention of many researchers. The present review summarizes available resources on critical issues concerning the applicability and commercialization of Yarrowia lipolytica as an environment-friendly protein source for animal feed. It discusses the sustainability of the yeast SCP production process, it presents the recent advances concerning Yarrowia lipolytica cultivation on low-cost agro-industrial by-products, and it stresses the effects on the health and welfare of productive animals due to the inclusion of Yarrowia lipolytica in their diet. The data presented in this study should facilitate relative research advancement and the commercialization of Yarrowia lipolytica’s use as an alternative protein source/supplement for animal feeds.
Collapse
|
18
|
Amato A, Becci A, Beolchini F. Citric acid bioproduction: the technological innovation change. Crit Rev Biotechnol 2020; 40:199-212. [DOI: 10.1080/07388551.2019.1709799] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alessia Amato
- Department of Life and Environmental Science, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandro Becci
- Department of Life and Environmental Science, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Beolchini
- Department of Life and Environmental Science, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
19
|
Navarrete C, L. Martínez J. Non-conventional yeasts as superior production platforms for sustainable fermentation based bio-manufacturing processes. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Granchi D, Baldini N, Ulivieri FM, Caudarella R. Role of Citrate in Pathophysiology and Medical Management of Bone Diseases. Nutrients 2019; 11:E2576. [PMID: 31731473 PMCID: PMC6893553 DOI: 10.3390/nu11112576] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Citrate is an intermediate in the "Tricarboxylic Acid Cycle" and is used by all aerobic organisms to produce usable chemical energy. It is a derivative of citric acid, a weak organic acid which can be introduced with diet since it naturally exists in a variety of fruits and vegetables, and can be consumed as a dietary supplement. The close association between this compound and bone was pointed out for the first time by Dickens in 1941, who showed that approximately 90% of the citrate bulk of the human body resides in mineralised tissues. Since then, the number of published articles has increased exponentially, and considerable progress in understanding how citrate is involved in bone metabolism has been made. This review summarises current knowledge regarding the role of citrate in the pathophysiology and medical management of bone disorders.
Collapse
Affiliation(s)
- Donatella Granchi
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Nicola Baldini
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, Via Pupilli 1, University of Bologna, 40136 Bologna, Italy
| | - Fabio Massimo Ulivieri
- Nuclear Medicine, Bone Metabolic Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via F.Sforza 35, 20122 Milano, Italy;
| | - Renata Caudarella
- Maria Cecilia Hospital, GVM Care and Research, Via Corriera 1, 48033 Cotignola (RA), Italy;
| |
Collapse
|
21
|
Trotter PJ, Juco K, Le HT, Nelson K, Tamayo LI, Nicaud JM, Park YK. Glutamate dehydrogenases in the oleaginous yeast Yarrowia lipolytica. Yeast 2019; 37:103-115. [PMID: 31119792 DOI: 10.1002/yea.3425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 11/12/2022] Open
Abstract
Glutamate dehydrogenases (GDHs) are fundamental to cellular nitrogen and energy balance. Yet little is known about these enzymes in the oleaginous yeast Yarrowia lipolytica. The YALI0F17820g and YALI0E09603g genes, encoding potential GDH enzymes in this organism, were examined. Heterologous expression in gdh-null Saccharomyces cerevisiae and examination of Y. lipolytica strains carrying gene deletions demonstrate that YALI0F17820g (ylGDH1) encodes a NADP-dependent GDH whereas YALI0E09603g (ylGDH2) encodes a NAD-dependent GDH enzyme. The activity encoded by these two genes accounts for all measurable GDH activity in Y. lipolytica. Levels of the two enzyme activities are comparable during logarithmic growth on rich medium, but the NADP-ylGDH1p enzyme activity is most highly expressed in stationary and nitrogen starved cells by threefold to 12-fold. Replacement of ammonia with glutamate causes a decrease in NADP-ylGdh1p activity, whereas NAD-ylGdh2p activity is increased. When glutamate is both carbon and nitrogen sources, the activity of NAD-ylGDH2p becomes dominant up to 18-fold compared with that of NADP-ylGDH1p. Gene deletion followed by growth on different carbon and nitrogen sources shows that NADP-ylGdh1p is required for efficient nitrogen assimilation whereas NAD-ylGdh2p plays a role in nitrogen and carbon utilization from glutamate. Overexpression experiments demonstrate that ylGDH1 and ylGDH2 are not interchangeable. These studies provide a vital basis for future consideration of how these enzymes function to facilitate energy and nitrogen homeostasis in Y. lipolytica.
Collapse
Affiliation(s)
- Pamela J Trotter
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Karen Juco
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Ha T Le
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Kjersten Nelson
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Lizeth I Tamayo
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Jean-Marc Nicaud
- Biologie intégrative du Métabolisme Lipidique, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Young-Kyoung Park
- Biologie intégrative du Métabolisme Lipidique, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
22
|
Morgunov IG, Kamzolova SV, Karpukhina OV, Bokieva SB, Inozemtsev AN. Biosynthesis of isocitric acid in repeated-batch culture and testing of its stress-protective activity. Appl Microbiol Biotechnol 2019; 103:3549-3558. [PMID: 30852660 DOI: 10.1007/s00253-019-09729-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
Biosynthesis of Ds(+)-threo-isocitric acid from ethanol in the Yarrowia lipolytica batch and repeated-batch cultures was studied. Repeated-batch cultivation was found to provide for a good biosynthetic efficiency of the producer for as long as 748 h, probably due to maintenance of high activities of enzymes involved in the biosynthesis of isocitric acid. Under optimal repeated-batch cultivation conditions, the producer accumulated 109.6 g/L Ds(+)-threo-isocitric acid with a production rate of 1.346 g/L h. The monopotassium salt of isocitric acid isolated from the culture liquid and purified to 99.9% was found to remove neurointoxication, to restore memory, and to improve the learning of laboratory rats intoxicated with lead and molybdenum salts. Taking into account the fact that the neurotoxic effect of heavy metals is mainly determined by oxidative stress, the aforementioned favorable action of isocitric acid on the intoxicated rats can be explained by its antioxidant activity among other pharmacological effects.
Collapse
Affiliation(s)
- Igor G Morgunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia.
| | - Svetlana V Kamzolova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Olga V Karpukhina
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina str, Moscow, 119991, Russia
| | - Svetlana B Bokieva
- Khetagurov North Ossetian State University, 44-46 Vatutina str, Vladikavkaz, North Ossetia, 362025, Russia
| | - Anatoly N Inozemtsev
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russia
| |
Collapse
|